The Most Unique Eclipse Image You’ll Ever See

This is an image of a unique eclipse as viewed by NASA's Solar Dynamics Observatory, with a model of the moon from NASA's Lunar Reconnaissance Orbiter replacing the lunar shadow. Credit: NASA/SDO/LRO/GSFC

You’ve probably never before seen an image like the one above. That’s because it is the first time something like this has ever been created, and it is only possible thanks to two fairly recent NASA missions, the Solar Dynamics Observatory and the Lunar Reconnaissance Orbiter. We’ve shared previously how two or three times a year, SDO goes through “eclipse season” where it observes the Moon traveling across the Sun, blocking its view.

Now, Scott Wiessinger and Ernie Wright from Goddard Space Flight Center’s Scientific Visualization Studio used SDO and LRO data to create a model of the Moon that exactly matches SDO’s perspective of a lunar transit from October 7, 2010. They had to precisely match up data from the correct time and viewpoint for the two separate spacecraft, and the end result is this breathtaking image of the Sun and the Moon.

“The results look pretty neat,” Wiessinger said via email, “and it’s a great example of everything working: SDO image header data, which contains the spacecraft’s position; our information about lunar libration, elevation maps of the lunar surface, etc. It all lines up very nicely.”

‘Nicely’ is an understatement. How about “freaking awesome!”

And of course, they didn’t just stop there.

his is an up close shot of two NASA images: An image rendered from a model of the moon from the Lunar Reconnaissance Orbiter overlaid onto an image of the sun from the Solar Dynamics Observatory, during a lunar transit as seen by SDO on Oct. 7, 2010. The various features of the moon’s horizon are labeled. Credit: NASA/SDO/LRO/GSFC
his is an up close shot of two NASA images: An image rendered from a model of the moon from the Lunar Reconnaissance Orbiter overlaid onto an image of the sun from the Solar Dynamics Observatory, during a lunar transit as seen by SDO on Oct. 7, 2010. The various features of the moon’s horizon are labeled. Credit: NASA/SDO/LRO/GSFC

Since the data from both spacecraft are at such high resolution, if you zoom in to the LRO image, features of the Moon’s topography are visible, such as mountains and craters. This annotated image shows what all is visible on the Moon. And then there’s the wonderful and completely unique view in the background of SDO’s data of the Sun.

So while the imagery is awesome, this exercise also means that both missions are able to accurately provide images of what’s happening at any given moment in time.

Beautiful. See more imagery and info at this SVS page.

The image on the left is a view of the sun captured by NASA’s Solar Dynamics Observatory on Oct. 7, 2010, while partially obscured by the moon. Looking closely at the crisp horizon of the moon against the sun shows the outline of lunar mountains. A model of the moon from NASA’s Lunar Reconnaissance Orbiter has been inserted into a picture on the right, showing how perfectly the moon's true topography fits into the shadow observed by SDO. Credit: NASA/SDO/LRO/GSFC
The image on the left is a view of the sun captured by NASA’s Solar Dynamics Observatory on Oct. 7, 2010, while partially obscured by the moon. Looking closely at the crisp horizon of the moon against the sun shows the outline of lunar mountains. A model of the moon from NASA’s Lunar Reconnaissance Orbiter has been inserted into a picture on the right, showing how perfectly the moon’s true topography fits into the shadow observed by SDO. Credit: NASA/SDO/LRO/GSFC

3 Years of the Sun in 3 Minutes

This image is a composite of 25 separate images spanning the period of April 16, 2012, to April 15, 2013. It uses the SDO AIA wavelength of 171 angstroms and reveals the zones on the sun where active regions are most common during this part of the solar cycle. Credit: NASA/SDO/AIA/S. Wiessinger

Since the Solar Dynamics Observatory opened its multi-spectral eyes in space about three years ago, we’ve posted numerous videos and images from the mission, showing incredible views of our dynamic Sun. Scott Wiessinger from Goddard Space Flight Center’s Space Visualization Studio has put together great timelapse compilation of images from the past three years, as well as a one composite still image to “try to encapsulate a timelapse into one static graphic,” he told us via email. “I blended 25 stills from over the last year, and it’s interesting to see the bright bands of active regions.” Scott said he was fascinated by seeing the views of the Sun over a long range of time.

Within the video, (below) there are some great Easter egg hunts – things to see like partial eclipses, flares, comet Lovejoy, and the transit of Venus.

How many can you find?

SDO’s Atmospheric Imaging Assembly (AIA) captures a shot of the sun every 12 seconds in 10 different wavelengths, but the images shown here are based on a wavelength of 171 Angstroms, which is in the extreme ultraviolet range. It shows solar material at around 600,000 Kelvin. In this wavelength it is easy to see the Sun’s 25-day rotation as well as how solar activity has increased over three years as the Sun’s solar cycle has ramped up towards the peak of activity in its 11-year cycle.

You’ll also notice that during the course of the video, the Sun subtly increases and decreases in apparent size. This is because the distance between the SDO spacecraft and the Sun varies over time. The image is, however, remarkably consistent and stable despite the fact that SDO orbits the Earth at 6,876 miles per hour and the Earth orbits the sun at 67,062 miles per hour.

See more views, wavelengths and information at this page at the Space Visualization Studio website.

Weekend Aurora Alert: The Sun Lets Loose an Earth-Directed CME

NASA's Solar Dynamics Observatory captured this image of an M6.5 class flare at 3:16 EDT on April 11, 2013. This image shows a combination of light in wavelengths of 131 and 171 Angstroms. Credit: NASA/SDO.

The Solar Dynamics Observatory captured this view as the Sun let loose with its biggest solar flare of the year so far. It’s not a real big one — a mid-level flare classified as an M6.5 – but an associated coronal mass ejection is heading towards Earth and could spur some nice auroae by this weekend. Spaceweather.com predicts the expanding cloud (see animation below) will probably deliver a glancing blow to Earth’s magnetic field late on April 12th or more likely April 13th. The NOAA Space Prediction Center forecasts this event to cause moderate (G2) Geomagnetic Storm activity, and predicts geomagnetic activity to start in the mid to latter part (UTC) of April 13. They add that the source region is still potent and well-positioned for more geoeffective activity in the next few days.

 The magnetic field of sunspot AR1719 erupted on April 11th at 0716 UT, producing an M6-class solar flare. Coronagraph images from the Solar and Heliospheric Observatory show a CME emerging from the blast site of the M6.5 solar flare. Credit: NASA
The magnetic field of sunspot AR1719 erupted on April 11th at 0716 UT, producing an M6-class solar flare. Coronagraph images from the Solar and Heliospheric Observatory show a CME emerging from the blast site of the M6.5 solar flare. Credit: NASA

See this NASA page for info on solar flares, CMEs, and more.

NASA's Solar Dynamics Observatory captured this image of an M6.5 class flare at 3:16 am EDT on April 11, 2013. This image shows a combination of light in wavelengths of 131 and 171 Angstroms. Credit: NASA/SDO.
NASA’s Solar Dynamics Observatory captured this image of an M6.5 class flare at 3:16 am EDT on April 11, 2013. This image shows a combination of light in wavelengths of 131 and 171 Angstroms. Credit: NASA/SDO.

Solar Spacecraft Gets a Little Loopy

Our own Sun produces flares, but we are protected by our magnetosphere, and by the distance from the Sun to Earth. Credit: NASA/ Solar Dynamics Observatory,

Twice a year, the Solar Dynamics Observatory performs a 360-degree roll about the axis on which it points toward the Sun. This produces some unique views, but the rolls are necessary to help calibrate the instruments, particularly the Helioseismic and Magnetic Imager (HMI) instrument, which is making precise measurements of the solar limb to study the shape of the Sun. The rolls also help the science teams to know how accurately the images are aligned with solar north.

But take this rolling imagery, add some goofy music and hopefully it adds a smile to your day!

Astrophoto: Giant Sunspot Group on the Sun

Sunspot 1678 in Hydrogen alpha light, taken on February 19, 2013. Credit and copyright: Paul Andrew.

On February 19 and 20, 2013, scientists watched a giant sunspot form in under 48 hours. It has grown to over six Earth diameters. This image by astrophotographer Paul Andrew shows a detailed, close-up view of this sunspot group, named AR 1678, imaged with a hydrogen alpha filter.

NASA said the spot quickly evolved into what’s called a delta region, which has a magnetic field that harbors energy for strong solar flares. NOAA forecasters estimate a 45% chance of M-flares and a 15% chance of X-flares during the next day.

Below is an image from the Solar Dynamics Observatory of this region on the Sun:

This image of AR 1678 combines images from two instruments on NASA's Solar Dynamics Observatory (SDO): the Helioseismic and Magnetic Imager (HMI), which takes pictures in visible light that show sunspots and the Advanced Imaging Assembly (AIA), which took an image in the 304 Angstrom wavelength showing the lower atmosphere of the sun, which is colorized in red. Credit: NASA/SDO/AIA/HMI/Goddard Space Flight Center
This image of AR 1678 combines images from two instruments on NASA’s Solar Dynamics Observatory (SDO): the Helioseismic and Magnetic Imager (HMI), which takes pictures in visible light that show sunspots and the Advanced Imaging Assembly (AIA), which took an image in the 304 Angstrom wavelength showing the lower atmosphere of the sun, which is colorized in red. Credit: NASA/SDO/AIA/HMI/Goddard Space Flight Center

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Stunning Compilation of the Solar Dynamic Observatory’s Observations

Magnificent eruption from the Sun, shown in 304 and 171 Angstrom wavelength light, on August 31, 2012. Credit: NASA

Three years ago today, (February 11, 2010) I was standing at Kennedy Space Center watching the launch of the Solar Dynamics Observatory. The launch was spectacular, and included a unique effect as the Atlas rocket flew close to a sundog just as the spacecraft reached Max-Q, creating a ripple effect around the spacecraft. And so, SDO started off with a bang and she’s been producing incredible data ever since. The folks at Goddard Spaceflight Center’s Scientific Visualiation Studio have put together a highlight reel for the third year of SDO operations. You’ll see morphing sunspots, fountains of solar plasma, sun-grazing comets and more. Throughout its mission, SDO has not only studied the Sun, but also opened up several new, unexpected doors to scientific inquiry. Enjoy this “greatest hits” video of SDO’s third year.

SDO’s Camilla the Rubber Chicken: Cure for a Common Phobia

We at Universe Today really appreciate the work that Camilla the Rubber Chicken does in her role of education and public outreach. This new video from NASA explains why many people agree that she puts a completely different spin on getting people interested in space and science. As Camilla once told us, “As you know, I not only want to educate about our Sun and space weather, but I want to inspire and show kids (and adults) how much fun science and engineering really is,” she said via email. “Team SDO’s goal has always been to encourage more girls into STEM careers,” … and to make people feel comfortable asking questions, too.

Disco Sun: X-Class Flare Creates Strobe-Light Effect

An active region just turning into view on the left side of the Sun has emitted three large flares since Saturday: an M9, an M5 and early today blasted out an X1.8 class flare. This flare occurred around 3:17 am UTC today (or 11:17 pm EDT on Oct. 22). The strobe-light-like effect visible in the video was created by the brightness of the flare and how the instruments on the Solar Dynamics Observatory responded to it. Phil Chamberlin, Deputy Project Scientist SDO told Universe Today that built in algorithms called ‘active exposure control’ compensate for the extra light coming in from a flare. It doesn’t always result in the strobe or fluttering effect, but the algorithms create shorter exposure time, and thus a dimmer, but still scientifically useful view of the entire Sun. The algorithms go into effect whenever there is an M class or higher flare.

Solar flares are powerful bursts of radiation. Harmful radiation from a flare can’t pass through Earth’s atmosphere and pose a hazard to humans on the ground, but flares like this can disturb the atmosphere in the layer where GPS and communications signals travel, and an X-class flare of this intensity can cause problems or even blackouts in radio communications.

A Coronal Mass Ejection (CME) was not associated with this flare, and the flare was not directed at Earth, so scientists do not expect any additional auroral activity to be a result of this latest blast from the Sun.

An image from the Solar Dynamics Observatory during the X-class flare event on Oct. 23, 2012 (UTC). Credit: NASA/SDO

The SDO Twitter feed said there is a 75% chance of more M-class solar flares from this active region and a 20% chance of additional X-class flares.

This is the 7th X-class flare in 2012 with the largest being an X5.4 flare on March 7.

By observing the sun in a number of different wavelengths, NASA’s telescopes can tease out different aspects of events on the sun. These four images of a solar flare on Oct. 22, 2012, show from the top left, and moving clockwise: light from the sun in the 171 Angstrom wavelength, which shows the structure of loops of solar material in the sun’s atmosphere, the corona; light in 335 Angstroms, which highlights light from active regions in the corona; a magnetogram, which shows magnetically active regions on the sun; light in the 304 Angstrom wavelength, which shows light from the region of the sun’s atmosphere where flares originate. (Credit: NASA/SDO/Goddard)

More info: NASA, SpaceWeather.com

Peekaboo Sun: SDO’s Eclipse Season

Now you see it, now you don’t! Around the solstices, the Solar Dynamics Observatory ends up having an “eclipse season,” where the Sun, Earth, and the SDO line up, and some of the images and video sent down from the spacecraft appear as though the Sun disappears for a while or just part of the Sun is visible. This is a normal part of life with a geosynchronous observatory, the SDO team says.

They explain it this way:

“Twice a year, SDO enters an eclipse season where the spacecraft slips behind Earth for up to 72 minutes a day. Unlike the crisp shadow one sees on the sun during a lunar eclipse, Earth’s shadow has a variegated edge due to its atmosphere, which blocks the sun light to different degrees depending on its density. Also, light from brighter spots on the sun may make it through, which is why some solar features extend low into Earth’s shadow.”

There’s no way to avoid the loss of images, but the continuous contact with the ground station SDO’s orbit allows was judged to outweigh the loss of some images.

This eclipse season started September 6, and it ends tomorrow, on September 29, 2012, so see it while you can!

Watch This: Solar Prominence Achieves Liftoff

And we have liftoff! The Solar Dynamics Observatory has been providing images and video of some beautiful prominences and filaments over the past few days, and today the spacecraft captured a large prominence lifting off over the North Western limb of the Sun. A huge ball of plasma explodes from the surface and blooms into an arc loop that achieves enough energy to escape the Sun’s gravity.

The SDO team explains what the video shows:

Continue reading “Watch This: Solar Prominence Achieves Liftoff”