Stellar Ghosts: Understanding Our Origins

Eta Carinae, one of the most massive stars known. Image credit: NASA
Eta Carinae, one of the most massive stars known. Credit: NASA
The Crab Nebula; at its core is a long dead star... Image credit: NASA, ESA, J. Hester and A. Loll (Arizona State University)
The Crab Nebula; at its core is a long dead star… Image credit: NASA, ESA, J. Hester and A. Loll (Arizona State University)

Our sky is blanketed in a sea of stellar ghosts; all potential phantoms that have been dead for millions of years and yet we don’t know it yet. That is what we will be discussing today. What happens to the largest of our stars, and how that influences the very makeup of the universe we reside in.

We begin this journey by observing the Crab Nebula. Its beautiful colors extend outward into the dark void; a celestial tomb containing a violent event that occurred a millennia ago. You reach out and with the flick of your wrist, begin rewinding time and watch this beautiful nebulae begin to shrink. As the clock winds backwards, the colors of the nebula begin to change, and you notice that they are shrinking to a single point. As the calendar approaches July 5, 1054, the gaseous cloud brightens and settles onto a single point in the sky that is as bright as the full moon and is visible during the day. The brightness fades and eventually there lay a pinpoint of light; a star that we don’t see today. This star has died, however at this moment in time we wouldn’t have known that. To an observer before this date, this star appeared eternal, as all the other stars did. Yet, as we know from our privileged vantage point, this star is about to go supernova and birth one of the most spectacular nebulae that we observe today.

Stellar ghosts is an apt way of describing many of the massive stars we see scattered throughout the universe. What many don’t realize is that when we look out deep into the universe, we are not only looking across vast distances, but we are peering back into time. One of the fundamental properties of the universe that we know quite well is that light travels at a finite speed: approximately 300,000,000 m/s (roughly 671,000,000 mph). This speed has been determined through many rigorous tests and physical proofs. In fact, understanding this fundamental constant is a key to much of what we know about the universe, especially in respect to both General Relativity and Quantum Mechanics. Despite this, knowing the speed of light is key to understanding what I mean by stellar ghosts. You see, information moves at the speed of light. We use the light from the stars to observe them and from this understand how they operate.

A decent example of this time lag is our own sun. Our sun is roughly 8 light-minutes away. Meaning that the light we see from our star takes 8 minutes to make the journey from its surface to our eyes on earth. If our sun were to suddenly disappear right now, we wouldn’t know about it for 8 minutes; this doesn’t just include the light we see, but even its gravitational influence that is exerted on us. So if the sun vanished right now, we would continue in our orbital path about our now nonexistent star for 8 more minutes before the gravitational information reached us informing us that we are no longer gravitationally bound to it. This establishes our cosmic speed limit for how fast we can receive information, which means that everything we observe deep into the universe comes to us as it was an ‘x’ amount of years ago, where ‘x’ is its light distance from us. This means we observe a star that is 10 lightyears away from us as it was 10 years ago. If that star died right now, we wouldn’t know about it for another 10 years. Thus, we can define it as a “stellar ghost”; a star that is dead from its perspective at its location, but still alive and well at ours.

As covered in a previous article of mine (Stars: A Day in the Life), the evolution of a star is complex and highly dynamic. Many factors play an important role in everything from determining if the star will even form in the first place, to the size and thus the lifetime of said star. In the previous article mentioned above, I cover the basics of stellar formation and the life of what we call main sequence stars, or rather stars that are very similar to our own sun. Whereas the formation process and life of a main sequence star and the stars we will be discussing are fairly similar, there are important differences in the way the stars we will be investigating die. Main sequence star deaths are interesting, but they hardly compare to the spacetime-bending ways that these larger stars terminate.

As mentioned above, when we were observing the long gone star that lay at the center of the Crab Nebula, there was a point in which this object glowed as bright as the full moon and could be seen during the day. What could cause something to become so bright that it would be comparable to our nearest celestial neighbor? Considering the Crab Nebula is 6,523 lightyears away, that meant that something that is roughly 153 billion times farther away than our moon was shining as bright as the moon. This was because the star went supernova when it died, which is the fate of stars that are much larger than our sun. Stars larger than our sun will end up in two very extreme states upon its death: neutron stars and black holes. Both are worthy topics that could span weeks in an astrophysics course, but for us today, we will simply go over how these gravitational monsters form and what that means for us.

Inward force of gravity versus the outward pressure of fusion within a star (hydrostatic equilibrium) Credit: NASA
Inward force of gravity versus the outward pressure of fusion within a star (hydrostatic equilibrium)
Credit: NASA

A star’s life is a story of near runaway fusion contained by the grip of its own gravitational presence. We call this hydrostatic equilibrium, in which the outward pressure from the fusing elements in the core of a star equals that of the inward gravitational pressure being applied due to the star’s mass. In the core of all stars, hydrogen is being fused into helium (at first). This hydrogen came from the nebula that the star was born from, that coalesced and collapsed, giving the star its first chance at life. Throughout the lifetime of the star, the hydrogen will be used up, and more and more helium “ash” will condense down in the center of the star. Eventually, the star will run out of hydrogen, and the fusion will briefly stop. This lack of outward pressure due to no fusion taking place temporarily allows gravity to win and it crushes the star downwards. As the star shrinks, the density, and thus the temperature in the core of the star increases. Eventually, it reaches a certain temperature and the helium ash begins to fuse. This is how all stars proceed throughout the main portion of its life and into the first stages of its death. However, this is where sun-sized stars and the massive stars we are discussing part ways.

The core and subsequent layers of a dying star. Each layer has been left over from millions of years of fusing each subsequent element into the next one. This is a snapshot of a massive star about to erupt. Credit: Wikimedia
The core and subsequent layers of a dying star. Each layer has been left over from millions of years of fusing each subsequent element into the next one. This is a snapshot of a massive star about to erupt. Credit: Wikimedia

A star that is roughly near the size of our own sun will go through this process until it reaches carbon. Stars that are this size simply aren’t big enough to fuse carbon. Thus, when all the helium has been fused into oxygen and carbon (via two processes that are too complex to cover here), the star cannot “crush” the oxygen and carbon enough to start fusion, gravity wins and the star dies. But stars that have sufficiently more mass than our sun (about 7x the mass) can continue on past these elements and keep shining. They have enough mass to continue this “crush and fuse” process that is the dynamic interactions at the hearts of these celestial furnaces.

These larger stars will continue their fusion process past carbon and oxygen, past silicon, all the way until they reach iron. Iron is the death note sung by these blazing behemoths, as when iron begins to fill their now dying core, the star is in its death throws. But these massive structures of energy do not go quietly into the night. They go out in the most spectacular of ways. When the last of the non-iron elements fuse in their cores, the star begins its decent into oblivion. The star comes crashing in upon itself as it has no way to stave off gravity’s relentless grip, crushing the subsequent layers of left over elements from its lifetime. This inward free-fall is met at a certain size with an impossible force to breach; a neutron degeneracy pressure that forces the star to rebound outwards. This massive amount of gravitational and kinetic energy races back out with a fury that illuminates the universe, outshining entire galaxies in an instant. This fury is the life-blood of the cosmos; the drum beats in the symphony galactic, as this intense energy allows for the fusion of elements heavier than iron, all the way to uranium. These new elements are blasted outwards by this amazing force, riding the waves of energy that casts them deep into the cosmos, seeding the universe with all the elements that we know of.

Artistic impression of a star going supernova, casting its chemically enriched contents into the universe. Credit: NASA/Swift/Skyworks Digital/Dana Berry
Artistic impression of a star going supernova, casting its chemically enriched contents into the universe. These new elements are blasted outwards by this amazing force, riding the waves of energy that casts them deep into the cosmos, seeding the universe with all the elements that we know of. Credit: NASA/Swift/Skyworks Digital/Dana Berryto

But what is left? What is there after this spectacular event? That all depends again on the mass of the star. As mentioned earlier, the two forms that a dead massive star takes are either a Neutron Star or a Black Hole. For a Neutron Star, the formation is quite complex. Essentially, the events that I described occurs, except after the supernovae all that is left is a ball of degenerate neutrons. Degenerate is simply a term we apply to a form that matter takes on when it is compressed to the limits allowed by physics. Something that is degenerate is intensely dense, and this holds very true for a neutron star. A number you may have heard tossed around is that a teaspoon of neutron star material would weigh roughly 10 million tons, and have an escape velocity (the speed needed to get away from its gravitational pull) at about .4c, or 40% the speed of light. Sometimes the neutron star is left spinning at incredible velocities, and we label these as pulsars; the name derived from how we detect them.

A pulsar with its magnetic field lines illustrated. The beams emitting from the poles are what washes over our detectors as the dead star spins.
A pulsar with its magnetic field lines illustrated. The beams emitting from the poles are what washes over our detectors as the dead star spins.

These types of stars generate a LOT of radiation. Neutron stars have an enormous magnetic field. This field accelerates electrons in their stellar atmospheres to incredible velocities. These electrons follow the magnetic field lines of the neutron star to its poles, where they can release radio waves, X-Rays, and gamma rays (depending on what type of neutron star it is). Since this energy is being concentrated to the poles, it creates a sort of lighthouse effect with high energy beams acting like the beams of light out of a lighthouse. As the star rotates, these beams sweep around many times per second. If the Earth, and thus our observation equipment, happens to be oriented favorably with this pulsar, we will register these “pulses” of energy as the stars’ beams wash over us. For all the pulsars we know about, we are much too far away for these beams of energy to hurt us. But if we were close to one of these dead stars, this radiation washing over our planet continuously would spell certain extinction for life as we know it.

What of the other form that a dead star takes; a black hole? How does this occur? If degenerate material is as far as we can crush matter, how does a black hole appear? Simply put, black holes are the result of an unimaginably large star and thus a truly massive amount of matter that is able to “break” this neutron degeneracy pressure upon collapse. The star essentially falls inward with such force that it breaches this seemingly physical limit, turning in upon itself and wrapping up spacetime into a point of infinite density; a singularity. This amazing event occurs when a star has roughly 18x the amount of mass that our sun has, and when it dies, it is truly the epitome of physics gone to the extreme. This “extra bit of mass” is what allows it to collapse this ball of degenerate neutrons and fall towards infinity. It is both terrifying and beautiful to think about; a point in spacetime that is not entirely understood by our physics, and yet something that we know exists. The truly remarkable thing about black holes is that it is like the universe working against us. The information we need to fully understand the processes within a black hole are locked behind a veil that we call the event horizon. This is the point of no return for a black hole, for which anything beyond this point in spacetime has no future paths that lead out of it. Nothing escapes at this distance from the collapsed star at its core, not even light, and thus no information ever leaves this boundary (at least not in a form we can use). The dark heart of this truly astounding object leaves a lot to be desired, and tempts us to cross into its realm in order to try and know the unknowable; to grasp the fruit from the tree of knowledge.

A black hole is the final form a massive star collapses to. The light (and spacetime itself) is warped around the black hole's event horizon due to extreme gravitational effects. This is as accurate as we can be to visualizing an actual black hole as it was generated with a code that implemented General Relativity accurately. Credit and Copyright: Paramount Pictures/Warner Bros. Mathematical Model used to create the image developed by Dr. Kip Thorne
A black hole is the final form a massive star collapses to. The light (and spacetime itself) is warped around the black hole’s event horizon due to extreme gravitational effects. This is as accurate as we can be to visualizing an actual black hole as it was generated with a code that implemented General Relativity accurately. Credit and Copyright: Paramount Pictures/Warner Bros. From “Interstellar” the film. Mathematical model used to create the image developed by Dr. Kip Thorne

Now it must be said, there is much in the way of research with black holes to this day. Physicists such as Professor Stephen Hawking, among others, have been working tirelessly on the theoretical physics behind how a black hole operates, attempting to solve the paradoxes that frequently appear when we try to utilize the best of our physics against them. There are many articles and papers on such research and their subsequent findings, so I will not dive into their intricacies for both wishing to preserve simplicity in understanding, and to also not take away from the amazing minds that are working these issues. Many suggest that the singularity is a mathematical curiosity that does not completely represent what physically happens. That the matter inside an event horizon can take on new and exotic forms. It is also worth noting that in General Relativity, anything with mass can collapse to a black hole, but we generally hold to a range of masses as creating a black hole with anything less than is in that mass range is beyond our understanding of how that could happen. But as someone who studies physics, I would be remiss to not mention that as of now, we are at an interesting cross section of ideas that deal very intimately with what is actually going on within these specters of gravity.

All of this brings me back to a point that needs to be made. A fact that needs to be recognized. As I described the deaths of these massive stars, I touched on something that occurs. As the star is being ripped apart from its own energy and its contents being blown outwards into the universe, something called nucleosynthesis is occurring. This is the fusion of elements to create new elements. From hydrogen up to uranium. These new elements are being blasted outwards an incredible speeds, and thus all of these elements will eventually find their way into molecular clouds. Molecular clouds (Dark Nebulae) are the stellar nurseries of the cosmos. This is where stars begin. And from star formation, we get planetary formation.

Planets coalescing out of the remaining molecular cloud the star formed out of. Within this accretion disk lay the fundamental elements necessary for planet formation and potential life. Credit: NASA/JPL-Caltech/T. Pyle (SSC) - February, 2005
Planets coalescing out of the remaining molecular cloud the star formed out of. Within this accretion disk lay the fundamental elements necessary for planet formation and potential life. Credit: NASA/JPL-Caltech/T. Pyle (SSC) – February, 2005

As a star forms, a cloud of debris that is made up of the molecular cloud that birthed said star begins to spin around it. This cloud, as we now know, contains all those elements that were cooked up in our supernovae. The carbon, the oxygen, the silicates, the silver, the gold; all present in this cloud. This accretion disk about this new star is where planets form, coalescing out of this enriched environment. Balls of rock and ice colliding, accreting, being torn apart and then reformed as gravity works its diligent hands to mold these new worlds into islands of possibility. These planets are formed from those very same elements that were synthesized in that cataclysmic eruption. These new worlds contain the blueprints for life as we know it.

Upon one of these worlds, a certain mixture of hydrogen and oxygen occurs. Within this mixture, certain carbon atoms form up to create replicating chains that follow a simple pattern. Perhaps after billions of years, these same elements that were thrust into the universe by that dying star finds itself giving life to something that can look up and appreciate the majesty that is the cosmos. Perhaps that something has the intelligence to realize that the carbon atom within it is the very same carbon atom that was created in a dying star, and that a supernovae occurred that allowed that carbon atom to find its way into the right part of the universe at the right time. The energy that was the last dying breath of a long dead star was the same energy that allowed life to take its first breath and gaze upon the stars. These stellar ghosts are our ancestors. They are gone in form, but yet remain within our chemical memory. They exist within us. We are supernova. We are star dust. We are descended from stellar ghosts…

We are awash in the light from long dead stars, each contributing essential ingredients to the universe that are necessary for life. Image Credit: Hubble
We are awash in the light from long dead stars, each contributing essential ingredients to the universe that are necessary for life. Image Credit: Hubble

Does Our Galaxy Have a Habitable Zone?

Does Our Galaxy Have a Habitable Zone?

I’ve got to say, you are one of the luckiest people I’ve ever met.

For starters, you are the descendant of an incomprehensible number of lifeforms who were successful, and survived long enough to find a partner, procreate, and have an offspring. Billions of years, and you are the result of an unbroken chain of success, surviving through global catastrophe after catastrophe. Nice going.

Not only that, but your lineage happened to be born on a planet, which was in just the right location around just the right kind of star. Not too hot, not too cold, just the right temperature where liquid water, and whatever else was necessary for life to get going. Again, I like your lucky streak.

Yup, you are pretty lucky to call this place home. Credit: NASA
Yup, you are pretty lucky to call this place home. Credit: NASA

In fact, you happened to be born into a Universe that has the right physical constants, like the force of gravity or the binding force of atoms, so that stars, planets and even the chemistry of life could happen at all.
But there’s another lottery you won, and you probably didn’t even know about it. You happened to be born on an unassuming, mostly harmless planet orbiting a G-type main sequence star in the habitable zone of the Milky Way.

Wait a second, even galaxies have habitable zones? Yep, and you’re in it right now.

The Milky Way is a big place, measuring up to 180,000 light years across. It contains 100 to 400 billion stars spread across this enormous volume.

We’re located about 27,000 light years away from the center of the Milky Way, and tens of thousands of light-years away from the outer rim.

Credit: ESA

The Milky Way has some really uninhabitable zones. Down near the center of the galaxy, the density of stars is much greater. And these stars are blasting out a combined radiation that would make it much more unlikely for life to evolve.

Radiation is bad for life. But it gets worse. There’s a huge cloud of comets around the Sun known as the Oort Cloud. Some of the greatest catastrophes in history happened when these comets were kicked into a collision course with the Earth by a passing star. Closer to the galactic core, these disruptions would happen much more often.

There’s another dangerous place you don’t want to be: the galaxy’s spiral arms. These are regions of increased density in the galaxy, where star formation is much more common. And newly forming stars blast out dangerous radiation.

Fortunately, we’re far away from the spiral arms, and we orbit the center of the Milky Way in a nice circular orbit, which means we don’t cross these spiral arms very often.

We stay nice and far away from the dangerous parts of the Milky Way, however, we’re still close enough to the action that our Solar System gathered the elements we needed for life.

The first stars in the Universe only had hydrogen, helium and a few other trace elements left over from the Big Bang. But when the largest stars detonated as supernovae, they seeded the surrounding regions with heavier elements like oxygen, carbon, even iron and gold.

Early stars were made almost entirely of hydrogen and helium. Credit: NASA/WMAP Science Team
Early stars were made almost entirely of hydrogen and helium. Credit: NASA/WMAP Science Team

Our solar nebula was seeded with the heavy elements from many generations of stars, giving us all the raw materials to help set evolution in motion.

If the Solar System was further out, we probably wouldn’t have gotten enough of those heavier elements. So, thanks multiple generations of dead stars.

According to astrobiologists the galactic habitable zone probably starts just outside the galactic bulge – about 13,000 light-years from the center, and ends about halfway out in the disk, 33,000 light-years from the center.

Remember, we’re 27,000 light-years from the center, so just inside that outer edge. Phew.

The Milky Way's habitable zone. Credit: NASA/Caltech
The Milky Way’s habitable zone. Credit: NASA/Caltech

Of course, not all astronomers believe in this Rare Earth hypothesis. In fact, just as we’re finding life on Earth wherever we find water, they believe that life is more robust and resilient. It could still survive and even thrive with more radiation, and less heavier elements.

Furthermore, we’re learning that solar systems might be able to migrate a significant distance from where they formed. Stars that started closer in where there were plenty of heavier elements might have drifted outward to the safer, calmer galactic suburbs, giving life a better chance at getting a foothold.

As always, we’ll need more data, more research to get an answer to this question.

Just when you thought you were already lucky, it turns out you were super duper extra lucky. Right Universe, right lineage, right solar system, right location in the Milky Way. You already won the greatest lottery in existence.

Have We Really Just Seen The Birth Of A Black Hole?

This artist's drawing shows a stellar black hole as it pulls matter from a blue star beside it. Could the stellar black hole's cousin, the primordial black hole, account for the dark matter in our Universe? Credits: NASA/CXC/M.Weiss

For almost half a century, scientists have subscribed to the theory that when a star comes to the end of its life-cycle, it will undergo a gravitational collapse. At this point, assuming enough mass is present, this collapse will trigger the formation of a black hole. Knowing when and how a black hole will form has long been something astronomers have sought out.

And why not? Being able to witness the formation of black hole would not only be an amazing event, it would also lead to a treasure trove of scientific discoveries. And according to a recent study by a team of researchers from Ohio State University in Columbus, we may have finally done just that.

The research team was led by Christopher Kochanek, a Professor of Astronomy and an Eminent Scholar at Ohio State. Using images taken by the Large Binocular Telescope (LBT) and Hubble Space Telescope (HST), he and his colleagues conducted a series of observations of a red supergiant star named N6946-BH1.

Artist’s impression of the star in its multi-million year long and previously unobservable phase as a large, red supergiant. Credit: CAASTRO / Mats Björklund (Magipics)
Artist’s impression of the star in its multi-million year long and previously unobservable phase as a large, red supergiant. Credit: CAASTRO / Mats Björklund (Magipics)

To break the formation process of black holes down, according to our current understanding of the life cycles of stars, a black hole forms after a very high-mass star experiences a supernova. This begins when the star has exhausted its supply of fuel and then undergoes a sudden loss of mass, where the outer shell of the star is shed, leaving behind a remnant neutron star.

This is then followed by electrons reattaching themselves to hydrogen ions that have been cast off, which causes a bright flareup to occur. When the hydrogen fusing stops, the stellar remnant begins to cool and fade; and eventually the rest of the material condenses to form a black hole.

However, in recent years, several astronomers have speculated that in some cases, stars will experience a failed supernova. In this scenario, a very high-mass star ends its life cycle by turning into a black hole without the usual massive burst of energy happening beforehand.

As the Ohio team noted in their study – titled “The search for failed supernovae with the Large Binocular Telescope: confirmation of a disappearing star” – this may be what happened to N6946-BH1, a red supergiant that has 25 times the mass of our Sun located 20 million light-years from Earth.

Artistic representation of the material around the supernova 1987A. Credit: ESO/L. Calçada
Artistic representation of the material around the supernova 1987A. Credit: ESO/L.

Using information obtained with the LBT, the team noted that N6946-BH1 showed some interesting changes in its luminosity between 2009 and 2015 – when two separates observations were made. In the 2009 images, N6946-BH1 appears as a bright, isolated star. This was consistent with archival data taken by the HST back in 2007.

However, data obtained by the LBT in 2015 showed that the star was no longer apparent in the visible wavelength, which was also confirmed by Hubble data from the same year. LBT data also  showed that for several months during 2009, the star experienced a brief but intense flare-up, where it became a million times brighter than our Sun, and then steadily faded away.

They also consulted data from the Palomar Transit Factory (PTF) survey for comparison, as well as observations made by Ron Arbour (a British amateur astronomer and supernova-hunter). In both cases, the observations showed evidence of a flare during a brief period in 2009 followed by a steady fade.

In the end, this information was all consistent with the failed supernovae-black hole model. As Prof. Kochanek, the lead author of the group’s paper – – told Universe Today via email:

“In the failed supernova/black hole formation picture of this event, the transient is driven by the failed supernova. The star we see before the event is a red supergiant — so you have a compact core (size of ~earth) out the hydrogen burning shell, and then a huge, puffy extended envelope of mostly hydrogen that might extend out to the scale of Jupiter’s orbit.  This envelope is very weakly bound to the star.  When the core of the star collapses, the gravitational mass drops by a few tenths of the mass of the sun because of the energy carried away by neutrinos.  This drop in the gravity of the star is enough to send a weak shock wave through the puffy envelope that sends it drifting away.  This produces a cool, low-luminosity (compared to a supernova, about a million times the luminosity of the sun) transient that lasts about a year and is powered by the energy of recombination.  All the atoms in the puffy envelope were ionized — electrons not bound to atoms — as the ejected envelope expands and cools, the electrons all become bound to the atoms again, which releases the energy to power the transient.  What we see in the data is consistent with this picture.”

The Large Binocular Telescope, showing the two imaging mirrors. Credit: NASA
The Large Binocular Telescope, showing the two imaging mirrors. Credit: NASA

Naturally, the team considered all available possibilities to explain the sudden “disappearance” of the star. This included the possibility that the star was shrouded in so much dust that its optical/UV light was being absorbed and re-emitted. But as they found, this did not accord with their observations.

“The gist is that no models using dust to hide the star really work, so it would seem that whatever is there now has to be much less luminous then that pre-existing star.” Kochanek explained. “Within the context of the failed supernova model, the residual light is consistent with the late time decay of emission from material accreting onto the newly formed black hole.”

Naturally, further observations will be needed before we can know whether or not this was the case. This would most likely involve IR and X-ray missions, such as the Spitzer Space Telescope and the Chandra X-ray Observatory, or one of he many next-generation space telescopes to be deployed in the coming years.

In addition, Kochanek and his colleagues hope to continue monitoring the possible black hole using the LBT, and by re-visiting the object with the HST in about a year from now. “If it is true, we should continue to see the object fade away with time,” he said.

The James Webb Space Telescope. Image Credit: NASA/JPL
Future missions, like the James Webb Space Telescope, will be able to observe possible failed supernovae/blackholes to confirm their existence. Credit: NASA/JPL

Needless to say, if true, this discovery would be an unprecedented event in the history of astronomy. And the news has certainly garnered its share of excitement from the scientific community. As Avi Loeb – a professor of astronomy at Harvard University – expressed to Universe Today via email:

“The announcement on the potential discovery of a star that collapsed to make a black hole is very interesting. If true, it will be the first direct view of the delivery room of a black hole. The picture is somewhat messy (like any delivery room), with uncertainties about the properties of the baby that was delivered. The way to confirm that a black hole was born is to detect X-rays. 

“We know that stellar-mass black holes exist, most recently thanks to the discovery of gravitational waves from their coalescence by the LIGO team. Almost eighty years ago Robert Oppenheimer and collaborators predicted that massive stars may collapse to black holes. Now we might have the first direct evidence that the process actually happens in nature.

But of course, we must remind ourselves that given its distance, what we could be witnessing with N6946-BH1 happened 20 million years ago. So from the perspective of this potential black hole, its formation is old news. But to us, it could be one of the most groundbreaking observations in the history of astronomy.

Much like space and time, significance is relative to the observer!

Further Reading: arXiv

A History Of Violence: Iron Found in Fossils Suggests Supernova Role In Mass Dying

These are transmission electron microscope images showing tiny magnetofossils containing iron-60, a form of iron produced during the violent explosion and death of a massive star in a supernova. They were deposited by bacteria in sediments found on the floor of the Pacific Ocean. Click for more details. Credit: courtesy Marianne Hanzlik, Chemie Department, FG Elektronenmikroskopie, Technische Universität München
Space and events that transpire there directly affect our lives and those of our remote ancestors. Credit: Bob King
Space and events that transpire there directly affect our lives and those of our remote ancestors including early humans who walked the planet two million years ago. Credit: Bob King

Outer space touches us in so many ways. Meteors from ancient asteroid collisions and dust spalled from comets slam into our atmosphere every day, most of it unseen. Cosmic rays ionize the atoms in our upper air, while the solar wind finds crafty ways to invade the planetary magnetosphere and set the sky afire with aurora. We can’t even walk outside on a sunny summer day without concern for the Sun’s ultraviolet light burning out skin.

So perhaps you wouldn’t be surprised that over the course of Earth’s history, our planet has also been affected by one of the most cataclysmic events the universe has to offer: the explosion of a supergiant star in a Type II supernova event. After the collapse of the star’s core, the outgoing shock wave blows the star to pieces, both releasing and creating a host of elements. One of those is iron-60. While most of the iron in the universe is iron-56, a stable atom made up of 26 protons and 30 neutrons, iron-60 has four additional neutrons that make it an unstable radioactive isotope.

Crab Nebula from NASA's Hubble Space Telescope
The Crab Nebula, shown here in this image from NASA’s Hubble Space Telescope, is the expanding cloud of gas and dust left after a massive star exploded as a supernova in 1054. Supernovae propel a star’s innards back into space while creating new radioactive isotopes such as iron-60. Credit: NASA, ESA, J. Hester and A. Loll (Arizona State University)

If a supernova occurs sufficiently close to our Solar System, it’s possible for some of the ejecta to make its way all the way to Earth. How might we detect these stellar shards? One way would be to look for traces of unique isotopes that could only have been produced by the explosion. A team of German scientists did just that. In a paper published earlier this month in the Proceedings of the National Academy of Sciences, they report the detection of iron-60 in biologically produced nanocrystals of magnetite in two sediment cores drilled from the Pacific Ocean.

Magnetite is an iron-rich mineral naturally attracted to a magnet just as a compass needle responds to Earth’s magnetic field. Magnetotactic bacteria, a group of bacteria that orient themselves along Earth’s magnetic field lines, contain specialized structures called magnetosomes, where they store tiny magnetic crystals – primarily as magnetite (or greigite, an iron sulfide) in long chains. It’s thought nature went to all this trouble to help the creatures find water with the optimal oxygen concentration for their survival and reproduction. Even after they’re dead, the bacteria continue to align like microscopic compass needles as they settle to the bottom of the ocean.

These are transmission electron microscope images showing tiny magnetofossils left by bacteria about 2.5 million years ago.
These are transmission electron microscope images showing tiny magnetofossils containing iron-60, a form of iron produced during the violent explosion and death of a massive star in a supernova. They were deposited by bacteria in sediments found on the floor of the Pacific Ocean. Click for more details. Credit: courtesy Marianne Hanzlik, Chemie Department, FG Elektronenmikroskopie, Technische Universität München

After the bacteria die, they decay and dissolve away, but the crystals are sturdy enough to be preserved as chains of magnetofossils that resemble beaded garlands on the family Christmas tree. Using a mass spectrometer, which teases one molecule from another with killer accuracy, the team detected “live” iron-60 atoms in the fossilized chains of magnetite crystals produced by the bacteria. Live meaning still fresh. Since the half-life of iron-60 is only 2.6 million years, any primordial iron-60 that seeded the Earth in its formation has long since disappeared. If you go digging around now and find iron-60, you’re likely looking at at a supernova as the smoking gun.

Co-authors Peter Ludwig and Shawn Bishop, along with the team, found that the supernova material arrived at Earth about 2.7 million years ago near the boundary of the Pleistocene and Pliocene epochs and rained down for all of 800,000 years before coming to an end around 1.7 million years ago. If ever a hard rain fell.

Reconstruction of Homo habilis at the Westfälisches Museum für Archäologie. Credit: Lillyundfreya / Wikipedia
Reconstruction of Homo habilis at the Westfälisches Museum für Archäologie. Credit: Lillyundfreya / Wikipedia

The peak concentration occurred about 2.2 million years ago, the same time our early human ancestors, Homo habilis, were chipping tools from stone. Did they witness the appearance of a spectacularly bright “new star” in the night sky? Assuming the supernova wasn’t obscured by cosmic dust, the sight must have brought our bipedal relations to their knees.

There’s even a possibility that an increase in cosmic rays from the event affected our atmosphere and climate and possibly led to a minor die-off at the time. Africa’s climate dried out and repeated cycles of glaciation became common as global temperatures continued their cooling trend from the Pliocene into the Pleistocene.

Cosmic rays strike our atmosphere all the time, but their energy is spent creating showers of secondary, less energetic particles. Credit: Simon Swordy, University of Chicago, NASA
Cosmic rays strike our atmosphere all the time, but their energy is spent striking atoms to create showers of secondary, less energetic particles, a few of which sometimes make it to the ground. Credit: Simon Swordy, University of Chicago, NASA

Cosmic rays, which are extremely fast-moving, high-energy protons and atomic nucleic, rip up molecules in the atmosphere and can even penetrate down to the surface during a nearby supernova explosion, within about 50 light years of the Sun. The high dose of radiation would put life at risk, while at the same time providing a surge in the number of mutations, one of the creative forces driving the diversity of life over the history of our planet. Life — always a story of taking the good with the bad.

The discovery of iron-60 further cements our connection to the universe at large. Indeed, bacteria munching on supernova ash adds a literal twist to the late Carl Sagan’s famous words: “The cosmos is within us. We are made of star-stuff.” Big or small, we owe our lives to the synthesis of elements within the bellies of stars.

What Are Magnetars?

What Are Magnetars?

In a previous article, we crushed that idea that the Universe is perfect for life. It’s not. Almost the entire Universe is a horrible and hostile place, apart from a fraction of a mostly harmless planet in a backwater corner of the Milky Way.

While living here on Earth takes about 80 years to kill you, there are other places in the Universe at the very other end of the spectrum. Places that would kill you in a fraction of a fraction of a second. And nothing is more lethal than supernovae and remnants they leave behind: neutron stars.

We’ve done a few articles about neutron stars and their different flavours, so there should be some familiar terrain here.

Artist concept of a neutron star.  Credit: NASA
Artist concept of a neutron star. Credit: NASA

As you know, neutron stars are formed when stars more massive than our Sun explode as supernovae. When these stars die, they no longer have the light pressure pushing outward to counteract the massive gravity pulling inward.

This enormous inward force is so strong that it overcomes the repulsive force that keeps atoms from collapsing. Protons and electrons are forced into the same space, becoming neutrons. The whole thing is just made of neutrons. Did the star have hydrogen, helium, carbon and iron before? That’s too bad, because now it’s all neutrons.

You get pulsars when neutron stars first form. When all that former star is compressed into a teeny tiny package. The conservation of angular motion spins the star up to tremendous velocities, sometimes hundreds of times a second.

But when neutron stars form, about one in ten does something really really strange, becoming one of the most mysterious and terrifying objects in the Universe. They become magnetars. You’ve probably heard the name, but what are they?

As I said, magnetars are neutron stars, formed from supernovae. But something unusual happens as they form, spinning up their magnetic field to an intense level. In fact, astronomers aren’t exactly sure what happens to make them so strong.

This artist’s impression shows the magnetar in the very rich and young star cluster Westerlund 1. This remarkable cluster contains hundreds of very massive stars, some shining with a brilliance of almost one million suns. European astronomers have for the first time demonstrated that this magnetar — an unusual type of neutron star with an extremely strong magnetic field — probably was formed as part of a binary star system. The discovery of the magnetar’s former companion elsewhere in the cluster helps solve the mystery of how a star that started off so massive could become a magnetar, rather than collapse into a black hole. Credit: ESO/L. Calçada
This artist’s impression shows the magnetar in the very rich and young star cluster Westerlund 1. Credit: ESO/L. Calçada

One idea is that if you get the spin, temperature and magnetic field of a neutron star into a perfect sweet spot, it sets off a dynamo mechanism that amplifies the magnetic field by a factor of a thousand.

But a more recent discovery gives a tantalizing clue for how they form. Astronomers discovered a rogue magnetar on an escape trajectory out of the Milky Way. We’ve seen stars like this, and they’re ejected when one star in a binary system detonates as a supernova. In other words, this magnetar used to be part of a binary pair.

And while they were partners, the two stars orbited one another closer than the Earth orbits the Sun. This close, they could transfer material back and forth. The larger star began to die first, puffing out and transferring material to the smaller star. This increased mass spun the smaller star up to the point that it grew larger and spewed material back at the first star.

The initially smaller star detonated as a supernova first, ejecting the other star into this escape trajectory, and then the second went off, but instead of forming a regular neutron star, all these binary interactions turned it into a magnetar.  There you go, mystery maybe solved?

The strength of the magnetic field around a magnetar completely boggles the imagination. The magnetic field of the Earth’s core is about 25 gauss, and here on the surface, we experience less than half a gauss. A regular bar magnet is about 100 gauss. Just a regular neutron star has a magnetic field of a trillion gauss.  Magnetars are 1,000 times more powerful than that, with a magnetic field of a quadrillion gauss.

What if you could get close to a magnetar? Well, within about 1,000 kilometers of a magnetar, the magnetic field is so strong it messes with the electrons in your atoms. You would literally be torn apart at an atomic level. Even the atoms themselves are deformed into rod-like shapes, no longer usable by your precious life’s chemistry.

But you wouldn’t notice because you’d already be dead from the intense radiation streaming from the magnetar, and all the lethal particles orbiting the star and trapped in its magnetic field.

Artist's conception of a starquake cracking the surface of a neutron star. Credit: Darlene McElroy of LANL
Artist’s conception of a starquake cracking the surface of a neutron star. Credit: Darlene McElroy of LANL

One of the most fascinating aspects of magnetars is how they can have starquakes. You know, earthquakes, but on stars… starquakes. When neutron stars form, they can have a delicious murder crust on the outside, surrounding the degenerate death matter inside. This crust of neutrons can crack, like the tectonic plates on Earth. As this happens, the magnetar releases a blast of radiation that we can see clear across the Milky Way.

In fact, the most powerful starquake ever recorded came from a magnetar called SGR 1806-20, located about 50,000 light years away. In a tenth of a second, one of these starquakes released more energy than the Sun gives off in 100,000 years. And this wasn’t even a supernova, it was merely a crack on the magnetar’s surface.

Magnetars are awesome, and provide the absolute opposite end of the spectrum for a safe and habitable Universe. Fortunately, they’re really far away and you won’t have to worry about them ever getting close.

What are Quark Stars?

What are Quark Stars?

We’ve covered the full range of exotic star-type objects in the Universe. Like Pokemon Go, we’ve collected them all. Okay fine, I’m still looking for a Tauros, and so I’ll continue to wander the streets, like a zombie staring at his phone.

Now, according to my attorney, I’ve fulfilled the requirements for shamelessly jumping on a viral bandwagon by mentioning Pokemon Go and loosely connecting it to whatever completely unrelated topic I was working on.

Any further Pokemon Go references would just be shameless attempts to coopt traffic to my channel, and I’m better than that.

It was pretty convenient, though, and it was easy enough to edit out the references to Quark on Deep Space 9 and replace them with Pokemon Go. Of course, there is a new Star Trek movie out, so maybe I miscalculated.

Anyway, now that we got that out of the way. Back to rare and exotic stellar objects.

The white dwarf G29-38 (NASA)
The white dwarf G29-38. Credit: NASA

There are the white dwarfs, the remnants of stars like our Sun which have passed through the main sequence phase, and now they’re cooling down.

There are the neutron stars and pulsars formed in a moment when stars much more massive than our Sun die in a supernova explosion. Their gravity and density is so great that all the protons and electrons from all the atoms are mashed together. A single teaspoon of neutron star weighs 10 million tons.

And there are the black holes. These form from even more massive supernova explosions, and the gravity and density is so strong they overcome the forces holding atoms themselves together.

White dwarfs, neutron stars and black holes. These were all theorized by physicists, and have all been discovered by observational astronomers. We know they’re out there.

Is that it? Is that all the exotic forms that stars can take?  That we know of, yes, however, there are a few even more exotic objects which are still just theoretical. These are the quark stars. But what are they?

Artist concept of a neutron star. Credit: NASA
Artist concept of a neutron star. Credit: NASA

Let’s go back to the concept of a neutron star. According to the theories, neutron stars have such intense gravity they crush protons and electrons together into neutrons. The whole star is made of neutrons, inside and out. If you add more mass to the neutron star, you cross this line where it’s too much mass to hold even the neutrons together, and the whole thing collapses into a black hole.

A star like our Sun has layers. The outer convective zone, then the radiative zone, and then the core down in the center, where all the fusion takes place.

Could a neutron star have layers? What’s at the core of the neutron star, compared to the surface?

The idea is that a quark star is an intermediate stage in between neutron stars and black holes. It has too much mass at its core for the neutrons to hold their atomness. But not enough to fully collapse into a black hole.

The difference between a neutron star and a quark star (Chandra)
The difference between a neutron star and a quark star. Credit: Chandra

In these objects, the underlying quarks that form the neutrons are further compressed. “Up” and “down” quarks are squeezed together into “strange” quarks. Since it’s made up of “strange” quarks, physicists call this “strange matter”. Neutron stars are plenty strange, so don’t give it any additional emotional weight just because it’s called strange matter. If they happened to merge into “charm” quarks, then it would be called “charm matter”, and I’d be making Alyssa Milano references.

And like I said, these are still theoretical, but there is some evidence that they might be out there. Astronomers have discovered a class of supernova that give off about 100 times the energy of a regular supernova explosion. Although they could just be mega supernovae, there’s another intriguing possibility.

They might be heavy, unstable neutron stars that exploded a second time, perhaps feeding from a binary companion star. As they hit some limit, they converting from a regular neutron star to one made of strange quarks.

But if quark stars are real, they’re very small. While a regular neutron star is 25 km across, a quark star would only be 16 km across, and this is right at the edge of becoming a black hole.

A neutron star (~25km across) next to a quark star (~16km across). Original Image Credit: NASA's Goddard Space Flight Center
A neutron star (~25km across) next to a quark star (~16km across). Original Image Credit: NASA’s Goddard Space Flight Center

If quark stars do exist, they probably don’t last long. It’s an intermediate step between a neutron star, and the final black hole configuration. A last gasp of a star as its event horizon forms.

It’s intriguing to think there are other exotic objects out there, formed as matter is compressed into tighter and tighter configurations, as the different limits of physics are reached and then crossed. Astronomers will keep searching for quark stars, and I’ll let you know if they find them.

Are There Antimatter Galaxies?

Are There Antimatter Galaxies?

One of the biggest mysteries in astronomy is the question, where did all the antimatter go? Shortly after the Big Bang, there were almost equal amounts of matter and antimatter. I say almost, because there was a tiny bit more matter, really. And after the matter and antimatter crashed into each other and annihilated, we were left with all the matter we see in the Universe.

You, and everything you know is just a mathematical remainder, left over from the great division of the Universe’s first day.

We did a whole article on this mystery, so I won’t get into it too deeply.

But is it possible that the antimatter didn’t actually go anywhere? That it’s all still there in the Universe, floating in galaxies of antimatter, made up of antimatter stars, surrounded by antimatter planets, filled with antimatter aliens?

Aliens who are friendly and wonderful in every way, except if we hugged, we’d annihilate and detonate with the energy of gigatons of TNT. It’s sort of tragic, really.

If those antimatter galaxies are out there, could we detect them and communicate with those aliens?

First, a quick recap on antimatter.

Antimatter is just like matter in almost every way. Atoms have same atomic mass and the exact same properties, it’s just that all the charges are reversed. Antielectrons have a positive charge, antihydrogen is made up of an antiproton and a positron (instead of a proton and an electron).

It turns out this reversal of charge causes regular matter and antimatter to annihilate when they make contact, converting all their mass into pure energy when they come together.

We can make antimatter in the laboratory with particle accelerators, and there are natural sources of the stuff. For example, when a neutron star or black hole consumes a star, it can spew out particles of antimatter.

In fact, astronomers have detected vast clouds of antimatter in our own Milky Way, generated largely by black holes and neutron stars grinding up their binary companions.

Wyoming Milky Way set. Credit and copyright: Randy Halverson.
Wyoming Milky Way set. Credit and copyright: Randy Halverson.

But our galaxy is mostly made up of regular matter. This antimatter is detectable because it’s constantly crashing into the gas, dust, planets and stars that make up the Milky Way. This stuff can’t get very far without hitting anything and detonating.

Now, back to the original question, could you have an entire galaxy made up of antimatter? In theory, yes, it would behave just like a regular galaxy. As long as there wasn’t any matter to interact with.

And that’s the problem. If these galaxies were out there, we’d see them interacting with the regular matter surrounding them. They would be blasting out radiation from all the annihilations from all the regular matter gas, dust, stars and planets wandering into an antimatter minefield.

Astronomers don’t see this as far as they look, just the regular, quiet and calm matter out to the edge of the observable Universe.

That doesn’t make it completely impossible, though, there could be galaxies of antimatter as long as they’re completely cut off from regular matter.

But even those would be detectable by the supernova explosions within them. A normally matter supernova generates fast moving neutrinos, while an antimatter supernova would generate a different collection of particles. This would be a dead giveaway.

There’s one open question about antimatter that might make this a deeper mystery. Scientists think that antimatter, like regular matter, has regular gravity. Matter and antimatter galaxies would be attracted to each other, encouraging annihilation.

But scientists don’t actually know this definitively yet. It’s possible that antimatter has antigravity. An atom of antihydrogen might actually fall upwards, accelerating away from the center of the Earth.

alpha_image_resized_for_web
The ALPHA experiment, one of five experiments that are studying antimatter at CERN Credit: Maximilien Brice/CERN

Physicists at CERN have been generating antimatter particles, and trying to detect if they’re falling downward or up.

If that was the case, then antimatter galaxies might be able to repel particles of regular matter, preventing the annihilation, and the detection.

If you were hoping there are antimatter lurking out there, hoarding all that precious future energy, I’m sorry to say, but astronomers have looked and they haven’t found it. Just like the socks in your dryer, we may never discover where it all went.

Can We Now Predict When A Neutron Star Will Give Birth To A Black Hole?

A black hole is the final form a massive star collapses to. The light (and spacetime itself) is warped around the black hole's event horizon due to extreme gravitational effects. This is as accurate as we can be to visualizing an actual black hole as it was generated with a code that implemented General Relativity accurately. Credit and Copyright: Paramount Pictures/Warner Bros. Mathematical Model used to create the image developed by Dr. Kip Thorne

A neutron star is perhaps one of the most awe-inspiring and mysterious things in the Universe. Composed almost entirely of neutrons with no net electrical charge, they are the final phase in the life-cycle of a giant star, born of the fiery explosions known as supernovae. They are also the densest known objects in the universe, a fact which often results in them becoming a black hole if they undergo a change in mass.

For some time, astronomers have been confounded by this process, never knowing where or when a neutron star might make this final transformation. But thanks to a recent study by a team of researchers from Goethe University in Frankfurt, Germany, it may now be possible to determine the absolute maximum mass that is required for a neutron star to collapse, giving birth to a new black hole.

Continue reading “Can We Now Predict When A Neutron Star Will Give Birth To A Black Hole?”

Nearby Supernovas Showered Earth With Iron

Visible, infrared, and X-ray light image of Kepler's supernova remnant (SN 1604) located about 13,000 light-years away. Credit: NASA, ESA, R. Sankrit and W. Blair (Johns Hopkins University).

We all know that we are “made of star-stuff,” with all of the elements necessary for the formation of planets and even life itself having originated inside generations of massive stars, which over billions of years have blasted their creations out into the galaxy at the explosive ends of their lives. Supernovas are some of the most powerful and energetic events in the known Universe, and when a dying star finally explodes you wouldn’t want to be anywhere nearby—fresh elements are nice and all but the energy and radiation from a supernova would roast any planets within tens if not hundreds of light-years in all directions. Luckily for us we’re not in an unsafe range of any supernovas in the foreseeable future, but there was a time geologically not very long ago that these stellar explosions are thought to have occurred in nearby space… and scientists have recently found the “smoking gun” evidence at the bottom of the ocean.

Two independent teams of “deep-sea astronomers”—one led by Dieter Breitschwerdt from the Berlin Institute of Technology and the other by Anton Wallner from the Australian National University—have investigated sediment samples taken from the floors of the Pacific, Atlantic, and Indian oceans. The sediments were found to contain relatively high levels of iron-60, an unstable isotope specifically created during supernovas.

The Local Bubble is a 300-light-year long region that was carved out of the interstellar medium by supernovas (Source: Science@NASA)
The Local Bubble is a 300-light-year long region that was carved out of the interstellar medium by supernovas (Source: Science@NASA)

Watch: How Quickly Does a Supernova Happen?

The teams found that the ages of the iron-60 concentrations (the determination of which was recently perfected by Wallner) centered around two time periods, 1.7 to 3.2 million years ago and 6.5 to 8.7 million years ago. Based on this and the fact that our Solar System currently resides within a peanut-shaped region virtually empty of interstellar gas known as the Local Bubble, the researchers are confident that this provides further evidence that supernovas exploded within a mere 330 light-years of Earth, sending their elemental fallout our way.

“This research essentially proves that certain events happened in the not-too-distant past,” said Adrian Melott, an astrophysicist and professor at the University of Kansas who was not directly involved with the research but published his take on the findings in a letter in Nature. (Source)

The researchers think that two supernova events in particular were responsible for nearly half of the iron-60 concentrations now observed. These are thought to have taken place among a a nearby group of stars known as the Scorpius–Centaurus Association, some 2.3 and 1.5 million years ago. At those same time frames Earth was entering a phase of repeated global glaciation, the end of the last of which led to the rise of modern human civilization.

While supernovas of those sizes and distances wouldn’t have been a direct danger to life here on Earth, could they have played a part in changing the climate?

Read more: Could a Faraway Supernova Threaten Earth?

“Our local research group is working on figuring out what the effects were likely to have been,” Melott said. “We really don’t know. The events weren’t close enough to cause a big mass extinction or severe effects, but not so far away that we can ignore them either. We’re trying to decide if we should expect to have seen any effects on the ground on the Earth.”

Regardless of the correlation, if any, between ice ages and supernovas, it’s important to learn how these events do affect Earth and realize that they may have played an important and perhaps overlooked role in the history of life on our planet.

“Over the past 500 million years there must have been supernovae very nearby with disastrous consequences,” said Melott. “There have been a lot of mass extinctions, but at this point we don’t have enough information to tease out the role of supernovae in them.”

You can find the teams’ papers in Nature here and here.

Sources: IOP PhysicsWorld and the University of Kansas

 

UPDATE 4/14/16: The presence of iron-60 from the same time periods as those mentioned above has also been found on the Moon by research teams in Germany and the U.S. Read more here.

Weekly Space Hangout – Mar. 25, 2016: Andrew Helton & Ryan Hamilton of SOFIA

Host: Fraser Cain (@fcain)

Guests:This week, we welcome Andrew Helton and Ryan Hamilton, member of the SOFIA Telescope Team.

Andrew is the Instrument Scientist for the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST) dual channel, mid-infrared camera and spectrograph, one of the observatory’s facility-class science instruments.

Ryan is the Instrument Scientist for the upgraded High-resolution Airborne Wideband Camera (HAWC+) on board NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA).

Guests:

Kimberly Cartier (@AstroKimCartier )
Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg )
Brian Koberlein (@briankoberlein / briankoberlein.com)

Their stories this week:

Caught For The First Time: The Early Flash Of An Exploding Star

Ancient Polar Ice Reveals Tilting of Earth’s Moon

Supermassive stars aren’t due to mergers

Virgin Galactic looks to become much more terrestrial

Did Saturn’s inner moons form recently?

We’ve had an abundance of news stories for the past few months, and not enough time to get to them all. So we’ve started a new system. Instead of adding all of the stories to the spreadsheet each week, we are now using a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.

You can also join in the discussion between episodes over at our Weekly Space Hangout Crew group in G+!