What’s A Kilonova? You’re Looking At It!

As astute readers of Universe Today, you likely know what a supernova is: a stellar explosion that signals the end game for certain kinds of stars. Above, however, is a picture of a kilonova, which happens when two really dense objects come together.

This fireball arose after a short-term (1/10 of a second) gamma-ray burst came into view of the Swift space telescope on June 3. Nine days later, the Hubble Space Telescope looked at the same area to see if there were any remnants, and spotted a faint red object that was confirmed in independent observations.

It’s the first time astronomers have been able to see a connection between gamma-ray bursts and kilonovas, although it was predicted before. They’re saying this is the first evidence that short-duration gamma ray bursts arise as two super-dense stellar objects come together.

So what’s the connection? Astronomers suspect it’s this sequence of events:

  • Two binary neutron stars (really dense stars) start to move closer to each other;
  • The system sends out gravitational radiation that make ripples in space-time;
  • These waves make the stars move even closer together;
  • In the milliseconds before the explosion, the two stars “merge into a death spiral that kicks out highly radioactive material,” as NASA states, with material that gets warmer, gets bigger and sends out light;
  • The kilonova occurs with the detonation of a white dwarf. While it’s bright, 1,000 times brighter than a nova, it’s only 1/10th to 1/100th the brightness of an average supernova.
An artistic image of the explosion of a star leading to a gamma-ray burst. (Source: FUW/Tentaris/Maciej Fro?ow)

“This observation finally solves the mystery of the origin of short gamma ray bursts,” stated Nial Tanvir of the University of Leicester in the United Kingdom, who is also the lead author.

“Many astronomers, including our group, have already provided a great deal of evidence that long-duration gamma ray bursts (those lasting more than two seconds) are produced by the collapse of extremely massive stars. But we only had weak circumstantial evidence that short bursts were produced by the merger of compact objects. This result now appears to provide definitive proof supporting that scenario.”

Check out more details on the burst on HubbleSite. The scientific paper associated with these results was published in Nature Aug. 3.

Source: NASA

Elizabeth Howell

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Recent Posts

Most Black Holes Spin Rapidly. This one… Doesn’t

A Chandra X-ray Observatory view of the supermassive black hole at the heart of quasar…

41 mins ago

Tidal Heating Could Make Exomoons Much More Habitable (and Detectable)

A new study shows how the study of tidal heating in exomoons could greatly expand…

2 hours ago

Red Supergiant Stars Bubble and Froth so Much That Their Position in the Sky Seems to Dance Around

Making a 3D map of our galaxy would be easier if some stars behaved long…

3 hours ago

This is How You Get Multiple Star Systems

Stars form inside massive clouds of gas and dust called molecular clouds. The Nebular Hypothesis…

5 hours ago

The Case is Building That Colliding Neutron Stars Create Magnetars

Magnetars are some of the most fascinating astronomical objects. One teaspoon of the stuff they…

12 hours ago

A Dying Star’s Last Act was to Destroy all Its Planets

When white dwarfs go wild, their planets suffer through the resulting chaos. The evidence shows…

1 day ago