Who Discovered Helium?

Small helium white dwarfs can be caused by a binary partner (NASA)

Scientists have understood for some time that the most abundant elements in the Universe are simple gases like hydrogen and helium. These make up the vast majority of its observable mass, dwarfing all the heavier elements combined (and by a wide margin). And between the two, helium is the second lightest and second most abundant element, being present in about 24% of observable Universe’s elemental mass.

Whereas we tend to think of Helium as the hilarious gas that does strange things to your voice and allows balloons to float, it is actually a crucial part of our existence. In addition to being a key component of stars, helium is also a major constituent in gas giants. This is due in part to its very high nuclear binding energy, plus the fact that is produced by both nuclear fusion and radioactive decay. And yet, scientists have only been aware of its existence since the late 19th century.

Continue reading “Who Discovered Helium?”

Messier 4 (M4) – The NGC 6121 Globular Cluster

This M4 globular cluster, as imaged by the Wide Field Imager at ESO’s La Silla Observatory. Credit: ESO

During the late 18th century, Charles Messier began to notice that a series of “nebulous” objects in the night sky that he originally mistook for comets. In time, he would notice that they were in fact something significantly different. With the hope of preventing other astronomers from making the same mistake, he began compiling a list of these in what would come to be known as the Messier Catalog.

Consisting of 100 objects, the catalog became an important milestone in both astronomy and the research of Deep Sky objects. Among the many famous objects in this catalog is the M4 loose globular cluster (aka. NGC 6121). Located in the Scorpius (Scorpio) Constellation, this great cluster of ancient stars is one of the closest Messier Objects of its kind to Earth.

Continue reading “Messier 4 (M4) – The NGC 6121 Globular Cluster”

Why Do Red Giants Expand?

Why Do Red Giants Expand?

We know that the Sun will last another 5 billion years and then expand us a red giant. What will actually make this process happen?


One of the handy things about the Universe, apart from the fact that it exists, is that it lets us see crazy different configurations of everything, including planets, stars and galaxies.

We see stars like our Sun and dramatically unlike our Sun. Tiny, cool red dwarf stars with a fraction of the mass of our own, sipping away at their hydrogen juice boxes for billions and even trillions of years. Stars with way more mass than our own, blasting out enormous amounts of radiation, only lasting a few million years before they detonate as supernovae.

There are ones younger than the Sun; just now clearing out the gas and dust in their solar nebula with intense ultraviolet radiation. Stars much older than ours, bloated up into enormous sizes, nearing the end of their lives before they fade into their golden years as white dwarfs.

The Sun is a main sequence star, converting hydrogen into helium at its core, like it’s been doing for more than 4.5 billion years, and will continue to do so for another 5 or so. At the end of its life, it’s going to bloat up as a red giant, so large that it consumes Mercury and Venus, and maybe even Earth.

What’s the process going on inside the Sun that makes this happen? Let’s peel away the Sun and take a look at the core. After we’re done screaming about the burning burning hands, we’ll see that the Sun is this enormous sphere of hydrogen and helium, 1.4 million kilometers across, the actual business of fusion is happening down in the core, a region that’s a delicious bubblegum center a tiny 280,000 kilometers across.

The core is less than one percent of the entire volume, but because the density of hydrogen in the chewy center is 150 times more than liquid water, it accounts for a freakishly huge 35% of its mass.

It’s thanks to the mass of the entire star, 2 x 10^30 kg, bearing down on the core thanks to gravity. Down here in the core, temperatures are more than 15 million degrees Celsius. It’s the perfect spot for nuclear fusion picnic.

There are a few paths fusion can take, but the main one is where hydrogen atoms are mushed into helium. This process releases enough gamma radiation to make you a planet full of Hulks.

Proton-proton fusion in a sun-like star. Credit: Borb
Proton-proton fusion in a sun-like star. Credit: Borb

While the Sun has been performing hydrogen fusion, all this helium has been piling up at its core, like nuclear waste. Terrifyingly, it’s still fuel, but our little Sun just doesn’t have the temperature or pressure at its core to be able to use it.

Eventually, the fusion at the core of the Sun shuts down, choked off by all this helium and in a last gasp of high pitched mickey mouse voice terror the helium core begins to contract and heat up. At this point, an amazing thing happens. It’s now hot enough for a layer of hydrogen just around the core to heat up and begin fusion again. The Sun now gets a second chance at life.

As this outer layer contains a bigger volume than the original core of the Sun, it heats up significantly, releasing far more energy. This increase in light pressure from the core pushes much harder against gravity, and expands the volume of the Sun.

Even this isn’t the end of the star’s life. Dammit, Harkness, just stay down. Helium continues to build up, and even this extra shell around the core isn’t hot and dense enough to support fusion. So the core dies again. The star begins to contract, the gravitational energy heats up again, allowing another shell of hydrogen to have the pressure and temperature for fusion, and then we’re back in business!

Red giant. Credit:NASA/ Walt Feimer
Red giant. Credit:NASA/ Walt Feimer

Our Sun will likely go through this process multiple times, each phase taking a few years to complete as it expands and contracts, heats and cools. Our Sun becomes a variable star.

Eventually, we run out of usable hydrogen, but fortunately, it’s able to switch over to using helium as fuel, generating carbon and oxygen as byproducts. This doesn’t last long, and when it’s gone, the Sun gets swollen to hundreds of times its size, releasing thousands of times more energy.

This is when the Sun becomes that familiar red giant, gobbling up the tasty planets, including, quite possibly the Earth.The remaining atmosphere puffs out from the Sun, and drifts off into space creating a beautiful planetary nebula that future alien astronomers will enjoy for thousands of years. What’s left is a carbon oxygen core, a white dwarf.

The Sun is completely out of tricks to make fusion happen any more, and it’ll now cool down to the background temperature of the Universe. Our Sun will die in a dramatic way, billions of years from now when it bloats up 500 times its original volume.

What do you think future alien astronomers will call the planetary nebula left behind by the Sun? Give it a name in the comments below.

Weekly Space Hangout – May 15, 2015: Finding, Studying and Visiting Other Worlds!

Host: Fraser Cain (@fcain)

Guests:
Jolene Creighton (@jolene723 / fromquarkstoquasars.com)
Brian Koberlein (@briankoberlein / briankoberlein.com)
Dave Dickinson (@astroguyz / www.astroguyz.com)
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )
Alessondra Springmann (@sondy)
Continue reading “Weekly Space Hangout – May 15, 2015: Finding, Studying and Visiting Other Worlds!”

New Binocular Nova Discovered in Sagittarius

This view shows the sky facing south-southeast just before the start of dawn in mid-March from the central U.S. The nova's located squarely in the Teapot constellation. Source: Stellarium

Looks like the Sagittarius Teapot’s got a new whistle. On March 15, John Seach of Chatsworth Island, NSW, Australia discovered a probable nova in the heart of the constellation using a DSLR camera and fast 50mm lens. Checks revealed no bright asteroid or variable star at the location. At the time, the new object glowed at the naked eye limit of magnitude +6, but a more recent observation by Japanese amateur Koichi Itagaki puts the star at magnitude +5.3, indicating it’s still on the rise. 

A 5th magnitude nova’s not too difficult to spot with the naked eye from a dark sky, and binoculars will show it with ease. Make a morning of it by setting up your telescope for a look at Saturn and the nearby double star Graffias (Beta Scorpii), one of the prettiest, low-power doubles in the summer sky.

Close-in map of Sagittarius showing the nova's location (R.A. 18h36m57s Decl. -28°55'42") and neighboring stars with their magnitudes. For clarity, the decimal points are omitted from the magnitudes, which are from the Tycho catalog. Source: Stellarium
Close-in map of Sagittarius showing the nova’s location (R.A. 18h36m57s Decl. -28°55’42”) and neighboring stars with their magnitudes. For clarity, the decimal points are omitted from the magnitudes, which are from the Tycho catalog. Source: Stellarium

Nova means “new”, but novae aren’t fresh stars coming to life but an explosion occurring on the surface of an otherwise faint star no one’s taken notice of – until the blast causes it to brighten 50,000 to 100,000 times. A nova occurs in a close binary star system, where a small but extremely dense and massive (for its size) white dwarf siphons hydrogen gas from its closely orbiting companion. After swirling about in a disk around the dwarf, it’s funneled down to the star’s 150,000 F° surface where gravity compacts and heats the gas until detonates in a titanic thermonuclear explosion. Suddenly, a faint star that wasn’t on anyone’s radar vaults a dozen magnitudes to become a standout “new star”.

Novae occur in close binary systems where one star is a tiny but extremely compact white dwarf star. The dwarf pulls material into a disk around itself, some of which is funneled to the surface and ignites in a nova explosion. Credit: NASA
Novae occur in close binary systems where one star is a tiny but extremely compact white dwarf star. The dwarf pulls material into a disk around itself, some of which is funneled to the surface and ignites in a nova explosion. Credit: NASA

Regular nova observers may wonder why so many novae are discovered in the Sagittarius-Scorpius Milky Way region. There are so many more stars in the dense star clouds of the Milky Way, compared to say the Big Dipper or Canis Minor, that the odds go up of seeing a relatively rare event like a stellar explosion is likely to happen there than where the stars are scattered thinly. Given this galactic facts of life, that means most of will have to set our alarms to spot this nova. Sagittarius doesn’t rise high enough for a good view until the start of morning twilight. For the central U.S., that’s around 5:45-6 a.m.

A now-you-see-it-now-you-don't animation showing the nova field before and after discovery. Credit: Ernesto Guido and Nick Howes
A now-you-see-it-now-you-don’t animation showing the nova field before and after discovery. Credit: Ernesto Guido and Nick Howes

Find a location with a clear view to the southeast and get oriented at the start of morning twilight or about 100 minutes before sunrise. Using the maps, locate Sagittarius below and to the east (left) of Scorpius. Once you’ve arrived, point your binoculars into the Teapot and star-hop to the nova’s location. I’ve included visual magnitudes of neighboring stars to help you estimate the nova’s brightness and track its changes in the coming days and weeks.

Whether it continues to brighten or soon begins to fade is anyone’s guess at this point. That only makes going out and seeing it yourself that much more enticing.

New photo of Nova Sagittarii. Note the pink color from hydrogen alpha emission. Credit: Erneso Guido and Nick Howes
New photo of Nova Sagittarii. Note the “warm” color from hydrogen alpha emission. Credit: Erneso Guido and Nick Howes

UPDATE: A spectrum of the object was obtained with the Liverpool Telescope March 16 confirming that the “new star” is indeed a nova. Gas has been clocked moving away from the system at more than 6.2 million mph (10 million kph)!

Two Stars On A Death Spiral Set To Detonate As A Supernova

This artist’s impression shows the central part of the planetary nebula Henize 2-428. The core of this unique object consists of two white dwarf stars, each with a mass a little less than that of the Sun. They are expected to slowly draw closer to each other and merge in around 700 million years. This event will create a dazzling supernova of Type Ia and destroy both stars. Credit: ESO/L. Calçada

Two white dwarfs circle around one other, locked in a fatal tango. With an intimate orbit and a hefty combined mass, the pair is ultimately destined to collide, merge, and erupt in a titanic explosion: a Type Ia supernova.

Or so goes the theory behind the infamous “standard candles” of cosmology.

Now, in a paper published in today’s issue of Nature, a team of astronomers have announced observational support for such an arrangement – two massive white dwarf stars that appear to be on track for a very explosive demise.

The astronomers were originally studying variations in planetary nebulae, the glowing clouds of gas that red giant stars throw off as they fizzle into white dwarfs. One of their targets was the planetary nebula Henize 2-428, an oddly lopsided specimen that, the team believed, owed its shape to the existence of two central stars, rather than one. After observing the nebula with the ESO’s Very Large Telescope, the astronomers concluded that they were correct – Henize 2-428 did, in fact, have a binary star system at its heart.

This image of the unusual planetary nebula was obtained using ESO’s Very Large Telescope at the Paranal Observatory in Chile. In the heart of this colourful nebula lies a unique object consisting of two white dwarf stars, each with a mass a little less than that of the Sun. These stars are expected to slowly draw closer to each other and merge in around 700 million years. This event will create a dazzling supernova of Type Ia and destroy both stars. Credit: ESO
This image of the unusual planetary nebula was obtained using ESO’s Very Large Telescope at the Paranal Observatory in Chile. In the heart of this colourful nebula lies a unique object consisting of two white dwarf stars, each with a mass a little less than that of the Sun. These stars are expected to slowly draw closer to each other and merge in around 700 million years. This event will create a dazzling supernova of Type Ia and destroy both stars. Credit: ESO

“Further observations made with telescopes in the Canary Islands allowed us to determine the orbit of the two stars and deduce both the masses of the two stars and their separation,” said Romano Corradi, a member of the team.

And that is where things get juicy.

In fact, the two stars are whipping around each other once every 4.2 hours, implying a narrow separation that is shrinking with each orbit. Moreover, the system has a combined heft of 1.76 solar masses – larger, by any count, than the restrictive Chandrasekhar limit, the maximum ~1.4 solar masses that a white dwarf can withstand before it detonates. Based on the team’s calculations, Henize 2-428 is likely to be the site of a type Ia supernova within the next 700 million years.

“Until now, the formation of supernovae Type Ia by the merging of two white dwarfs was purely theoretical,” explained David Jones, another of the paper’s coauthors. “The pair of stars in Henize 2-428 is the real thing!”

Check out this simulation, courtesy of the ESO, for a closer look at the fate of the dynamic duo:

 

Astronomers should be able to use the stars of Henize 2-428 to test and refine their models of type Ia supernovae – essential tools that, as lead author Miguel Santander-García emphasized, “are widely used to measure astronomical distances and were key to the discovery that the expansion of the Universe is accelerating due to dark energy.” This system may also enhance scientists’ understanding of the precursors of other irregular planetary nebulae and supernova remnants.

The team’s work was published in the February 9 issue of Nature. A copy of the paper is available here.

End the Year with a Bang! See a Bright Supernova in Virgo

The bright supernova (at tick marks) in the galaxy NGC 4666 photographed on December 24, 2014. Credit: Gregor Krannich

A 14th magnitude supernova discovered in the spiral galaxy NGC 4666 earlier this month has recently brightened to 11th magnitude, making it not only the second brightest supernova of the year, but an easy find in an 8-inch or larger telescope. I made a special trip into the cold this morning for a look and saw it with ease in my 10-inch (25-cm) scope at low power at magnitude 11.9.

Before the Moon taints the dawn sky, you may want to bundle up and have a look, too. The charts below will help you get there.

NGC 4666 is also known as the Superwind Galaxy. Home to vigorous star formation, a combination of supernova explosions and strong winds from massive stars in the starburst region drives a vast outflow of gas from the galaxy into space, a so-called “superwind”. Credit: ESO/J. Dietrich
NGC 4666 is also known as the Superwind Galaxy. Home to vigorous star formation, a combination of supernova explosions and strong winds from massive stars in the starburst region drives a vast outflow of gas from the galaxy into space, called a “superwind”. Credit: ESO/J. Dietrich

With the temporary name ASASSN-14lp, this Type Ia supernova was snatched up by the catchy-titled “Assassin Project”, short for  Automated Sky Survey for SuperNovae (ASAS-SN) on December 9th. Only 80 million light years from Earth, NGC 4666 is a relatively nearby spiral galaxy famous enough to earn a nickname.

Extra-planar soft X-ray emitting hot gas is observed above the most actively star-forming regions in the galactic disk of NGC 4666 and coexists together with filaments of the warm ionized medium, cosmic rays and vertical magnetic field structures channelling (or following) the outflow. Credit: M. Ehle and ESO
Hot, X-ray emitting gas in NGC 4666 billows around the main galaxy as a superwind seen here as outflows on either side of the optical image. Photo taken with the XMM-Newton telescope.  Credit: M. Ehle and ESO

Called the Superwind Galaxy, it’s home to waves of intense star formation thought to be caused by gravitational interactions between it and its neighboring galaxies, including NGC 4668, visible in the lower left corner of the photo above.

Supernovae also play a part in powering the wind which emerges from the galaxy’s central regions like pseudopods on an amoeba.  X-ray and radio light show the outflows best. How fitting that a bright supernova should happen to appear at this time. Seeing one of the key players behind the superwind with our own eyes gives us a visceral feel for the nature of its home galaxy.

Wide view map showing the location of the galaxy NGC 4666 in Virgo not far from Porrima or Gamma Virginis. This map shows the sky facing south shortly before the start of dawn in early January. Source: Stellarium
“Big picture” map showing the location of the galaxy NGC 4666 in Virgo not far from Porrima. The view faces south shortly before the start of dawn in early January. Source: Stellarium

Spectra taken of ASASSN-14lp show it to be a Type Ia object involving the explosive burning of a white dwarf star in a binary system. The Earth-size dwarf packs the gravitational might of a sun-size star and pulls hydrogen gas from the nearby companion down to its surface. Slowly, the dwarf gets heavier and more massive.

When it attains a mass 1.4 times that of the sun, it can no longer support itself. The star suddenly collapses, heats to incredible temperatures and burns up explosively in a runaway fusion reaction. Bang! A supernova.

Detailed map with stars to about magnitude 10. The galaxy is just a little more than a degree northeast of Porrima (Gamma Virginis). Source: Stellarium
Detailed map with stars to about magnitude 10. The galaxy is just a little more than a degree northeast of Porrima (Gamma Virginis). Source: Stellarium

Here are a couple maps to help you find the new object. Fortunately, it’s high in the sky just before the start of dawn in the “Y” of Virgo only a degree or so from the 3rd magnitude double star Porrima, also known as Gamma Virginis. Have at it and let us know if you spot the latest superwind-maker.

For more photos and magnitude updates, check out Dave Bishop’s page on the supernova. You can also print a chart with comparison magnitudes by clicking over to the AAVSO and typing in ASASSN-14lp in the “name” box.

Astro-Challenge: Taming the Pup-Can You Glimpse Sirius B?

White dwarf and companion star resolved.

Astronomy is all about thinking big, both in time and space.

The Earth turns on its axis, the Moon passes through its phases, and the planets come into opposition and solar conjunction on a routine basis.

Of course, on the other end of the spectrum, there are some events which traverse such colossal spans of time that the mere mortal life span of measly homo sapiens such as ourselves can never expect to cover them. Many comets have periods measured in centuries, or thousands of years. The axis of the Earth wobbles like a top, completing one turn every 26,000 years in what’s known as the Precession of the Equinoxes. Our solar system completes one revolution about the galactic center every quarter billion years…

Feeling puny yet? Sure, astronomy is also about humility. But among these stupendous cycles, there are some astronomical events that you just might be able to live through. One such instance is the orbits of double stars. And as 2015 approaches, we challenge you to see of the most famous white dwarf of them all, as it reaches a favorable viewing position over the next few years: Sirius B.

Credit:
Sirius A and B in x-rays courtesy of Chandra. Credit: NASA/SAO/CXC.

Sirius itself is easy to find, as it’s the brightest star in Earth’s sky shining at magnitude -1.42. In fact, you can spot Sirius in the daytime sky if you know exactly where to look.

But it is one of the ultimate in cosmic ironies that the most conspicuous of stars in our sky also hosts such an elusive companion. The discovery of Sirius B awaited the invention of optics capable of resolving it next to its dazzling host. Alvan Clark Jr. and Sr. first spied the enigmatic companion on January 31st, 1862 while testing their newly constructed 18.5 inch refractor, which was the largest at the time. The discovery was soon verified from the Harvard College Observatory, adding Sirius A and B to the growing list of multiple stars.

Photo by the author.
A 19th century refractor similar to the one used to discover Sirius B. Photo by the author.

And what a strange companion it turned out to be. Today, we know that Sirius B is a white dwarf, the cooling dense ember of a main sequence star at the end of its life. We call the matter in such a star degenerate, not as a commentary on its moral stature, but the state the electrons and the closely packed nuclei within under extreme pressure. Our Sun will share the same ultimate fate as Sirius B, about six billion years from now.

Credit
A comparison of a white dwarf (center) and our Sun (right) Credit: RJHall/Wikimedia Commons.

The challenge, should you choose to accept it, is to spot Sirius B in the glare of its host. The contrast in brightness between the pair is daunting: shining at magnitude +11, the B companion is more than 63,000 times fainter than -1.46 magnitude Sirius A.

Created by the author.
The changing position angle of Sirius B. Note that the graphic is inverted, with north at the bottom. Created by the author.

A feat of visual athletics, indeed. Still, Sirius B breaks 10” in separation from its primary in 2015, as it heads towards apastron — its most distant point from its primary, at just over 11” in separation — in 2019. Sirius B varies from 8.2 and 31.5 AUs from its primary. Sirius B is on a 50.1 year orbit, meaning the time to cross this one off of your life list is over the upcoming decade. Perhaps making an animation showing the motion of Sirius B from 2015-2025 would present a supreme challenge as well.

Sirius culminates at local midnight right around New Year’s Eve, shining at its highest to the south as the “ball drops” ushering in 2015. Of course, this is only a fortuitous circumstance that is possible in our current epoch, and precession and the proper motions of both Sirius and Sol will make this less so millennia hence.

Credit: Stellarium.
Sirius crossing the meridian at local midnight on New Year’s Eve. Credit: Stellarium.

Newsflash: there’s a very special visual treat in the offing next week, as comet C/2014 Q2 Lovejoy is currently hovering around +6th magnitude and passes 19 degrees south of Sirius on Christmas Day… more to come!

Magnification and good seeing are your friends in the hunt for Sirius B. Two factors describe the position of a secondary star in a binary pair: its position angle in degrees, and separation in arc seconds. When it comes to stars that are a tough split, I find its better to estimate the position angle first before looking it up. A close match can often confirm the observation. Does a friend see the same thing at the eyepiece? A good star to “warm up” on is the +6.8 magnitude companion to Rigel in the foot of Orion, with a separation of 9”.

Nudging Sirius just out of view might allow the B companion to become apparent. Another nifty star-spliting tool is what’s known as an occulting bar eyepiece. Making an occultation bar eyepiece is easy: we’ve used everything from a small strip of foil to a piece of guitar string (heavy E gauge works nicely) for the central bar. An occulting bar eyepiece is also handy for hunting down the moons of Mars near opposition.

Sirius B also works its way into cultural myths and lore, not the least of which are the curious tales of the Dogon people of Mali. At the outset, it seems that these ancient people have knowledge of a small dense hidden companion star to Sirius, knowledge that requires modern technology to reproduce. Carl Sagan noted, however, that cultural contamination may have resulted in the late 19th century discovery of Sirius B making its way into the Dogon pantheon. The science of anthropology is rife with anecdotes that have been carefully fed to credulous anthropologists only to be reported later as fact, all in the name of a good story.

Credit
A comparison of Sirius B’s real versus apparent trajectory. Credit: SiriusB/Wikimedia Commons.

All amazing things to ponder as you begin your 2015 quest for Sirius B, a bashful but fascinating star.

– Read more on the curious case of the Dogon and Sirius B.

-Want more white dwarfs? Here’s a handy list of white dwarfs of backyard telescopes.

 

 

Possible Bright Supernova Lights Up Spiral Galaxy M61

An animation showing a comparison between the confirmation image (at top) and an archive photo. Credit: Ernesto Guido, Martino Nicolini, Nick Howes

I sat straight up in my seat when I learned of the discovery of a possible new supernova in the bright Virgo galaxy M61. Since bright usually means close, this newly exploding star may soon become visible in smaller telescopes. It was discovered at magnitude +13.6 on October 29th by Koichi Itagaki of Japan, a prolific hunter of supernovae with 94 discoveries or co-discoveries to his credit. Itagaki used a CCD camera and 19.6-inch (0.50-m) reflector to spy the new star within one of the galaxy’s prominent spiral arms. Comparison with earlier photos showed no star at the position. Itagaki also nabbed not one but two earlier supernovae in M61 in December 2008 and November 2006.

The possible supernova in the bright galaxy M61 in Virgo is located 40" east and 7" south of the galaxy's core at right ascension (RA) 12 h 22', declination (Dec) +4º 28' It's currently magnitude +13.4 and visible in the morning sky before dawn in 8-inch and larger telescopes. Credit: Ernesto Guido, Martino Nicolini, Nick Howes
The possible supernova in the bright galaxy M61 in Virgo is located 40″ east and 7″ south of the galaxy’s core at right ascension (RA) 12 h 22′, declination (Dec) +4º 28′. It’s currently magnitude +13.4 and visible in the morning sky before dawn in 8-inch and larger telescopes. Credit: Ernesto Guido, Martino Nicolini, Nick Howes

Overnight, Ernesto Guido and crew used a remote telescope in New Mexico to confirm the new object. We’re still waiting for a spectrum to be absolutely sure this is the real deal and also to determine what type of explosion occurred. In the meantime, it may well brighten in the coming mornings.

M61 is a beautiful barred spiral galaxy located about 55 million light years from Earth in the constellation Virgo. It's one of the few galaxies to show spiral structure in smaller telescopes. Credit: Hunter Wilson
M61 is a beautiful barred spiral galaxy located about 55 million light years from Earth in the constellation Virgo. It’s one of the few galaxies to show spiral structure in smaller telescopes. Credit: Hunter Wilson

Supernovae are divided into two broad categories – Type Ia and Type II. In a Type Ia event,  a planet-sized white dwarf star in close orbit around a normal star siphons off matter from its companion which builds up on the surface of the dwarf until it reaches critical mass at which point the core ignites and consumes itself and the star in one titanic nuclear fusion reaction.  A cataclysmic explosion ensues as the star self-destructs in blaze of glory.

Evolution of a Type Ia supernova. Credit: NASA/ESA/A. Feild
Evolution of a Type Ia supernova. Credit: NASA/ESA/A. Feild

Type Ia explosions can become 5 billion times brighter than the Sun – the reason we can see them across so many light years – and eject matter into space at 5,000 – 20,000 km/second. Type II events mark the end of the life of a massive supergiant star. As these behemoths age, they burn by fusing heavier and heavier elements in their cores from hydrogen to carbon to silicon and finally, iron-nickel. Iron is inert and can’t be cooked or fused to create more energy. The star’s internal heat source, which has been staving back the force of gravity all these millions of years, shuts down.  Gravity takes hold with a vengeance, the star quickly collapses then rebounds in a titanic explosion. Ka-boom! 

Artist's impression of a Type II supernova explosion which involves the destruction of a massive supergiant star. Credit: ESO
Artist’s impression of a Type II supernova explosion which involves the destruction of a massive supergiant star. Credit: ESO

Like the Type Ia event, a Type II supernova grows to fantastic brilliance. Besides a legacy of radiant light, star debris, the creation of heavy elements like gold and lead, a Type II event will sometimes leave behind a tiny, city-sized, rapidly-spinning neutron star – the much compressed core of the original star – or even a black hole. So yes, life can continue for a giant star after a supernova event. But like seeing a former classmate at your 40th high school reunion, you’d hardly recognize it.

The "Y" or cup of Virgo rises into good view shortly before the start of dawn or about 2 hours before sunrise. This map shows the sky facing east around 6 a.m. local time (DST) and 5 a.m. starting Sunday when Daylight Saving Time is done. Source: Stellarium
The “Y” or “cup” of Virgo rises into good view shortly before the start of dawn or about 2 hours before sunrise. This map shows the sky facing east around 6 a.m. local time (DST) tomorrow October 31 and 5 a.m. standard time starting Sunday when Daylight Saving Time ends. Source: Stellarium

Are you itching to see this new supernova for yourself? Here are a couple maps to help you find it. M61 is located in the middle of the “Y” of Virgo not far from the familiar bright double star Gamma Virginis.  From many locations, the galaxy climbs to 15-20° altitude in the east-southeast sky just before the start of dawn, just high enough for a good view. Once you find the galaxy, look for a small “star” superimposed on its eastern spiral arm as shown in the photo at the top of this article.

In this close up view, stars are shown to magnitude +7.5. M61 is right between 16 and 17 Virginis (magnitudes 5 and 6.5 respectively). Source: Stellarium
In this close up view, stars are shown to magnitude +7.5. M61 is right between 16 and 17 Virginis (magnitudes 5 and 6.5 respectively). Click to enlarge.  Source: Stellarium

I’ll be out there with my scope watching and will report back once it’s established what type of supernova happens to be blowing up in our eyepieces. More information about the new object can be found anytime at David Bishop’s Latest Supernovae site. Good luck, clear skies!

** Update Nov. 1 : M61’s supernova now has a name and type! SN 2014dt is a Type Ia (exploding white dwarf) with some peculiarities in its spectrum. It’s also little brighter at magnitude +13.2.