Was This Ridge Habitable? Mars Curiosity Eyes Nearby Mountain

So Curiosity has been on Mars for an Earth year and is now, slowly, making its way over to that ginormous mountain — Mount Sharp, or Aeolis Mons — in the distance. The trek is expected to take at least until mid-2014, if not longer, because the rover will make pit stops at interesting science sites along the way. But far-thinking scientists are already thinking about what areas they would like to examine when it gets there.

One of those is an area that appears to have formed in water. There’s a low ridge on the bottom of the mountain that likely includes hematite, a mineral that other Mars rovers have found. (Remember the “blueberries” spotted a few years ago?) Hematite is an iron mineral that comes to be “in association with water”, a new study reports, and could point the way to the habitable conditions Curiosity is seeking.

The rub is scientists can’t say for sure how the hematite formed until the rover is practically right next to the ridge. There are plenty of pictures from orbit, but not high-resolution enough for the team to make definitive answers.

Colors map percentages of hematite in the surface materials in Meridiani Planum on Mars from 5 percent (aqua) to 25 percent (red). Opportunity landed within the black oval. MER scientists say the rocks there had once been drenched in water. Credit: NASA

“Two alternatives are likely: chemical precipitation within the rocks by underground water that became exposed to an oxidizing environment — or weathering by neutral to slightly acidic water,” wrote Arizona State University’s Red Planet Report. Either way, it shows the ridge likely hosted iron oxidation. Earth’s experience with this type of oxidation shows that it happens “almost exclusively” with microorganisms, but that’s not a guarantee on Mars.

Mars Reconnaissance Orbiter images show that the ridge is about 660 feet (200 meters) wide and four miles (6.5 kilometers) long, with strata or layers in the ridge appearing to be similar to those of layers in Mount Sharp.

While Curiosity is not designed to seek life, it can ferret out details of the environment. Just a few weeks ago, for example, it uncovered pebbles that likely formed in the presence of water. Other Mars missions have also found evidence of that liquid, with perhaps some of it once arising from the subsurface. Where the water came from, and why the environment of Mars changed so much in the last few billion years, are ongoing scientific questions.

Check out more details on the study in Geology.

Source: Red Planet Report

Elizabeth Howell

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Recent Posts

Has the Universe Been Designed to Support Life? Now We Have a Way to Test it!

The anthropic principle states that the fundamental parameters of the Universe such as the strength…

5 hours ago

Webb Sees a Supercluster of Galaxies Coming Together

As a species, we've come to the awareness that we're a minuscule part of a…

6 hours ago

Hubble Gets its Best Look At the First Quasar

The term quasar comes from quasi-stellar objects, a name that reflected our uncertainty about their…

9 hours ago

Do We Really Know What Becomes a Type Ia Supernova?

Type Ia supernovae are crucial to our understanding of cosmology. But we still don't fully…

12 hours ago

A Cheap Satellite with Large Fuel Tank Could Scout For Interplanetary Missions

A spacecraft that can provide the propulsion necessary to reach other planets while also being…

13 hours ago

Our Strategy to Catch the 2024 Geminid Meteors

Don’t let the bright Moon deter you from seeing the one of the best meteor…

14 hours ago