Zubrin Claims VASIMR is a Hoax

Artist rendering of the VASIMR powered spacecraft heading to Mars. Credit: Ad Astra

[/caption]

A next-generation plasma rocket being developed by former NASA astronaut Franklin Chang Diaz called the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) has been touted as a way to get astronauts to Mars in weeks rather than months, as well as an innovative, cheap way to re-boost the International Space Station. But in a biting commentary posted on Space News and the Mars Society website, “Mars Direct” advocate Robert Zubrin calls VASIMR a “hoax” saying the engine “is neither revolutionary nor particularly promising. Rather, it is just another addition to the family of electric thrusters, which convert electric power to jet thrust, but are markedly inferior to the ones we already have,” adding, “There is thus no basis whatsoever for believing in the feasibility of Chang Diaz’s fantasy power system.”

The VASIMR uses plasma as a propellant. A gas is ionized using radio waves entering into a plasma state. As ions the plasma can be directed and accelerated by a magnetic field to create specific thrust. The purported advantage of the VASIMR lies in its ability to change from high impulse to low impulse thrust as needed, making it an ideal candidate for a mission beyond low Earth orbit.

Chang Diaz’ company, the Ad Astra Rocket Company successfully tested the VASIMR VX-200 plasma engine in 2009. It ran at 201 kilowatts in a vacuum chamber, passing the 200-kilowatt mark for the first time. “It’s the most powerful plasma rocket in the world right now,” said Chang-Diaz at the time. Ad Astra has signed a Space Act agreement with NASA to test a 200-kilowatt VASIMR engine on the International Space Station, reportedly in 2013.

The tests would provide periodic boosts to the space station, which gradually drops in altitude due to atmospheric drag. ISS boosts are currently provided by spacecraft with conventional thrusters, which consume about 7.5 tons of propellant per year. By cutting this amount down to 0.3 tons, Chang-Diaz estimates that VASIMR could save NASA millions of dollars per year.

For the engine to enable trips to Mars in a reported 39 days, a 10- to 20-megawatt VASIMR engine ion engine would need to be coupled with nuclear power to dramatically shorten human transit times between planets.

Robert Zubrin. Credit: The Mars Society

Zubrin is the president of the Mars Society and author of the book “The Case for Mars: The Plan to Settle the Red Planet and Why We Must.” He has long touted the “Mars Direct” approach of getting humans to Mars to create a sustainable human settlement. The plan includes a series of unmanned and human flights to Mars using existing technology, as well as “living off the land” on Mars by creating rocket fuel to return to Earth, and using underground reservoirs of water on Mars.

In his commentary on VASIMR, Zubrin says, “existing ion thrusters routinely achieve 70 percent efficiency and have operated successfully both on the test stand and in space for thousands of hours. In contrast, after 30 years of research, the VASIMR has only obtained about 50 percent efficiency in test stand burns of a few seconds’ duration.”

On the ‘39 days to Mars’ claim, Zubrin says VASIMR would need to couple with a nuclear reactor system with a power of 200,000 kilowatts and a power-to-mass ratio of 1,000 watts per kilogram, while the largest space nuclear reactor ever built, the Soviet Topaz, had a power of 10 kilowatts and a power-to-mass ratio of 10 watts per kilogram.

Zubrin has invited Chang Diaz to a formal public debate the VASIMR at a Mars Society convention in Dallas next month.

Read Zubrin’s commentary on Space News or the Mars Society website.

More info: Ad Astra Rocket Company

Plasma Rocket Could Help Pick Up Space Trash

Artist concept of a VASIMR. Credit: Ad Astra

[/caption]

Franklin Chang Diaz’s proposed VASIMR rocket engine could create very versatile spacecraft. Not only does the plasma-fueled rocket have the potential to make a trip to Mars in just over a month, it could also help clean up space trash in Earth orbit. “Our goal is to be able to have a garbage truck that will be picking up all of these objects at various orbits,” astronaut Chang Diaz said in an article in the Global Post. The debris could put into an “orbital graveyard,” he added, “or we could actually launch them to the sun and drive them to the sun, which is kind of the ultimate, cosmic dump.”

Image plot of space junk. Image credit: NASA
Image plot of space junk. Image credit: NASA

Space debris is becoming a growing problem. The number of non-operating satellites in orbit has increased, as well as debris from spacecraft explosions and, as happened earlier this year, collisions between satellites.

“The Earth has become virtually a beehive,” Chang Diaz said. “The number of satellites orbiting the Earth, we’re talking hundreds of thousands of these objects. Some of them are just junk that’s floating there simply because these satellites have run out of fuel and they just remain in orbit dead.”

The rocket, called the VASIMR for “variable specific impulse magnetoplasma rocket,” uses a high-power technology initially studied by NASA that turns argon into plasma. Propelled by an exhaust gas at temperatures close to that of the sun, the VASIMR VX-200 engine would have the ability to change orbits and accelerate and decelerate in order to pick up space debris.

In September, Chang Diaz’s company, Ad Astra, tested the rocket and achieved a milestone. During the a test on in a vacuum chamber on Earth, the engine cranked at just over 200 kilowatts, becoming the world’s most powerful electric rocket.

Possible uses for the VASIMR rocket. Credit: Ad Astra
Possible uses for the VASIMR rocket. Credit: Ad Astra

VASIMR is not suitable to launch payloads from the surface of the Earth due to its low thrust to weight ratio and its need of a vacuum to operate. It would, however be ideal to function as an upper stage for cargo, drastically reducing the fuel requirements for in-space transportation.

Ad Astra has also signed an agreement with NASA to test a 200-kilowatt VASIMR engine on the International Space Station in 2013 to help keep it in orbit. ISS boosts are currently provided by conventional thrusters, which consume about 7.5 tons of propellant per year. By cutting this amount down to 0.3 tons, Chang-Diaz estimates that VASIMR could save NASA millions of dollars per year.

Other uses of the plasma rocket engine would be lunar cargo transport, human missions to Mars or other destinations, and in-space refueling.

Sources: Global Post, Ad Astra

Trips to Mars in 39 Days

Artist rendering of the VASIMR powered spacecraft heading to Mars. Credit: Ad Astra

[/caption]
Using traditional chemical rockets, a trip to Mars – at quickest — lasts 6 months. But a new rocket tested successfully last week could potentially cut down travel time to the Red Planet to just 39 days. The Ad Astra Rocket Company tested a plasma rocket called the VASIMR VX-200 engine, which ran at 201 kilowatts in a vacuum chamber, passing the 200-kilowatt mark for the first time. “It’s the most powerful plasma rocket in the world right now,” says Franklin Chang-Diaz, former NASA astronaut and CEO of Ad Astra. The company has also signed an agreement with NASA to test a 200-kilowatt VASIMR engine on the International Space Station in 2013.

The tests on the ISS would provide periodic boosts to the space station, which gradually drops in altitude due to atmospheric drag. ISS boosts are currently provided by spacecraft with conventional thrusters, which consume about 7.5 tons of propellant per year. By cutting this amount down to 0.3 tons, Chang-Diaz estimates that VASIMR could save NASA millions of dollars per year.

The test last week was the first time that a small-scale prototype of the company’s VASIMR (Variable Specific Impulse Magnetoplasma Rocket) rocket engine has been demonstrated at full power.

Plasma, or ion engines uses radio waves to heat gases such as hydrogen, argon, and neon, creating hot plasma. Magnetic fields force the charged plasma out the back of the engine, producing thrust in the opposite direction.

They provide much less thrust at a given moment than do chemical rockets, which means they can’t break free of the Earth’s gravity on their own. Plus, ion engines only work in a vacuum. But once in space, they can give a continuous push for years, like wind pushing a sailboat, accelerating gradually until the vehicle is moving faster than chemical rockets. They only produce a pound of thrust, but in space that’s enough to move 2 tons of cargo.

Due to the high velocity that is possible, less fuel is required than in conventional engines.

Currently, the Dawn spacecraft, on its way to the asteroids Ceres and Vesta, uses ion propulsion, which will enable it to orbit Vesta, then leave and head to Ceres. This isn’t possible with conventional rockets. Additionally, in space ion engines have a velocity ten times that of chemical rockets.

Specfic impulse and thrust graph. Credit: NASA
Specfic impulse and thrust graph. Credit: NASA


Rocket thrust is measured in Newtons (1 Newton is about 1/4 pound). Specific impulse is a way to describe the efficiency of rocket engines, and is measured in time (seconds). It represents the impulse (change in momentum) per unit of propellant. The higher the specific impulse, the less propellant is needed to gain a given amount of momentum.

Dawn’s engines have a specific impulse of 3100 seconds and a thrust of 90 mNewtons. A chemical rocket on a spacecraft might have a thrust of up to 500 Newtons, and a specific impulse of less than 1000 seconds.

The VASIMR has 4 Newtons of thrust (0.9 pounds) with a specific impulse of about 6,000 seconds.

The VASIMR has two additional important features that distinguish it from other plasma propulsion systems. It has the ability to vary the exhaust parameters (thrust and specific impulse) in order to optimally match mission requirements. This results in the lowest trip time with the highest payload for a given fuel load.

In addition, VASIMR has no physical electrodes in contact with the plasma, prolonging the engine’s lifetime and enabling a higher power density than in other designs.

To make a trip to Mars in 39 days, a 10- to 20-megawatt VASIMR engine ion engine would need to be coupled with nuclear power to dramatically shorten human transit times between planets. The shorter the trip, the less time astronauts would be exposed to space radiation, and a microgravity environment, both of which are significant hurdles for Mars missions.

VASIMR. Credit: Ad Astra
VASIMR. Credit: Ad Astra

The engine would work by firing continuously during the first half of the flight to accelerate, then turning to deaccelerate the spacecraft for the second half. In addition, VASIMR could permit an abort to Earth if problems developed during the early phases of the mission, a capability not available to conventional engines.

VASIMR could also be adapted to handle the high payloads of robotic missions, and propel cargo missions with a very large payload mass fraction. Trip times and payload mass are major limitations of conventional and nuclear thermal rockets because of their inherently low specific impulse.

Chang-Diaz has been working on the development of the VASIMR concept since 1979, before founding Ad Astra in 2005 to further develop the project.

Source: PhysOrg