ExoMars is Back on Track for Mars in 2028

An artist's illustration of the ExoMars/Rosalind Franklin rover on Mars. Image Credit: ESA/ATG medialab

The ExoMars Rover mission is back on track for its mission to Mars, but Russia won’t be a part of it this time. Following Russia’s disastrous invasion of neighbouring Ukraine in February 2022, the ESA suspended the ExoMars program.

Now, the mission is targeted for a 2028 launch to Mars without Russian involvement. In anticipation of that launch date, the ESA is busy testing the Rosalind Franklin rover and its mission-defining drill.

Continue reading “ExoMars is Back on Track for Mars in 2028”

Perseverance Seen From Space by ESA’s ExoMars Orbiter

Credit: ESA

A little over a week ago (February 18th, 2021), NASA’s Perseverance rover landed in the Jezero crater on the surface of Mars. In what was truly a media circus, people from all over the world tuned to watch the live coverage of the rover landing. When Perseverance touched down, it wasn’t just the mission controllers at NASA who triumphantly jumped to their feet to cheer and applaud.

In the days that followed, the world was treated to all kinds of media that showed the surface of Mars and the descent. The most recent comes from the Trace Gas Orbiter (TGO), which is part of the ESA-Roscosmos ExoMars program. From its vantage point, high above the Martian skies, the TGO caught sight of Perseverance in the Jezero crater and acquired images that show the rover and other elements of its landing vehicle.

Continue reading “Perseverance Seen From Space by ESA’s ExoMars Orbiter”

Nothing Says Springtime on Mars Like Explosions of Sand

During winter in the polar regions, a thin layer of carbon dioxide ice covers the surface and then sublimates – turns directly from ice into vapour – with the first light of spring. In the dune fields, this springtime defrosting occurs from the bottom up, trapping gas between the ice and the sand. As the ice cracks, this gas is released violently and carries sand with it, forming the dark patches and streaks observed in this CaSSIS image. ESA/Roscosmos/CaSSIS, CC BY-SA 3.0 IGO

Springtime on Earth can be a riotous affair, as plants come back to life and creatures large and small get ready to mate. Nothing like that happens on Mars, of course. But even on a cold world like Mars, springtime brings changes, though you have to look a little more closely to see them.

Lucky for us, there are spacecraft orbiting Mars with high-resolution cameras, and we can track the onset of Martian springtime through images.

Continue reading “Nothing Says Springtime on Mars Like Explosions of Sand”

Remember the Discovery of Methane in the Martian Atmosphere? Now Scientists Can’t Find any Evidence of it, at all

The Trace Gas Orbiter arrived at Mars in 2016. Credit: ESA

In 2003, scientists from NASA’s Goddard Space Center made the first-ever detection of trace amounts of methane in Mars’ atmosphere, a find which was confirmed a year later by the ESA’s Mars Express orbiter. In December of 2014, the Curiosity rover detected a tenfold spike of methane at the base of Mount Sharp, and later uncovered evidence that Mars has a seasonal methane cycle, where levels peak in the late northern summer.

Since it’s discovery, the existence of methane on Mars has been considered one of the strongest lines of evidence for the existence of past or present life. So it was quite the downer last week (on Dec. 12th) when the science team behind one of the ESA’s ExoMars Trace Gas Orbiter (TGO) spectrometers announced that they had found no traces of methane in Mars’ atmosphere.

Continue reading “Remember the Discovery of Methane in the Martian Atmosphere? Now Scientists Can’t Find any Evidence of it, at all”

ESA’s ExoMars has Completed its Aerobraking Maneuvers to Bring it Into a Circular 400 km Orbit Around Mars

Artist’s impression depicting the separation of the ExoMars 2016 entry, descent and landing demonstrator module, named Schiaparelli, from the Trace Gas Orbiter, and heading for Mars. Credit: ESA/D. Ducros

In March of 2016, the European Space Agency (ESA) launched the ExoMars (Exobiology on Mars) mission into space. A joint project between the ESA and Roscosmos, this two-part mission consisted of the Trace Gas Orbiter (TGO) and the Schiaparelli lander, both of which arrived in orbit around Mars in October of 2016. While Schiaparelli crashed while attempting to land, the TGO has gone on to accomplish some impressive feats.

For example, in March of 2017, the orbiter commenced a series of aerobraking maneuvers, where it started to lower its orbit to enter Mars’ thin atmosphere and slow itself down. According to Armelle Hubault, the Spacecraft Operations Engineer on the TGO flight control team, the ExoMars mission has made tremendous progress and is well on its way to establishing its final orbit around the Red Planet.

TGO’s mission has been to study the surface of Mars, characterize the distribution of water and chemicals beneath the surface, study the planet’s geological evolution, identify future landing sites, and to search for possible biosignatures of past Martian life. Once it has established its final orbit around Mars – 400 km (248.5 mi) from the surface – the TGO will be ideally positioned to conduct these studies.

Visualization of the ExoMars mission’s Trace Gas Orbiter conducting aerobraking maneuvers to March of 2018. Credit: ESA

The ESA also released a graphic (shown above) demonstrating the successive orbits the TGO has made since it began aerobraking – and will continue to make until March of 2018. Whereas the red dot indicates the orbiter (and the blue line its current orbit), the grey lines show successive reductions in the TGO’s orbital period. The bold lines denote a reduction of 1 hour while the thin lines denote a reduction of 30 minutes.

Essentially, a single aerobraking maneuver consist of the orbiter passing into Mars’ upper atmosphere and relying on its solar arrays to generate tiny amounts of drag. Over time, this process slows the craft down and gradually lowers its orbit around Mars. As Armelle Hubault recently posted on the ESA’s rocket science blog:

“We started on the biggest orbit with an apocentre (the furthest distance from Mars during each orbit) of 33 200 km and an orbit of 24 hr in March 2017, but had to pause last summer due to Mars being in conjunction. We recommenced aerobraking in August 2017, and are on track to finish up in the final science orbit in mid-March 2018. As of today, 30 Jan 2018, we have slowed ExoMars TGO by 781.5 m/s. For comparison, this speed is more than twice as fast as the speed of a typical long-haul jet aircraft.”

Earlier this week, the orbiter passed through the point where it made its closest approach to the surface in its orbit (the pericenter passage, represented by the red line). During this approach, the craft dipped well into Mars’ uppermost atmosphere, which dragged the aircraft and slowed it down further. In its current elliptical orbit, it reaches a maximum distance of 2700 km (1677 mi) from Mars (it’s apocenter).

Visualization of the ExoMars Trace Gas Orbiter aerobraking at Mars. Credit: ESA/ATG medialab

Despite being a decades-old practice, aerobraking remains a significant technical challenge for mission teams. Every time a spacecraft passes through a planet’s atmosphere, its flight controllers need to make sure that its orientation is just right in order to slow down and ensure that the craft remains stable. If their calculations are off by even a little, the spacecraft could begin to spin out of control and veer off course. As Hubault explained:

“We have to adjust our pericentre height regularly, because on the one hand, the martian atmosphere varies in density (so sometimes we brake more and sometimes we brake less) and on the other hand, martian gravity is not the same everywhere (so sometimes the planet pulls us down and sometimes we drift out a bit). We try to stay at about 110 km altitude for optimum braking effect. To keep the spacecraft on track, we upload a new set of commands every day – so for us, for flight dynamics and for the ground station teams, it’s a very demanding time!”

The next step for the flight control team is to use the spacecraft’s thrusters to maneuver the spacecraft into its final orbit (represented by the green line on the diagram). At this point, the spacecraft will be in its final science and operation data relay orbit, where it will be in a roughly circular orbit about 400 km (248.5 mi) from the surface of Mars. As Hubault wrote, the process of bringing the TGO into its final orbit remains a challenging one.

“The main challenge at the moment is that, since we never know in advance how much the spacecraft is going to be slowed during each pericentre passage, we also never know exactly when it is going to reestablish contact with our ground stations after pointing back to Earth,” she said. “We are working with a 20-min ‘window’ for acquisition of signal (AOS), when the ground station first catches TGO’s signal during any given station visibility, whereas normally for interplanetary missions we have a firm AOS time programmed in advance.”

Artist’s impression of the ESA’s Exomars 2020 rover, which is expected to land on the surface of Mars by the Spring of 2o21. Credit:ESA

With the spacecraft’s orbital period now shortened to less than 3 hours, the flight control team has to go through this exercise 8 times a day now. Once the TGO has reached its final orbit (by March of 2018), the orbiter will remain there until 2022, serving as a telecommunications relay satellite for future missions. One of its tasks will be to relay data from the ESA’s ExoMars 2020 mission, which will consist of a European rover and a Russian surface platform being deployed the surface of Mars in the Spring of 2021.

Along with NASA’s Mars 2020 rover, this rover/lander pair will be the latest in a long line of robotic missions looking to unlock the secrets of Mars past. In addition, these missions will conduct crucial investigations that will pave the way for eventual sample return missions to Earth, not to mention crewed to the surface!

Further Reading: ESA

‘Spectacular’ First Images and Data Released from ExoMars Orbiter

One of the first images from the Mars Camera, CaSSIS, on the ExoMars Trace Gas Orbiter. The image shows a 1.4 km sized crater (left center) on the rim of a much larger crater near the Mars equator. Credit: ESA/Roscosmos/ExoMars/CaSSIS/UniBE.

The first images taken by the newest mission to Mars have been released, and the teams behind the instruments on ESA’s ExoMars Trace Gas Orbiter are ecstatic.

“The first images we received are absolutely spectacular – and it was only meant to be a test,” said Nicolas Thomas, who leads the Colour and Stereo Surface Imaging System at the University of Bern.

The ExoMars TGO arrived in orbit at Mars over a month ago, on October 19, 2016 along with the Schiaparelli lander, which unfortunately crashed on the surface of Mars.

“A lot of public attention has been on the failed landing of Schiaparelli,” said Thomas, “but TGO has been working really well so we have been extremely busy in the past month.”

Scientists and engineers have been turning on and checking out the various instruments on TGO as it orbits in an initial elliptical orbit that takes it from just 250 km above the surface of Mars to nearly 100,000 km every 4.2 days.

During November 20-28 it spent two orbits testing its four science instruments for the first time and making important calibration measurements. A total of 11 images were returned during the first close fly-by during that period, which you can see in the video below.

The views show Hebes Chasma, an 8 km-deep trough in the northern most part of Valles Marineris, during the spacecraft’s closest approach.

“We saw Hebes Chasma at 2.8 metres per pixel” Thomas said. “That’s a bit like flying over Bern at 15,000 km per hour and simultaneously getting sharp pictures of cars in Zurich.”

The first stereo reconstruction of a small area in Noctis Labyrinthus. The image gives an altitude map of the region with a resolution of less than 20 meters. Credit: ESA/Roscosmos/ExoMars/CaSSIS/UniBE
The first stereo reconstruction of a small area in Noctis Labyrinthus. The image gives an altitude map of the region with a resolution of less than 20 meters. Credit: ESA/Roscosmos/ExoMars/CaSSIS/UniBE

The team tested the color and stereo capabilities of CaSSIS were also successfully tested. Below is a 3D reconstruction of a region called Noctis Labyrinthus that was produced from a stereo pair of images. This region is also part of Valles Marineris and has a system of deep, steep-walled valleys.

Thomas said these first images don’t show much color because the surfaces in this area are covered with dust so there are few color changes evident. “We will have to wait a little until something colourful passes under the spacecraft,” he said. Until then, the pictures will be black and white.

The ExoMars 2016 mission is a collaboration between the European Space Agency (ESA) and Roscosmos. ExoMars will continue the search for biological and geologic activity on Mars, which may have had a much warmer, wetter climate in the past. The TGO orbiter is equipped with a payload of four science instruments supplied by European and Russian scientists that will investigate the source and precisely measure the quantity of the methane and other trace gases.

Methane provides the most interest because it has been detected periodically on Mars. On Earth, methane is produced primarily by biological activity, and to a smaller extent by geological processes such as some hydrothermal reactions.

First detection of atmospheric carbon dioxide by the ExoMars Trace Gas Orbiter’s Atmospheric Chemistry Suite. Credit: ESA/Roscosmos/ExoMars/ACS/IKI.
First detection of atmospheric carbon dioxide by the ExoMars Trace Gas Orbiter’s Atmospheric Chemistry Suite. Credit: ESA/Roscosmos/ExoMars/ACS/IKI.

The two instruments that will be used to look for methane and other gases were also tested. During the test observations last week, the Atmospheric Chemistry Suite focused on carbon dioxide, which makes up a large volume of the planet’s atmosphere, while the Nadir and Occultation for Mars Discovery instrument looked for water.

The teams also coordinated observations with ESA’s Mars Express and NASA’s Mars Reconnaissance Orbiter, as they will do future corresponding observations during the mission.

Starting in March, 2017, TGO will use Mars atmosphere to perform aerobraking to gradually slow the spacecraft down to reach a roughly circular orbit 400 km above Mars. The aerobraking process will take between 9-12 months, with the primary science phase will beginning near the end of 2017.

The CaSSIS camera team said nominal operations will have the instrument acquiring 12-20 high resolution stereo and color images of selected targets per day.

Sources: ESA, University of Bern.

Schiaparelli’s One Second Of Terror

Artist's impression of the ExoMars Schiaparelli lander passing into Mars' atmosphere. Credit: ESA

The European Space Agency (ESA) and Roscomos (the Russian federal space agency) had high hopes for the Schiaparelli lander, which crashed on the surface of Mars on October 19th. As part of the ExoMars program, its purpose was to test the technologies that will be used to deploy a rover to the Red Planet in 2020.

However, investigators are making progress towards determining what went wrong during the lander’s descent. Based on their most recent findings, they concluded that an anomaly took place with an on-board instrument that led to the lander detaching from its parachute and backshell prematurely. This ultimately caused it to land hard and be destroyed.

According to investigators, the data retrieved from the lander indicates that for the most part, Schiaparelli was functioning normally before it crashed. This included the parachute deploying once it had reached an altitude of 12 km and achieved a speed of 1730 km/h. When it reached an altitude of 7.8 km, the lander’s heatshield was released, and it radar altimeter provided accurate data to the lander’s on-board guidance, navigation and control system.

Schiaparelli lander descent sequence. Image: ESA/ATG medialab
Schiaparelli lander descent sequence. According to their investigation, the ESA has determined that an error led the parachute and backshell to be jettisoned prematurely, causing the lander to crash. Credit: ESA/ATG medialab

All of this happened according to plan and did not contribute to the fatal crash. However, an anomaly then took place with the Inertial Measurement Unit (IMU), which is there to measure the rotation rates of the vehicle. Apparently, the IMU experienced saturation shortly after the parachute was deployed, causing it to persist for one second longer than required.

This error was then fed to the navigation system, which caused it to generate an estimate altitude that was below Mars’ actual ground level. In essence, the lander thought it was closer to the ground than it actually was. As such, the the parachute and backshell of the Entry and Descent Module (EDM) were jettisoned and the braking thrusters fired prematurely – at an altitude of 3.7 km instead of 1.2 km, as planned.

This briefest of errors caused the lander to free-fall for one second longer than it was supposed to, causing it to land hard and be destroyed. The investigators have confirmed this assessment using multiple computer simulations, all of which indicate that the IMU error was responsible. However, this is still a tentative conclusion that awaits final confirmation from the agency.

Schiaparelli on Mars. Credit: ESA/ATG medialab
Artist’s impression of the Schiaparelli lander on Mars. Credit: ESA/ATG medialab

As David Parker, the ESA’s Director of Human Spaceflight and Robotic Exploration, said on on Wednesday, Nov. 23rd in a ESA press release:

“This is still a very preliminary conclusion of our technical investigations. The full picture will be provided in early 2017 by the future report of an external independent inquiry board, which is now being set up, as requested by ESA’s Director General, under the chairmanship of ESA’s Inspector General. But we will have learned much from Schiaparelli that will directly contribute to the second ExoMars mission being developed with our international partners for launch in 2020.”

In other words, this accident has not deterred the ESA and Roscosmos from pursuing the next stage in the ExoMars program – which is the deployment of the ExoMars rover in 2020. When it reaches Mars in 2021, the rover will be capable of navigating autonomously across the surface, using a on-board laboratory suite to search for signs of biological life, both past and present.

In the meantime, data retrieved from Schiaparelli’s other instruments is still being analyzed, as well as information from orbiters that observed the lander’s descent. It is hoped that this will shed further light on the accident, as well as salvage something from the mission. The Trace Gas Orbiter is also starting its first series of observations since it made its arrival in orbit on Oct. 19th, and will reach its operational orbit towards the end of 2017.

Further Reading: ESA

What is the Mars Curse?

What is the Mars Curse?
What is the Mars Curse?


Last week, ESA’s Schiaparelli lander smashed onto the surface of Mars. Apparently its descent thrusters shut off early, and instead of gently landing on the surface, it hit hard, going 300 km/h, creating a 15-meter crater on the surface of Mars.

Fortunately, the orbiter part of ExoMars mission made it safely to Mars, and will now start gathering data about the presence of methane in the Martian atmosphere. If everything goes well, this might give us compelling evidence there’s active life on Mars, right now.

It’s a shame that the lander portion of the mission crashed on the surface of Mars, but it’s certainly not surprising. In fact, so many spacecraft have gone to the galactic graveyard trying to reach Mars that normally rational scientists turn downright superstitious about the place. They call it the Mars Curse, or the Great Galactic Ghoul.

Mars eats spacecraft for breakfast. It’s not picky. It’ll eat orbiters, landers, even gentle and harmless flybys. Sometimes it kills them before they’ve even left Earth orbit.

NASA’s Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft celebrated one Earth year in orbit around Mars on Sept. 21, 2015. MAVEN was launched to Mars on Nov. 18, 2013 from Cape Canaveral Air Force Station in Florida and successfully entered Mars’ orbit on Sept. 21, 2014. Credit: NASA
NASA’s Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft celebrated one Earth year in orbit around Mars on Sept. 21, 2015. MAVEN was launched to Mars on Nov. 18, 2013 from Cape Canaveral Air Force Station in Florida and successfully entered Mars’ orbit on Sept. 21, 2014. Credit: NASA

At the time I’m writing this article in late October, 2016, Earthlings have sent a total of 55 robotic missions to Mars. Did you realize we’ve tried to hurl that much computing metal towards the Red Planet? 11 flybys, 23 orbiters, 15 landers and 6 rovers.

How’s our average? Terrible. Of all these spacecraft, only 53% have arrived safe and sound at Mars, to carry out their scientific mission. Half of all missions have failed.

Let me give you a bunch of examples.

In the early 1960s, the Soviets tried to capture the space exploration high ground to send missions to Mars. They started with the Mars 1M probes. They tried launching two of them in 1960, but neither even made it to space. Another in 1962 was destroyed too.

They got close with Mars 1 in 1962, but it failed before it reached the planet, and Mars 2MV didn’t even leave the Earth’s orbit.

Five failures, one after the other, that must have been heartbreaking. Then the Americans took a crack at it with Mariner 3, but it didn’t get into the right trajectory to reach Mars.

Mariner IV encounter with Mars. Image credit: NASA/JPL
Mariner IV encounter with Mars. Image credit: NASA/JPL

Finally, in 1964 the first attempt to reach Mars was successful with Mariner 4. We got a handful of blurry images from a brief flyby.

For the next decade, both the Soviets and Americans threw all kinds of hapless robots on a collision course with Mars, both orbiters and landers. There were a few successes, like Mariner 6 and 7, and Mariner 9 which went into orbit for the first time in 1971. But mostly, it was failure. The Soviets suffered 10 missions that either partially or fully failed. There were a couple of orbiters that made it safely to the Red Planet, but their lander payloads were destroyed. That sounds familiar.

Now, don’t feel too bad about the Soviets. While they were struggling to get to Mars, they were having wild success with their Venera program, orbiting and eventually landing on the surface of Venus. They even sent a few pictures back.

Finally, the Americans saw their greatest success in Mars exploration: the Viking Missions. Viking 1 and Viking 2 both consisted of an orbiter/lander combination, and both spacecraft were a complete success.

View of Mars from Viking 2 lander, September 1976. (NASA/JPL-Caltech)
View of Mars from Viking 2 lander, September 1976. (NASA/JPL-Caltech)

Was the Mars Curse over? Not even a little bit. During the 1990s, the Russians lost a mission, the Japanese lost a mission, and the Americans lost 3, including the Mars Observer, Mars Climate Orbiter and the Mars Polar Lander.

There were some great successes, though, like the Mars Global Surveyor and the Mars Pathfinder. You know, the one with the Sojourner Rover that’s going to save Mark Watney?

The 2000s have been good. Every single American mission has been successful, including Spirit and Opportunity, Curiosity, the Mars Reconnaissance Orbiter, and others.

But the Mars Curse just won’t leave the Europeans alone. It consumed the Russian Fobos-Grunt mission, the Beagle 2 Lander, and now, poor Schiaparelli. Of the 20 missions to Mars sent by European countries, only 4 have had partial successes, with their orbiters surviving, while their landers or rovers were smashed.

Is there something to this curse? Is there a Galactic Ghoul at Mars waiting to consume any spacecraft that dare to venture in its direction?

ExoMars 2016 lifted off on a Proton-M rocket from Baikonur, Kazakhstan at 09:31 GMT on 14 March 2016. Copyright ESA–Stephane Corvaja, 2016
ExoMars 2016 lifted off on a Proton-M rocket from Baikonur, Kazakhstan at 09:31 GMT on 14 March 2016. Copyright ESA–Stephane Corvaja, 2016

Flying to Mars is tricky business, and it starts with just getting off Earth. The escape velocity you need to get into low-Earth orbit is about 7.8 km/s. But if you want to go straight to Mars, you need to be going 11.3 km/s. Which means you might want a bigger rocket, more fuel, going faster, with more stages. It’s a more complicated and dangerous affair.

Your spacecraft needs to spend many months in interplanetary space, exposed to the solar winds and cosmic radiation.

Arriving at Mars is harder too. The atmosphere is very thin for aerobraking. If you’re looking to go into orbit, you need to get the trajectory exactly right or crash onto the planet or skip off and out into deep space.

And if you’re actually trying to land on Mars, it’s incredibly difficult. The atmosphere isn’t thin enough to use heatshields and parachutes like you can on Earth. And it’s too thick to let you just land with retro-rockets like they did on the Moon.

Schiaparelli lander descent sequence. Image: ESA/ATG medialab
Schiaparelli lander’s planned descent sequence. Image: ESA/ATG medialab

Landers need a combination of retro-rockets, parachutes, aerobraking and even airbags to make the landing. If any one of these systems fails, the spacecraft is destroyed, just like Schiaparelli.

If I was in charge of planning a human mission to Mars, I would never forget that half of all spacecraft ever sent to the Red Planet failed. The Galactic Ghoul has never tasted human flesh before. Let’s put off that first meal for as long as we can.

Bold Euro-Russian Expedition Blasts Free of Earth En Route to Mars in Search of Life’s Indicators

Artists concept of ExoMars spacecraft separation from Breeze M fourth stage. Credit: ESA

Artists concept of ExoMars spacecraft separation from Breeze M fourth stage. Credit: ESA
Artists concept of ExoMars spacecraft separation from Breeze M fourth stage after launch atop Proton rocket on March 14, 2016. Credit: ESA

The cooperative Euro-Russian ExoMars 2016 expedition is now en route to the Red Planet after successfully firing its upper stage booster one final time on Monday evening, March 15, to blast free of the Earth’s gravitational tug and begin a 500 million kilometer interplanetary journey in a bold search of indications of life emanating from potential Martian microbes.

The vehicle is in “good health” with the solar panels unfurled, generating power and on course for the 500 Million kilometer (300 million mile) journey to Mars.

“Acquisition of signal confirmed. We have a mission to Mars!” announced Mission Control from the European Space Agency.

The joint European/Russian ExoMars spacecraft successfully blasted off from the Baikonur Cosmodrome in Kazakhstan atop a Russian Proton-M rocket at 5:31:42 a.m. EDT (0931:42 GMT), Monday, March 14, with the goal of searching for possible signatures of life in the form of trace amounts of atmospheric methane on the Red Planet.

Video caption: Blastoff of Russian Proton rocket from the Baikonur Cosmodrome carrying ExoMars 2016 mission on March 14, 2016. Credit: Roscosmos

The first three stages of the 191-foot-tall (58-meter) Russian-built rocket fired as scheduled over the first ten minutes and lofted the 9,550-pound (4,332-kilogram) ExoMars to orbit.

Three more firings from the Breeze-M fourth stage quickly raised the probe into progressively higher temporary parking orbits around Earth.

But the science and engineering teams from the European Space Agency (ESA) and Roscosmos had to keep their fingers crossed and endure an agonizingly long wait of more than 10 hours before the fourth and final ignition of the Proton’s Breeze-M upper stage required to break the bonds of Earth.

The do or die last Breeze-M upper stage burn with ExoMars still attached was finally fired exactly as planned.

The probe was released at last from the Breeze at 20:13 GMT.

However, it took another long hour to corroborate the missions true success until the first acquisition of signal (AOS) from the spacecraft was received at ESA’s control centre in Darmstadt, Germany via the Malindi ground tracking station in Africa at 5:21:29 p.m. EST (21:29 GMT), confirming a fully successful launch with the spacecraft in good health.

It was propelled outwards to begin a seven-month-long journey to the Red Planet to the great relief of everyone involved from ESA, Roscosmos and other nations participating. An upper stage failure caused the total loss of Russia’s prior mission to Mars; Phobos-Grunt.

“Only the process of collaboration produces the best technical solutions for great research results. Roscosmos and ESA are confident of the mission’s success,” said Igor Komarov, General Director of the Roscosmos State Space Corporation, in a statement.

The ExoMars 2016 mission is comprised of a joined pair of European-built spacecraft consisting of the Trace Gas Orbiter (TGO) plus the Schiaparelli entry, descent and landing demonstrator module, built and funded by ESA.

“It’s been a long journey getting the first ExoMars mission to the launch pad, but thanks to the hard work and dedication of our international teams, a new era of Mars exploration is now within our reach,” says Johann-Dietrich Woerner, ESA’s Director General.

“I am grateful to our Russian partner, who have given this mission the best possible start today. Now we will explore Mars together.”

ExoMars 2016 Mission to the Red Planet.  It consists of two spacecraft -  the Trace Gas Orbiter (TGO) and the Entry, Descent and Landing Demonstrator Module (EDM) which will land.  Credit: ESA
ExoMars 2016 Mission to the Red Planet. It consists of two spacecraft – the Trace Gas Orbiter (TGO) and the Entry, Descent and Landing Demonstrator Module (EDM) which will land. Credit: ESA

The cooperative mission includes significant participation from the Russian space agency Roscosmos who provided the Proton-M launcher, part of the science instrument package, the surface platform and ground station support.

The Trace Gas Orbiter (TGO) and Schiaparelli lander are speeding towards Mars joined together, on a collision course for the Red Planet. They will separate on October 16, 2016 at distance of 900,000 km from the planet, three days before arriving on October 19, 2016.
TGO will fire thrusters to alter course and enter an initial four-day elliptical orbit around the fourth planet from the sun ranging from 300 km at its perigee to 96 000 km at its apogee, or furthest point.

Over the next year, engineers will command TGO to fire thrusters and conduct a complex series of ‘aerobraking’ manoeuvres that will gradually lower the spacecraft to circular 400 km (250 mi) orbit above the surface.

The science mission to analyse for rare gases, including methane, in the thin Martian atmosphere at the nominal orbit is expected to begin in December 2017.

ExoMars 2016: Trace Gas Orbiter and Schiaparelli. Credit:  ESA/ATG medialab
ExoMars 2016: Trace Gas Orbiter and Schiaparelli. Credit:
ESA/ATG medialab

As TGO enters orbit, the Schiaparelli lander will smash into the atmosphere and begin a harrowing six minute descent to the surface.

The main purpose of Schiaparelli is to demonstrate key entry, descent, and landing technologies for the follow on 2nd ExoMars mission in 2018 that will land the first European rover on the Red Planet.

The battery powered lander is expected to operate for perhaps four and up to eight days until the battery is depleted.

It will conduct a number of environmental science studies such as “obtaining the first measurements of electric fields on the surface of Mars that, combined with measurements of the concentration of atmospheric dust, will provide new insights into the role of electric forces on dust lifting – the trigger for dust storms,” according to ESA.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

ExoMars Spacecraft Launches to Red Planet Searching for Signs of Life

ExoMars 2016 lifted off on a Proton-M rocket from Baikonur, Kazakhstan at 09:31 GMT on 14 March 2016. Copyright ESA–Stephane Corvaja, 2016

ExoMars 2016 lifted off on a Proton-M rocket from Baikonur, Kazakhstan at 09:31 GMT on 14 March 2016.   Copyright ESA–Stephane Corvaja, 2016
ExoMars 2016 lifted off on a Proton-M rocket from Baikonur, Kazakhstan at 09:31 GMT on 14 March 2016. Copyright ESA–Stephane Corvaja, 2016

The joint European/Russian ExoMars spacecraft successfully launched early this morning from the Baikonur Cosmodrome in Kazakhstan atop a Proton-M rocket at 5:31:42 a.m. EDT (0931:42 GMT), Monday, March 14, with the goal of searching for signs of life on the Red Planet.

After settling into orbit around Mars, it’s instruments will scan for minute signatures of methane gas that could possibly be an indication of life or of nonbiologic geologic processes ongoing today.

The spacecraft is currently circling in a temporary and preliminary parking orbit around Earth following liftoff of the 191-foot-tall (58-meter) Russian-built rocket under overcast skies – awaiting a critical final engine burn placing the probe on an interplanetary trajectory to Mars.

The 9,550-pound (4,332-kilogram) ExoMars 2016 spacecraft continued soaring to orbit after nominal firings of the Proton’s second and third stages and jettisoning of the payload fairing halves protecting the vehicle during ascent through Earth’s atmosphere.

A total of four more burns from the Breeze-M upper stage are required to boost ExoMars higher and propel it outwards on its seven-month-long journey to the Red Planet.

So the excitement and nail biting is not over yet and continues to this moment. The final successful outcome of today’s mission cannot be declared until more than 10 hours after liftoff – after the last firing of the Breeze-M upper stage sets the probe on course for Mars and escaping the tug of Earth’s gravity.

ExoMars 2016 lifted off on a Proton-M rocket from Baikonur, Kazakhstan at 09:31 GMT on 14 March 2016.   Copyright ESA–Stephane Corvaja, 2016
ExoMars 2016 lifted off on a Proton-M rocket from Baikonur, Kazakhstan at 09:31 GMT on 14 March 2016. Copyright ESA–Stephane Corvaja, 2016

The first three Breeze-M fourth stage burns have now been completed as of about 9:40 am EST, according to ESA mission control on Darmstadt, Germany.

The fourth and final ignition of the Breeze-M upper stage and spacecraft separation is slated for after 3 p.m. EDT today, March 14, 2016.

The first acquisition of signal from the spacecraft is expected later at about 5:21:29 p.m. EST (21:29 GMT).

Artists concept of ExoMars spacecraft separation from Breeze fourth stage. Credit: ESA
Artists concept of ExoMars spacecraft separation from Breeze fourth stage. Credit: ESA

The ExoMars 2016 mission is comprised of a joined pair of European-built spacecraft consisting of the Trace Gas Orbiter (TGO) plus the Schiaparelli entry, descent and landing demonstrator module, built and funded by the European Space Agency (ESA).

The cooperative mission includes significant participation from the Russian space agency Roscosmos who provided the Proton-M launcher, part of the science instrument package, the surface platform and ground station support.

The launch was carried live courtesy of a European Space Agency (ESA) webcast:

http://www.esa.int/Our_Activities/Space_Science/ExoMars/Watch_ExoMars_launch

ESA is continuing live streaming of the launch events throughout the day as burns continue and events unfold lead up to the critical final burn of the Breeze-M upper stage

The ExoMars 2016 TGO orbiter is equipped with a payload of four science instruments supplied by European and Russian scientists. It will investigate the source and precisely measure the quantity of the methane and other trace gases, present at levels of one percent or far less.

On Earth methane can be produced by biology, volcanoes, natural gas and hydrothermal activity. TGO will investigate what makes it on Mars and follow up on measurements from NASA’s Curiosity rover and other space based assets and telescopes.

Martian methane has a lifetime of about 400 years, until it is destroyed by solar UV & mixed by atmosphere, says Jorge Vago, ESA ExoMars 2016 principal scientist.

The 2016 lander will carry an international suite of science instruments and test European entry, descent and landing (EDL) technologies for the 2nd ExoMars mission in 2018.

The battery powered lander is expected to operate for perhaps four and up to eight days until the battery is depleted.

The 2018 ExoMars mission will deliver an advanced rover to the Red Planet’s surface.

It is equipped with the first ever deep driller that can collect samples to depths of 2 meters (seven feet) where the environment is shielded from the harsh conditions on the surface – namely the constant bombardment of cosmic radiation and the presence of strong oxidants like perchlorates that can destroy organic molecules.

ExoMars was originally a joint NASA/ESA project.

But thanks to hefty cuts to NASA’s budget by Washington DC politicians, NASA was forced to terminate the agencies involvement after several years of extremely detailed work and withdraw from participation as a full partner in the exciting ExoMars missions.

NASA is still providing the critical MOMA science instrument that will search for organic molecules.

Thereafter Russia agreed to take NASA’s place and provide the much needed funding and rockets for the pair of launches in March 2016 and May 2018.

TGO will also help search for safe landing sites for the ExoMars 2018 lander and serve as the all important data communication relay station sending signals and science from the rover and surface science platform back to Earth.

ExoMars 2016 is Europe’s most advanced mission to Mars and joins Europe’s still operating Mars Express Orbiter (MEX), which arrived back in 2004, as well as a fleet of NASA and Indian probes.

ExoMars 2016: Trace Gas Orbiter and Schiaparelli. Credit:  ESA/ATG medialab
ExoMars 2016: Trace Gas Orbiter and Schiaparelli. Credit:
ESA/ATG medialab

The Trace Gas Orbiter (TGO) and Schiaparelli lander arrive at Mars on October 19, 2016.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Proton rocket and ExoMars 2016 spacecraft stand vertical at the launch pad at the Baikonur cosmodrome, Kazakhstan Copyright: ESA - B. Bethge
Proton rocket and ExoMars 2016 spacecraft stand vertical at the launch pad at the Baikonur cosmodrome, Kazakhstan
Copyright: ESA – B. Bethge