Starliner Faces New Delays for Crewed Flights to ISS

An uncrewed Boeing CST-100 Starliner approaches the International Space Station above the south Pacific on May 20, 2022. Credit: NASA

While the SpaceX Crew Dragon is making regular trips to and from the International Space Station, the other vehicle NASA was planning to rely on for crew transportation keeps running into problems and delays. Boeing and NASA just announced another set of delays for the CST-100 Starliner spacecraft, pushing it even further back from its proposed July launch window — which was already years behind schedule.

Problems with its parachute lines and the electrical system were identified, and the program manager isn’t sure if Starliner will even fly by the end of 2023.

Continue reading “Starliner Faces New Delays for Crewed Flights to ISS”

Boeing Starliner Launch Scrubbed. No Idea When it Might fly

With all the news recently about relatively young rocket companies successfully flinging their founders and some actual astronauts into space, it might be surprising that the rocket company with the most experience of all still hasn’t gotten its flagship new rocket off the ground with people yet.  And after yet another delay, there is now no firm date for the launch of Boeing’s Starliner.

Continue reading “Boeing Starliner Launch Scrubbed. No Idea When it Might fly”

Russia’s new Module Kicks the Station out of Position, Causes a Delay for Starliner

An artist's illustration of Boeing's CST-100 Starliner spacecraft in orbit. Credit: Boeing

On July 28th, the International Space Station (ISS) suffered a mishap after a new Russian module (named Nauka) fired its thrusters just hours after arriving. As a result, the entire station was temporarily pushed out of position, forcibly delaying the Orbital Flight Test-2 (OFT-2) mission. This would have been Boeing’s CT-100 Starliner’s second attempt to rendezvous with the ISS as part of NASA’s Commercial Crew Program (CCP).

The ISS managed to correct its orbit shortly thereafter, while the OFT-2 launch was delayed until the next available opportunity (Wednesday, Aug. 4th). Unfortunately, the mission was delayed again due to an issue with one of the valves on the spacecraft’s propulsion system. This prompted the ground crews to move the Starliner and Atlas V launch vehicle back into Vertical Integration Facility (VIF), so they can look for the source of the problem more closely.

Continue reading “Russia’s new Module Kicks the Station out of Position, Causes a Delay for Starliner”

NASA has a Pretty Big Checklist for Boeing to Fix on Starliner

An artist's illustration of Boeing's CST-100 Starliner spacecraft in orbit. Credit: Boeing

In 2014, NASA contracted two major aerospace companies (Boeing and SpaceX) to help them restore domestic launch capability to the United States. As part of the Commercial Crew Program (CCE), Boeing and SpaceX developed the CST-100 Starliner the Crew Dragon spacecraft, respectively. But whereas the Crew Dragon finished testing and even carried astronauts to the ISS, the Starliner met with some problems.

During its first uncrewed test flight – Orbital Flight Test-1 (OFT-1) – in December 2019, the Starliner experienced some failures that prevented it from docking with the ISS. After a thorough investigation, the joint NASA-Boeing Independent Review team has completed its final assessment and identified 80 areas where corrections need to be made before the Starliner can conduct another orbital flight test.

Continue reading “NASA has a Pretty Big Checklist for Boeing to Fix on Starliner”

Stairway to Heaven! – Boeing Starliner Crew Access Arm’s ‘Awesome’ Launch Pad Installation

A crane lifts the Crew Access Arm and White Room for Boeing's CST-100 Starliner spacecraft for mating to the Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41 on Aug. 15, 2016. Astronauts will walk through the arm to board the Starliner spacecraft stacked atop a United Launch Alliance Atlas V rocket. Credit: Ken Kremer/kenkremer.com

A crane lifts the Crew Access Arm and White Room for Boeing's CST-100 Starliner spacecraft for mating to the Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41.  Astronauts will walk through the arm to board the Starliner spacecraft stacked atop a United Launch Alliance Atlas V rocket.  Credit: Ken Kremer/kenkremer.com
A crane lifts the Crew Access Arm and White Room for Boeing’s CST-100 Starliner spacecraft for mating to the Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41 on Aug. 15, 2016. Astronauts will walk through the arm to board the Starliner spacecraft stacked atop a United Launch Alliance Atlas V rocket. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL — A new ‘Stairway to Heaven’ which American astronauts will soon stride along as “the last place on Earth” departure point aboard our next generation of human spaceships, was at long last hoisted into place at the ULA Atlas rocket launch pad on Florida’s Space Coast on Monday Aug 15, at an “awesome” media event witnessed by space journalists including Universe Today.

“This is awesome,” Chris Ferguson, a former shuttle commander who is now Boeing’s deputy program manager for the company’s Commercial Crew Program told Universe Today in an exclusive interview at the launch pad – after workers finished installing the spanking new Crew Access Arm walkway for astronauts leading to the hatch of Boeing’s Starliner ‘Space Taxi.’

Starliner will ferry crews to and from the International Space Station (ISS) as soon as 2018.

“It’s great to see the arm up there,” Ferguson elaborated to Universe Today. “I know it’s probably a small part of the overall access tower. But it’s the most significant part!”

“We used to joke about the 195 foot level on the shuttle pad as being ‘the last place on Earth.”

“This will now be the new ‘last place on Earth’! So we are pretty charged up about it!” Ferguson gushed.

Up close view of Boeing Starliner Crew Access Arm and White Room craned into place at Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41 on Aug. 15, 2016.   Credit: Dawn Leek Taylor
Up close view of Boeing Starliner Crew Access Arm and White Room craned into place at Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41 on Aug. 15, 2016. Credit: Dawn Leek Taylor

Under hot sunny skies portending the upcoming restoration of America’s ability to once again launch American astronauts from American soil when American rockets ignite, the newly constructed 50-foot-long, 90,000-pound ‘Crew Access Arm and White Room’ was lifted and mated to the newly built ‘Crew Access Tower’ at Space Launch Complex-41 (SLC-41) on Monday morning, Aug. 15.

“We talked about how the skyline is changing here and this is one of the more visible changes.”

The Boeing CST-100 Starliner crew capsule stacked atop the venerable United Launch Alliance (ULA) Atlas V rocket at pad 41 on Cape Canaveral Air Force Station in Florida will launch crews to the massive orbiting science outpost continuously soaring some 250 miles (400 km) above Earth.

Space workers, enthusiasts and dreamers alike have been waiting years for this momentous day to happen. And I was thrilled to observe all the action firsthand along with the people who made it happen from NASA, United Launch Alliance, Boeing, the contractors – as well as to experience it with my space media colleagues.

“All the elements that we talked about the last few years are now reality,” Ferguson told me.

The Crew Access Arm and White Room for Boeing's CST-100 Starliner spacecraft approaches the notch for mating to the Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41 at level 13 on Aug. 15, 2016, as workers observe from upper tower level.  Astronauts will walk through the arm to board the Starliner spacecraft stacked atop a United Launch Alliance Atlas V rocket.  Credit: Ken Kremer/kenkremer.com
The Crew Access Arm and White Room for Boeing’s CST-100 Starliner spacecraft approaches the notch for mating to the Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41 at level 13 on Aug. 15, 2016, as workers observe from upper tower level. Astronauts will walk through the arm to board the Starliner spacecraft stacked atop a United Launch Alliance Atlas V rocket. Credit: Ken Kremer/kenkremer.com

Attaching the access arm is vital and visual proof that at long last America means business and that a renaissance in human spaceflight will commence in some 18 months or less when commercially built American crew capsules from Boeing and SpaceX take flight to the heavens above – and a new space era of regular, robust and lower cost space flights begins.

It took about an hour for workers to delicately hoist the gleaming grey steel and aluminum white ‘Stairway to Heaven’ by crane into place at the top of the tower – at one of the busiest launch pads in the world!

It’s about 130 feet above the pad surface since it’s located at the 13th level of the tower.

The install work began at about 7:30 a.m. EDT as we watched a work crew lower a giant grappling hook and attach cables. Then they carefully raised the arm off the launch pad surface by crane. The arm had been trucked to the launch pad on Aug. 11.

The tower itself is comprised of segmented tiers that were built in segments just south of the pad. They were stacked on the pad over the past few months – in between launches. Altogether they form a nearly 200-foot-tall steel structure.

Another crew stationed in the tower about 160 feet above ground waited as the arm was delicately craned into the designated notch. The workers then spent several more hours methodically bolting and welding the arm to the tower to finish the assembly process.

Indeed Monday’s installation of the Crew Access Arm and White Room at pad 41 basically completes the construction of the first new Crew Access Tower at Cape Canaveral Air Force Station since the Apollo moon landing era of the 1960s.

“It is the first new crew access structure at the Florida spaceport since the space shuttle’s Fixed Service Structures were put in place before Columbia’s first flight in 1981,” say NASA officials.

Overall the steel frame of the massive tower weighs over a million pounds. For perspective, destination ISS now weighs in at about a million pounds in low Earth orbit.

Construction of the tower began about 18 months ago.

“You think about when we started building this 18 months ago and now it’s one of the most visible changes to the Cape’s horizon since the 1960s,” said Ferguson at Monday’s momentous media event. “It’s a fantastic day.”

The White Room is an enclosed area at the end of the Crew Access Arm. It big enough for astronauts to make final adjustments to their suits and is spacious enough for technicians to assist the astronauts climbing aboard the spacecraft and get tucked into their seats in the final hours before liftoff.

“You have to stop and celebrate these moments in the craziness of all the things we do,” said Kathy Lueders, manager of NASA’s Commercial Crew Program, at the event. “It’s going to be so cool when our astronauts are walking out across this access arm to get on the spacecraft and go to the space station.”

The Crew Access Arm was built by Saur at NASA’s nearby off site facility at Oak Hill.

And when Starliner takes flight it will hearken back to the dawn of the Space Age.

“John Glenn was the first to fly on an Atlas, now our next leap into the future will be to have astronauts launch from here on Atlas V,” said Barb Egan, program manager for Commercial Crew for ULA.

Boeing is manufacturing Starliner in what is officially known as Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at the Kennedy Space Center in Florida under contract with NASA’s Commercial Crew Program (CCP).

Hull of the Boeing CST-100 Starliner Structural Test Article (STA)- the first Starliner to be built in the company’s modernized Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Hull of the Boeing CST-100 Starliner Structural Test Article (STA)- the first Starliner to be built in the company’s modernized Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

The Boeing CST 100 Starliner is one of two private astronaut capsules – along with the SpaceX Crew Dragon – being developed under a CCP commercial partnership contract with NASA to end our sole reliance on Russia for crew launches back and forth to the International Space Station (ISS).

The goal of NASA’s Commercial Crew Program since its inception in 2010 is to restore America’s capability to launch American astronauts on American rockets from American soil to the ISS, as soon as possible.

Furthermore when the Boeing Starliner and SpaceX Crew Dragon become operational the permanent resident ISS crew will grow to 7 – enabling a doubling of science output aboard the science laboratory.

This significant growth in research capabilities will invaluably assist NASA in testing technologies and human endurance in its agency wide goal of sending humans on a ‘Journey to Mars’ by the 2030s with the mammoth Space Launch System (SLS) rocket and Orion deep space capsule concurrently under full scale development by the agency.

The next key SLS milestone is a trest firing of the RS-25 main engines at NASA Stennis this Thursday, Aug. 18 – watch for my onsite reports!

Boeing was awarded a $4.2 Billion contract in September 2014 by NASA Administrator Charles Bolden to complete development and manufacture of the CST-100 Starliner space taxi under the agency’s Commercial Crew Transportation Capability (CCtCap) program and NASA’s Launch America initiative.

Since the retirement of NASA’s space shuttle program in 2011, the US was been 100% dependent on the Russian Soyuz capsule for astronauts rides to the ISS at a cost exceeding $70 million per seat.

When will Ferguson actually set foot inside the walkway?

“I am hoping to get up there and walk through there in a couple of weeks or so when it’s all strapped in and done. I want to see how they are doing and walk around.”

How does the White Room fit around Starliner and keep it climate controlled?

“The end of the white room has a part that slides up and down and moves over and slides on top of the spacecraft when it’s in place.”

“There is an inflatable seal that forms the final seal to the spacecraft so that you have all the appropriate humidity control and the purge without the Florida atmosphere inside the crew module,” Ferguson replied.

Up close, mid-air view of Crew Access Tower and front of White Room during installation.  The White Room will fit snugly against Boeing's CST-100 Starliner spacecraft with inflatable seal to maintain climate control and clean conditions as astronauts board capsule atop Atlas rocket hours before launch on  United Launch Alliance Atlas V rocket.  Credit: Ken Kremer/kenkremer.com
Up close, mid-air view of Crew Access Arm and front of White Room during installation. The White Room will fit snugly against Boeing’s CST-100 Starliner spacecraft with inflatable seal to maintain climate control and clean conditions as astronauts board capsule atop Atlas rocket hours before launch on United Launch Alliance Atlas V rocket. Credit: Ken Kremer/kenkremer.com

Boeing and NASA are targeting Feb. 2018 for launch of the first crewed orbital test flight on the Atlas V rocket. The Atlas will be augmented with two solid rocket motors on the first stage and a dual engine Centaur upper stage.

How confident is Ferguson about meeting the 2018 launch target?

“The first crew flight is scheduled for February 2018. I am confident.” Ferguson responded.

“And we have a lot of qualification to get through between now and then. But barring any large unforeseen issues we can make it.”

The Crew Access Tower after installation of the Crew Access Arm and White Room for Boeing's CST-100 Starliner spacecraft on Aug. 15, 2016 at Space Launch Complex 41 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
The Crew Access Tower after installation of the Crew Access Arm and White Room for Boeing’s CST-100 Starliner spacecraft on Aug. 15, 2016 at Space Launch Complex 41 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

As the Boeing Starliner Crew Access Arm and White Room are bolted into place behind us at Space Launch Complex 41, Chris Ferguson, former shuttle commander and current Boeing deputy program manager for Commercial Crew, and Ken Kremer of Universe Today discuss the details and future of human spaceflight on Aug. 15, 2016 at Cape Canaveral Air Force Station.  Credit: Jeff Seibert
As the Boeing Starliner Crew Access Arm and White Room are bolted into place behind us at Space Launch Complex 41, Chris Ferguson, former shuttle commander and current Boeing deputy program manager for Commercial Crew, and Ken Kremer of Universe Today discuss the future of human spaceflight on Aug. 15, 2016 at Cape Canaveral Air Force Station. Credit: Jeff Seibert

Construction of Crew Access Tower Starts at Atlas V Pad for Boeing ‘Starliner’ Taxi to ISS

The first tier of seven tiers for Crew Access Tower is moved from its construction yard to Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. The tower will provide access at the pad for astronauts and ground support teams to the Boeing CST-100 Starliner launching atop a United Launch Alliance Atlas V rocket. Photo credit: NASA/Dmitrios Gerondidakis

The first tier of seven tiers for Crew Access Tower is moved from its construction yard to Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on Sept 9, 2015. The tower will provide access at the pad for astronauts and ground support teams to the Boeing CST-100 Starliner launching atop a United Launch Alliance Atlas V rocket. Photo credit: NASA/Dmitrios Gerondidakis
Story/photos updated[/caption]

KENNEDY SPACE CENTER, FL – Restoring America’s human path back to space from US soil kicks into high gear at last as construction starts on erecting the new crew access tower on the Atlas V launch pad that will soon propel Americans astronauts riding aboard the commercially developed Boeing CST-100 ‘Starliner’ taxi to the Earth-orbiting International Space Station (ISS).

The last hurdle to begin stacking the crew access tower at the United Launch Alliance Atlas V complex-41 launch pad on Cape Canaveral Air Force Station, Florida was cleared with the magnificent predawn blastoff of the U.S. Navy’s MUOS-4 communications satellite on Sept. 2 – following a two day weather delay due to Tropical Storm Erika.

“Everything is on schedule,” Howard Biegler, ULA’s Human Launch Services Lead, told Universe Today during an exclusive interview. “The new 200-foot-tall tower structure goes up rather quickly at launch pad 41.”

The access tower essentially functions as the astronauts walkway to the stars.

“We start stacking the crew access tower [CAT] after the MUOS-4 launch and prior to the next launch after that of Morelos-3,” Beigler said in a wide ranging interview describing the intricately planned pad modifications and tower construction at the Atlas V Space Launch Complex 41 facility at Cape Canaveral.

Depending on the always tricky weather at the Cape, more than half the tower should be “installed prior to MORELOS-3’s launch on Oct. 2. The balance of the CAT will take form after the launch.”

The first tier of the new Crew Access Tower for the Boeing CST-100 Starliner arrives at Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida.   The tower will provide access at the pad for astronauts and ground support teams  to the Boeing CST-100 Starliner launching atop a United Launch Alliance Atlas V rocket.   Photo credit: NASA/Dmitrios Gerondidakis
The first tier of the new Crew Access Tower for the Boeing CST-100 Starliner arrives at Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on Sept 9, 2015. The tower will provide access at the pad for astronauts and ground support teams to the Boeing CST-100 Starliner launching atop a United Launch Alliance Atlas V rocket. Photo credit: NASA/Dmitrios Gerondidakis

The crew access tower is a critical space infrastructure element and absolutely essential for getting Americans back to space on American rockets for the first time since NASA’s shuttles were retired in 2011. That action forced our total dependence on the Russian Soyuz capsule for astronaut rides to the space station.

Boeing was awarded a $4.2 Billion contract in September 2014 by NASA Administrator Charles Bolden to complete development and manufacture of the CST-100 space taxi under the agency’s Commercial Crew Transportation Capability (CCtCap) program and NASA’s Launch America initiative. SpaceX also received a NASA award worth $2.6 Billion to build the Crew Dragon spacecraft for launch atop the firms man-rated Falcon 9 rocket.

Starliner is a key part of NASA’s overarching strategy to send Humans on a “Journey to Mars” in the 2030s.

The tower is of modular design for ease of assembly at the always busy Atlas launch pad.

“The crew tower is comprised of seven major tiers, or segments,” Beigler explained. “The building of the tiers went right on schedule. Each tier is about 20 feet square and 28 feet tall.”

Five of the seven tiers will be installed ahead of the next Atlas launch in early October, depending on the weather which has been difficult at the Cape.

“Our plan is to get 5 tiers and a temporary roof installed prior to MORELOS-3’s launch on October 2.”

“We have been hit hard with weather and are hopeful we can gain some schedule through the weekend. The balance of the CAT will take form after the 10/2 launch with the 7th tier planned to go up on 10/13 and roof on 10/15,” Biegler explained.

The first tier of the new Crew Access Tower for the Boeing CST-100 Starliner is installed at Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on Sept 9, 2015 where United Launch Alliance  Atlas V rockets will lift Boeing Starliners into orbit.  Photo credit: NASA/Dmitrios Gerondidakis
The first tier of the new Crew Access Tower for the Boeing CST-100 Starliner is installed at Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida where United Launch Alliance Atlas V rockets will lift Boeing Starliners into orbit. Photo credit: NASA/Dmitrios Gerondidakis

The newly named ‘Starliner’ space taxi will launch atop a newly human-rated Atlas V booster as soon as mid-2017, say NASA, ULA and Boeing officials.

But before astronauts can even climb aboard Starliner atop the Atlas rocket, ULA and Boeing first had to design, build and install a brand new tower providing access to the capsule for the crews and technicians.

Pad 41 is currently a “clean pad” with no gantry and no walkway to ‘Starliner’ because the Atlas V has only been used for unmanned missions to date.

The CST-100 ‘Starliner’ is at the forefront of ushering in the new commercial era of space flight and will completely revolutionize how we access, explore and exploit space for the benefit of all mankind.

This is the first new Crew Access Tower to be built at the Cape in decades, going back to NASA’s heyday and the Apollo moon landing era.

The tier segments were assembled about four miles down the road at the Atlas Space Operations Center on Cape Canaveral – so as not to disrupt the chock full manifest of Atlas rockets launching on a breakneck schedule for the NASA, military and commercial customers who ultimately pay the bills to keep ULA afloat and launch groundbreaking science probes and the most critical national security payloads vital to national defense.

“Each segment was outfitted with additional steel work, as well as electrical, plumbing and the staircase. Then they will be transported 3.9 miles out to the pad, one at a time on a gold hoffer and then we start erecting.”

The first two tiers were just transported out to pad 41. Installation and stacking of one tier on top of another starts in a few days.

Artist’s concept of Boeing’s CST-100 space taxi atop a human rated ULA Atlas-V rocket showing new crew access tower and arm at Space Launch Complex 41, Cape Canaveral Air Force Station, Fl. Credit: ULA/Boeing
Artist’s concept of Boeing’s CST-100 space taxi atop a human rated ULA Atlas-V rocket showing new crew access tower and arm at Space Launch Complex 41, Cape Canaveral Air Force Station, Fl. Credit: ULA/Boeing

“We are very pleased with the progress so far,” Biegler told me. “Everything is on schedule and has gone remarkably well so far. No safety or workmanship issues. It’s all gone very well.”

“The first tier is obviously the most critical [and will take a bit longer than the others to insure that everything is being done correctly]. It has to be aligned precisely over the anchor bolts on the foundation at the pad. Then it gets bolted in place.”

“After that they can be installed every couple of days, maybe every three days or so. The pieces of the tower will go up quickly.”

Artist’s concept of Boeing’s CST-100 space taxi atop a human rated ULA Atlas-V rocket showing new crew access tower and arm. Credit: ULA/Boeing
Artist’s concept of Boeing’s CST-100 space taxi atop a human rated ULA Atlas-V rocket showing new crew access tower and arm. Credit: ULA/Boeing
The steel tiers and tower are being built by Hensel Phelps under contract to ULA.

“Construction by the Hensel Phelps team started in January 2015,” Biegler said.

Erecting the entire tower is the next step. After stacking the tiers is fully completed later this year then comes structure, testing and calibration work over the next year.

“After tower buildup comes extensive work to outfit the tower with over 400 pieces of outboard steel that have to be installed. That takes much longer,” Biegler said.

“Designed with modern data systems, communications and power networks integrated and protected from blast and vibration, plus an elevator, the Crew Access Tower has been built with several features only a fully suited astronaut could appreciate, such as wider walkways, snag-free railings and corners that are easy to navigate without running into someone,” according to NASA officials.

Just like the shuttle, “the tower will also be equipped with slide wire baskets for emergency evacuation to a staged blast-resistant vehicle.”

“At the very top is the area that protects the access arm and provides the exit location for the emergency egress system. It will all be stick built from steel out at the pad,” Biegler elaborated.

The access arm with the walkway that astronauts will traverse to the Starliner capsule is also under construction. It is about 180 feet above ground.

Astronauts will ride an elevator up the tower to the access arm, and walk through it to the white room at the end to board the Starliner capsule.

“The arm along with the white room and torque tube are being fabricated in Florida. It will all be delivered to the pad sometime around next June [2016],” Biegler stated.

“We built a test stand tower for the access arm at our Oak Hill facility to facilitate the installation process. We mount the arm and the hydraulic drive system and then run it through its paces prior to its delivery to the pad.”

“The access arm – including the torque tube out to the end – is just over 40 feet in length.”

“We will integrate it off line because we don’t have a lot of time to troubleshoot out at the pad. So we will hook up all its drive systems and electronics on the test structure stand.”

“Then we will spend about 3 months testing it and verifying that everything is right. We’ll use laser lining to know it all precisely where the arm is. So that when we bring it out to the pad we will know where it is to within fractions of an inch. Obviously there will be some minor adjustments up and down.”

“That way in the end we will know that everything in the arm and the hydraulic drive system are working within our design specs.”

When the arm is finally installed on the crew access tower it will be complete, with the white room and environmental seal already attached.

“It will stow under the crew access tower, which is located west and north of the launch vehicle. The arm will swing out about 120 degrees to the crew module to gain access and was strategically picked to best fit the features and foundation at the existing pad structure.”

Tower construction takes place in between Atlas launches and pauses in the days prior to launches. For example the construction team will stand down briefly just ahead of the next Atlas V launch currently slated for Oct. 2 with the Mexican governments Morelos-3 communications satellite.

MUOS-4 US Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Sept. 2, 2015 at 5:59 a.m. EDT. Credit: Ken Kremer/kenkremer.com
The Crew Access Tower is now being erected at Pad 41 following MUOS-4 blastoff here. MUOS-4 US Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Sept. 2, 2015 at 5:59 a.m. EDT. Credit: Ken Kremer/kenkremer.com

Starliners’ actual launch date totally depends on whether the US Congress provides full funding for NASA’s commercial crew program (CCP).

Thus far the Congress has totally failed at providing the requested CCP budget to adequately fund the program – already causing a 2 year delay of the first flight from 2015 to 2017.

Boeing is making great progress on manufacturing the first CST-100 Starliner.

Barely a week ago, Boeing staged the official ‘Grand Opening’ ceremony for the craft’s manufacturing facility held at the Kennedy Space Center on Friday, Sept 4. 2015 – attended by Universe Today as I reported here.

ULA has also already started assembly of the first two Atlas V rockets designated for Starliner at their rocket factory in Decatur, Alabama.

Read my earlier exclusive, in depth one-on-one interviews with Chris Ferguson – America’s last shuttle commander, who now leads Boeings’ CST-100 program; here and here.

First view of the Boeing CST-100 'Starliner' crewed space taxi at the Sept. 4, 2015 Grand Opening ceremony held in the totally refurbished C3PF manufacturing facility at NASA's Kennedy Space Center. These are the upper and lower segments of the first Starliner crew module known as the Structural Test Article (STA) being built at Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at KSC. Credit: Ken Kremer /kenkremer.com
First view of the Boeing CST-100 ‘Starliner’ crewed space taxi at the Sept. 4, 2015 Grand Opening ceremony held in the totally refurbished C3PF manufacturing facility at NASA’s Kennedy Space Center. These are the upper and lower segments of the first Starliner crew module known as the Structural Test Article (STA) being built at Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at KSC. Credit: Ken Kremer /kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Boeing ‘Starliner’ Crew Spaceship; America’s Next Ride to Space Takes Shape

First view of the Boeing CST-100 'Starliner' crewed space taxi at the Sept. 4, 2015 Grand Opening ceremony held in the totally refurbished C3PF manufacturing facility at NASA's Kennedy Space Center. These are the upper and lower segments of the first Starliner crew module known as the Structural Test Article (STA) being built at Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at KSC. Credit: Ken Kremer /kenkremer.com

First view of the Boeing CST-100 ‘Starliner’ crewed space taxi at the Sept. 4, 2015 Grand Opening ceremony held in the totally refurbished C3PF manufacturing facility at NASA’s Kennedy Space Center. These are the upper and lower segments of the first Starliner crew module known as the Structural Test Article (STA) being built at Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at KSC. Credit: Ken Kremer /kenkremer.com
Story/photos updated[/caption]

KENNEDY SPACE CENTER, FL – ‘Starliner’ is the new name of America’s next spaceship destined to launch our astronauts to orbit. The new commercial craft from Boeing will restore America’s capability to launch American astronauts from American soil to the International Space Station (ISS) in 2017 – and the magnificent looking first capsule is already taking shape!

Built by The Boeing Company, ‘Starliner’ was officially announced by Boeing and NASA as the new name of the company’s CST-100 commercial crew transportation spacecraft during the Grand Opening event for the craft’s manufacturing facility held at the Kennedy Space Center on Friday, Sept 4. 2015 and attended by Universe Today.

‘Starliner’ counts as history’s first privately developed ‘Space Taxi’ to carry humans to space – along with the Crew Dragon being simultaneously developed by SpaceX.

“Please welcome the CST-100 Starliner,” announced Chris Ferguson, the former shuttle commander who now is deputy manager of operations for Boeing’s Commercial Crew Program, at the Grand Opening event hosting numerous dignitaries.

The CST-100 ‘Starliner’ is at the forefront of ushering in the new commercial era of space flight and will completely revolutionize how we access, explore and exploit space for the benefit of all mankind.

Starliner will be mostly automated for ease of operation and is capable of transporting astronaut crews of four or more to low Earth orbit and the ISS as soon as mid 2017 if all goes well and Congress approves the required funding.

“One hundred years ago we were on the dawn of the commercial aviation era and today, with the help of NASA, we’re on the dawn of a new commercial space era,” said Boeing’s John Elbon, vice president and general manager of Space Exploration.

“It’s been such a pleasure to work hand-in-hand with NASA on this commercial crew development, and when we look back 100 years from this point, I’m really excited about what we will have discovered.”

Boeing ‘Starliner’ commercial crew space taxi manufacturing facility marks Grand Opening at the Kennedy Space Center on Sept 4. 2015.   Exterior view depicting newly installed mural for the Boeing Company’s newly named CST-100 ‘Starliner’ commercial crew transportation spacecraft on the company’s Commercial Crew and Cargo Processing Facility (C3PF) at NASA’s Kennedy Space Center in Florida.  Credit: Ken Kremer /kenkremer.com
Boeing ‘Starliner’ commercial crew space taxi manufacturing facility marks Grand Opening at the Kennedy Space Center on Sept 4. 2015. Exterior view depicting newly installed mural for the Boeing Company’s newly named CST-100 ‘Starliner’ commercial crew transportation spacecraft on the company’s Commercial Crew and Cargo Processing Facility (C3PF) at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer /kenkremer.com

The CST-100 ‘Starliner’ will be produced in Boeing’s newly revamped manufacturing facility dubbed the Commercial Crew and Cargo Processing Facility (C3PF) on site at the Kennedy Space Center in Florida.

The CC3P building was previously known as Orbiter Processing Facility-2 (OPF-3) and utilized by NASA to process the agency’s space shuttle orbiters between crewed flights during the three decade long Space Shuttle program.

“When Boeing was looking for the prime location for its program headquarters, we knew Florida had a lot to offer from the infrastructure to the supplier base to the skilled work force,” said Chris Ferguson.

Starliner will launch on an Atlas V from pad 41 at Cape Canaveral Air Force Station in Florida. It has the capability to dock at the ISS within 24 hours. It can stay docked at the station for 6 months.”

Over the past few years, the historic facility has been completely renovated, upgraded and transformed into a state of the art manufacturing site for Boeing’s commercial CST-100 Starliner.

First view of upper half of the Boeing CST-100 '?Starliner?' crewed space taxi unveiled at the Sept. 4, 2015 Grand Opening ceremony held in the totally refurbished C3PF manufacturing facility at NASA's Kennedy Space Center. This will be part of the first Starliner crew module known as the Structural Test Article (STA) being built at Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at KSC. Credit: Ken Kremer /kenkremer.com
First view of upper half of the Boeing CST-100 ‘Starliner’ crewed space taxi unveiled at the Sept. 4, 2015 Grand Opening ceremony held in the totally refurbished C3PF manufacturing facility at NASA’s Kennedy Space Center. This will be part of the first Starliner crew module known as the Structural Test Article (STA) being built at Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at KSC. Credit: Ken Kremer /kenkremer.com

Boeing was awarded a $4.2 Billion contract in September 2014 by NASA Administrator Charles Bolden to complete development and manufacture of the CST-100 space taxi under the agency’s Commercial Crew Transportation Capability (CCtCap) program and NASA’s Launch America initiative.

It is also a key part of NASA’s overarching strategy to send Humans on a “Journey to Mars” in the 2030s.

“Commercial crew is an essential component of our journey to Mars, and in 35 states, 350 American companies are working to make it possible for the greatest country on Earth to once again launch our own astronauts into space,” said NASA Administrator Charles Bolden. “That’s some impressive investment.”

Crew access tunnel and seal for Boeing CST-100 Starliner that attaches to upper dome of the crew module for the Structural Test Article being manufactured at  the company’s Commercial Crew and Cargo Processing Facility (C3PF) at NASA’s Kennedy Space Center in Florida.  Credit: Ken Kremer /kenkremer.com
Crew access tunnel and hatch for Boeing CST-100 Starliner that attaches to upper dome of the crew module for the Structural Test Article being manufactured at the company’s Commercial Crew and Cargo Processing Facility (C3PF) at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer /kenkremer.com

The commercial crew program is designed to return human spaceflight launches to the United States and end our sole source reliance on Russia and the Soyuz capsule for all manned flights to the ISS and crew rotation missions.

Since the forced retirement of NASA’s shuttle orbiters in 2011, US astronauts have been totally dependent on the Russians for trips to space and back.

SpaceX also received a NASA award worth $2.6 Billion to build the Crew Dragon spacecraft for launch atop the firms man-rated Falcon 9 rocket.

Final assembly of both half’s of Starliner will take place in the C3PF – namely the crew command module and the service module.

Boeing is already building the first version of Starliner known as the Structural Test Article (STA) . The STA will be used for extensive prelaunch testing and evaluation to ensure it will be ready and robust and capable of safely launches humans to orbit on a very cost effective basis.

The Starliner STA is rapidly taking shape. The first components have been built and were on display at the C3PF Grand Opening eventy of Sept. 4. They are comprised of the upper and lower halves of the crew command module, the crew access tunnel and adapter.

The shell of Starliner’s first service module was also on display.

“The STA will be completed in early 2016,” said John Mulholland Boeing Vice President, Commercial Programs, at the event.

“Then we start assembly of the Qualification Test Article.”

I asked Mulholland to describe the currently planned sequence of Starliner’s initial uncrewed and crewed flights.

“The first uncrewed flight is expected to occur in May 2017. Then comes the Pad Abort Test in August 2017. The first crewed flight is set for September 2017. The first contracted regular service flight (PCM-1) is set for December 2017,” Mulholland told me.

“It’s all very exciting.”

Boeing CST-100 crew capsule will carry five person crews to the ISS.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 crew capsule will carry five person crews to the ISS. Credit: Ken Kremer – kenkremer.com

“Kennedy Space Center has transitioned more than 50 facilities for commercial use. We have made improvements and upgrades to well-known Kennedy workhorses such as the Vehicle Assembly Building, mobile launcher, crawler–transporter and Launch Pad 39B in support of Orion, the SLS and Advanced Exploration Systems,” said Robert Cabana, Kennedy’s center director.

“I am proud of our success in transforming Kennedy Space Center to a 21st century, multi-user spaceport that is now capable of supporting the launch of all sizes and classes of vehicles, including horizontal launches from the Shuttle Landing Facility, and spacecraft processing and landing.”

Boeing and NASA managers pose with the Boeing CST-100 Starliner crew module  being assembled into the Structural Test Article at company’s C3PF facility at the Kennedy Space Center in Florida.  From left are John Mulholland, Boeing Vice President Commercial Programs;  Chris Ferguson, former shuttle commander now Boeing deputy manager Commercial Crew Program; John Elbon, Boeing vice president and general manager of Space Exploration; and Robert Cabana, former shuttle commander and now Director NASA’s Kennedy Space Center, on Sept. 4, 2015.
Boeing and NASA managers pose with the Boeing CST-100 Starliner crew module being assembled into the Structural Test Article at company’s C3PF facility at the Kennedy Space Center in Florida. From left are John Mulholland, Boeing Vice President Commercial Programs; Chris Ferguson, former shuttle commander now Boeing deputy manager Commercial Crew Program; John Elbon, Boeing vice president and general manager of Space Exploration; and Robert Cabana, former shuttle commander and now Director NASA’s Kennedy Space Center, on Sept. 4, 2015. Credit: Ken Kremer/kenkremer.com

Read my earlier exclusive, in depth one-on-one interviews with Chris Ferguson – America’s last shuttle commander and who now leads Boeings CST-100 program; here and here.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Boeing’s commercial CST-100 'Space Taxi' will carry a crew of five astronauts to low Earth orbit and the ISS from US soil.   Mockup with astronaut mannequins seated below pilot console and Samsung tablets was unveiled on June 9, 2014 at its planned manufacturing facility at the Kennedy Space Center in Florida.  Credit: Ken Kremer - kenkremer.com
Boeing’s commercial CST-100 ‘Space Taxi’ will carry a crew of five astronauts to low Earth orbit and the ISS from US soil. Mockup with astronaut mannequins seated below pilot console and Samsung tablets was unveiled on June 9, 2014 at its planned manufacturing facility at the Kennedy Space Center in Florida. Credit: Ken Kremer – kenkremer.com