Artist's conception of Kepler 34b, which orbits two stars. Credit: David A. Aguilar (CfA)
Binary star systems are downright dangerous due to their complex gravitational interactions that can easily grind a planet to pieces. So how is it that we have found a few planets in these Tattooine-like environments?
Research led by the University of Bristol show that most planets formed far away from their central stars and then migrated in at some point in their history, according to research collected concerning Kepler-34b and other exoplanets.
The scientists did “computer simulations of the early stages of planet formation around the binary stars using a sophisticated model that calculates the effect of gravity and physical collisions on and between one million planetary building blocks,” stated the university.
“They found that the majority of these planets must have formed much further away from the central binary stars and then migrated to their current location.”
You can read more about the research in Astrophysical Journal Letters. It was led by Bristol graduate student Stefan Lines with participation from advanced research fellow and computational astrophysicst Zoe Lienhardt, among other collaborators.
Back in 2008, astronomers made a big announcement: for the first time, they had taken…
In a recent study scheduled to be published in the journal Icarus in March 2023,…
The Korea Aerospace Research Institute (KARI) both ended 2022 and started 2023 on a very…
The cosmic zoo contains objects so bizarre and extreme that they generate gravitational waves. Scorpius…
In a recent study published in Science, a team of researchers at Imperial College London…
In a recent study submitted to the journal Icarus, a team of researchers at the…