Astronomers Propose a 50-Meter Submillimeter Telescope

The Atacama Large Millimeter/submillimeter Array (ALMA) in northern Chile is our most powerful radio telescope. But astronomers are hungering for a new radio telescope made of one massive dish. Image Credit: A. Marinkovic/X-Cam/ALMA (ESO/NAOJ/NRAO)

Some parts of the Universe only reveal important details when observed in radio waves. That explains why we have ALMA, the Atacama Large Millimetre-submillimetre Array, a collection of 7-meter and 12-meter radio telescopes that work together as an interferometer. But, ALMA-type arrays have their limitations, and astronomers know what they need to overcome those limitations.

They need a radio telescope that’s just one single, massive dish.

Continue reading “Astronomers Propose a 50-Meter Submillimeter Telescope”

China’s FAST Observatory is Playing a Key Role in the Search for Aliens

China's FAST telescope

Some years ago I rememeber running the SETI at Home screensaver and would watch it for hours to see if any peaks appeared naively thinking they might be signals from an alien civilisation! There is no doubt that the search for extraterrestrials (ET) has captivated the minds of many people across the years. The search has of course to date, been unsuccesful despite multiple observations that seem to suggest the conditions for life across the cosmos may actually be more common than we first thought. Now Chinese agencies are funding projects to use the Five Hundred Meter Aperture Spherical Telescope (FAST) to conduct searches for alien signals.

Continue reading “China’s FAST Observatory is Playing a Key Role in the Search for Aliens”

Astronomers Find the Birthplaces of Stars in the Whirlpool Galaxy

Understanding how star-forming works at a galactic scale is challenging in our Milky Way. While we have a general understanding of the layout of our galaxy, we can’t see all of the details head-on like we would want to if we were exploring a single galaxy for details of star formation. Luckily, we have a pretty good view of the entirety of one of the most famous galaxies in all of astronomy – M51, the Whirlpool Galaxy. Now, a team of researchers from the Max Planck Institute for Astronomy has completed a survey of molecules throughout the galaxy and developed a map of potential star-forming regions.

Continue reading “Astronomers Find the Birthplaces of Stars in the Whirlpool Galaxy”

Astronomers Find 25 Fast Radio Bursts That Repeat on a Regular Basis

CHIME consists of four metal "half-pipes", each one 100 meters long. Image Credit: CHIME/Andre Renard, Dunlap Institute.
CHIME consists of four metal "half-pipes", each one 100 meters long. Image Credit: CHIME/Andre Renard, Dunlap Institute.

Like Gravitational Waves (GWs) and Gamma-Ray Bursts (GRBs), Fast Radio Bursts (FRBs) are one of the most powerful and mysterious astronomical phenomena today. These transient events consist of bursts that put out more energy in a millisecond than the Sun does in three days. While most bursts last mere milliseconds, there have been rare cases where FRBs were found repeating. While astronomers are still unsure what causes them and opinions vary, dedicated observatories and international collaborations have dramatically increased the number of events available for study.

A leading observatory is the Canadian Hydrogen Intensity Mapping Experiment (CHIME), a next-generation radio telescope located at the Dominion Radio Astrophysical Observatory (DRAO) in British Columbia, Canada. Thanks to its large field of view and broad frequency coverage, this telescope is an indispensable tool for detecting FRBs (more than 1000 sources to date!) Using a new type of algorithm, the CHIME/FRB Collaboration found evidence of 25 new repeating FRBs in CHIME data that were detected between 2019 and 2021.

Continue reading “Astronomers Find 25 Fast Radio Bursts That Repeat on a Regular Basis”

New Receiver Will Boost Interplanetary Communication

Illustration of the concept using light signals rather than radio. Credit: Yen Strandqvist/Chalmers University of Technology

If humans want to travel about the solar system, they’ll need to be able to communicate. As we look forward to crewed missions to the Moon and Mars, communication technology will pose a challenge we haven’t faced since the 1970s.

Continue reading “New Receiver Will Boost Interplanetary Communication”

A Broken Cable Smashed Part of the Arecibo Observatory

Damage at the Arecibo Observatory in August, 2020. Credit: NSF/NAIC

The Arecibo Observatory is an iconic institution. Located in Puerto Rico, this National Science Foundation (NSF) observatory was the largest radio telescope in the world between 1963 and 2016. While that honor now goes to the Five hundred meter Aperture Spherical Telescope (FAST) in China, Arecibo will forever be recognized for its contributions to everything from radio astronomy to the Search for Extraterrestrial Intelligence (SETI).

Unfortunately, the Arecibo Observatory suffered serious damage when on Monday, Aug. 10th, an auxiliary cable that supports the platform suspended above the telescope reflector dish broke. The cable struck the Gregorian Dome (which sits on the underside of the platform) before landing on the reflector dish, which created a gash over 30 meters (100 feet) in length and forced the observatory to temporarily shut down operations.

Continue reading “A Broken Cable Smashed Part of the Arecibo Observatory”

Complete and Total Mayhem in a Distant Galaxy Collision

The filamentary structures observed by LOFAR at the center of Abell 2255, here reported in red. These radio emissions are due to trails of particles and magnetic fields released by the galaxies during their motion inside the cluster (credits: Botteon et al. (2020) – LOFAR – SDSS).

A cluster of galaxies is nothing trivial. The shocks, the turbulence, the energy, as all of that matter and energy merges and interacts. And we can watch all the chaos and mayhem as it happens.

A team of astronomers are looking at the galaxy cluster Abell 2255 with the European Low-Frequency Array (LOFAR) radio telescope, and their images are showing some never-before-seen details in this actively merging cluster.

Continue reading “Complete and Total Mayhem in a Distant Galaxy Collision”

Astronomers Have Detected the Brightest Fast Radio Burst Ever Seen. Still No Idea What’s Causing Them

The Parkes Telescope in New South Wales, Australia. Credit: Roger Ressmeyer/Corbis

Fast Radio Bursts (FRBs) have been one of the more puzzling and fascinating areas of astronomical study ever since the first was detected in 2007 (known as the Lorimer Burst). Much like gravitational waves, the study of these short-lived radio pulses (which last only a few milliseconds) is still in its infancy, and only a 33 events have been detected. What’s more, scientists are still not sure what accounts for them.

While some believe that they are entirely natural in origin, others have speculated that they could be evidence of extra-terrestrial activity. Regardless of their cause, according to a recent study, three FRBs were detected this month in Australia by the Parkes Observatory radio telescope in remote Australia. Of these three, one happened to be the most powerful FRB recorded to date.

The signals were detected on March 1st, March 9th, and March 11th, and were designated as FRB 180301, FRB 180309 and FRB 180311. Of these, the one recorded on March 9th (FRB 180309) was the brightest ever recorded, having a signal-to-noise ratio that was four times higher than the previous brightest FRB. This event, known as FRB 170827, was detected on August 27th, 2017, by the UTMOST array in Australia.

The Parkes radio telescope, one of the telescopes comprising CSIRO’s Australia Telescope National Facility. Credit: CSIRO

All three of these events were detected by the Parkes radio telescope, which is located in New South Wales about 380 kilometers (236 mi) from Sydney. As one of three telescopes that makes up the Australia Telescope National Facility, this telescope has been studying pulsars, rapidly spinning neutron stars, and conducting large-scale surveys of the sky since 1961. In recent years, it has been dedicated to the detection of FRBs in our Universe.

Considering how rare and short-lived FRBs are, recording three in the space of one month is quite the achievement. What’s more, the fact that the detections happened in real-time, rather than being discovered in archival data, is also impressive. Shortly after the event, Stefan Oslowski (of the Swinburne University of Technology) tweeted about this rather fortunate discovery (see below).

At present, none of the three events are believed to be “repeaters” – aka. Repeating Fast Radio Bursts. So far, only one FRB has been found to be repeating. This was none other than FRB 121102, which was first detected by the Arecibo radio telescope in Puerto Rico on November 2nd, 2012. In 2015, several more bursts were detected from this some source which had properties that were consistent with the original signal.

As noted, and in spite of all the events that have been detected, scientists are still not sure what causes these strange bursts. But with three more events detected, and the possibility that they could repeat in the near-future, scientists now have more events to pore over and base their theories on. And with next-generation arrays being constructed, a great many more events (and repeaters) are likely to be detected in the coming years.

These include the the Square Kilometer Array currently being built across Australia, New Zealand and South Africa, and the Five hundred meter Aperture Spherical Telescope (FAST) being build in China. With these telescopes  joining observatories like the Very Large Telescope (VLT), the Atacama Large Millimeter/submillimeter Array (ALMA) and venerated observatories like Arecibo, FRBs may not be mysterious for much longer!

Further Reading: The Astronomer’s Telegram, Science Alert

Black Hole Imaged For First Time By Event Horizon Telescope

Illustration of the supermassive black hole at the center of the Milky Way. Credit: NRAO/AUI/NSF
Illustration of the supermassive black hole at the center of the Milky Way. It's huge, with over 4 times the mass of the Sun. But ultramassive black holes are even more massive and can contain billions of solar masses. Image Credit: Credit: NRAO/AUI/NSF

For decades, scientists have held that Supermassive Black Holes (SMBHs) reside at the center of larger galaxies. These reality-bending points in space exert an extremely powerful influence on all things that surround them, consuming matter and spitting out a tremendous amount of energy. But given their nature, all attempts to study them have been confined to indirect methods.

All of that changed beginning on Wednesday, April 12th, 2017, when an international team of astronomers obtained the first-ever image of a Sagittarius A*. Using a series of telescopes from around the globe – collectively known as the Event Horizon Telescope (EHT) – they were able to visualize the  mysterious region around this giant black hole from which matter and energy cannot escape – i.e. the event horizon.

Not only is this the first time that this mysterious region around a black hole has been imaged, it is also the most extreme test of Einstein’s Theory of General Relativity ever attempted. It also represents the culmination of the EHT project, which was established specifically for the purpose of studying black holes directly and improving our understanding of them.

Simulated view of a black hole. Credit: Bronzwaer/Davelaar/Moscibrodzka/Falcke/Radboud University

Since it began capturing data in 2006, the EHT has been dedicated to the study of Sagittarius A* since it is the nearest SMBH in the known Universe – located about 25,000 light years from Earth. Specifically, scientists hoped to determine if black holes are surrounded by a circular region from which matter and energy cannot escape (which is predicted by General Relativity), and how they accrete matter onto themselves.

Rather than constituting a single facility, the EHT relies on a worldwide network of radio astronomy facilities based on four continents, all of which are dedicated to studying one of the most powerful and mysterious forces in the Universe. This process, whereby widely-space radio dishes from across the globe are connected into an Earth-sized virtual telescope, is known as Very Long Baseline Interferometry (VLBI).

As Michael Bremer – an astronomer at the International Research Institute for Radio Astronomy (IRAM) and a project manager for the Event Horizon Telescope – said in an interview with AFP:

“Instead of building a telescope so big that it would probably collapse under its own weight, we combined eight observatories like the pieces of a giant mirror. This gave us a virtual telescope as big as Earth—about 10,000 kilometers (6,200 miles) is diameter.”

Sagittarius A is the super-massive black hole at the center of our Milky Way Galaxy. It is shown in x-ray (blue) and infrared (red) in this combined image from the Chandra Observatory and the Hubble Space Telescope. Image: X-ray: NASA/UMass/D.Wang et al., IR: NASA/STScI
Combined image of Sagittarius A shown in x-ray (blue) and infrared (red), provided by the Chandra Observatory and the Hubble Space Telescope. Credit: X-ray: NASA/UMass/D.Wang et al., IR: NASA/STScI

All told, the network includes instruments like the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, the Arizona Radio Observatory Submillimeter Telescope, the IRAM 30-meter Telescope in Spain, the Large Millimeter Telescope Alfonso Serrano in Mexico, the South Pole Telescope in Antarctica, and the James Clerk Maxwell Telescope and Submillimeter Array at Mauna Kea, Hawaii.

With these arrays, the EHT radio-dish network is the only one powerful enough to detect the light released when an object would disappear into Sagittarius A*. And from six nights – from Wednesday, April 5th, to Tuesday, April 11th, – all of its arrays were trained on the center of our Milky Way to do just that. By the end of the run, the international team announced that they had snapped the first-ever picture of an event horizon.

In the end, some 500 terabytes of data were collected. This data is now being transferred to the MIT Haystack Observatory in Massachusetts, where it will be processed by supercomputers and turned into an image. “For the first time in our history, we have the technological capacity to observe black holes in detail,” said Bremer. “The images will emerge as we combine all the data. But we’re going to have to wait several months for the result.”

Part of the reason for the wait is the fact that the recorded data obtained by the South Pole Telescope can only be collected when spring starts in Antarctica – which won’t happen until October 2017 at the earliest. As such, it won’t be until 2018 before the public gets to feast its eyes on the shadow region that surrounds Sagittarius A*, and it is not expected that the first image will be entirely clear.

As Heino Falcke – an astronomers from Radbound University who now chairs the Scientific Council of EHT (and was the one who proposed this experiment twenty years ago) – explained in a EHT press release prior to the observation being made:

“It is the challenge of doing something, that has never been attempted before. It is the start of an adventurous journey towards a black hole… However, I think we need more observation campaigns and eventually more telescopes in the network to make a really good image.”

Despite the wait, and the fact that repeated attempts will be needed before we can get our first clear look at a black hole, there is still plenty of reason to celebrate in the meantime. Not only was this a first that was a long time in he making, but it also represents a major leap towards understanding one of the most powerful and mysterious forces of nature.

Given time, the study of black holes may allow for us to finally resolve how gravity and the other fundamental forces of the Universe interact. At long last, we will be able to comprehend all of existence as a single, unified equation!

Further Reading: Event Horizon Telescope, NRAO

Fast Radio Bursts On Repeat – Aliens, Or A Rotating Neutron Star?

A team of astronomers from UCLA searched for "technosignatures" in the Kepler field data. Credit and Copyright: Danielle Futselaar

Very recently, a team of scientists from the Commonwealth Scientific and Industrial Research Organization (CSIRO) achieved an historic first by being able to pinpoint the source of fast radio bursts (FRBs). With the help of observatories around the world, they determined that these radio signals originated in an elliptical galaxy 6 billion light years from Earth. But as it turns out, this feat has been followed by yet another historic first.

In all previous cases where FRBs were detected, they appeared to be one-off events, lasting for mere milliseconds. However, after running the data from a recent FRB through a supercomputer, a team of scientists at McGill University in Montreal have determined that in this instance, the signal was repeating in nature. This finding has some serious implications for the astronomical community, and is also considered by some to be proof of extra-terrestrial intelligence.

FRBs have puzzled astronomers since they were first detected in 2007. This event, known as the Lorimer Burst, lasted a mere five milliseconds and appeared to be coming from a location near the Large Magellanic Cloud, billions of light years away. Since that time, a total of 16 FRBs have been detected. And in all but this one case, the duration was extremely short and was not followed up by any additional bursts.

The NSF's Arecibo Observatory, which is located in Puerto Rico, is the world largest radio telescope. Credit: NAIC
The NSF’s Arecibo Observatory, which is located in Puerto Rico, is the world largest radio telescope. Credit: NAIC

Because of their short duration and one-off nature, many scientists have reasoned that FRBs must be the result of cataclysmic events – such as a star going supernova or a neutron star collapsing into a black hole. However, after sifting through data obtained by the Arecibo radio telescope in Puerto Rico, a team of students from McGill University – led by PhD student Paul Scholz – determined that an FRB detected in 2012 did not conform to this pattern.

In an article published in Nature, Scholz and his associates describe how this particular signal – FRB 121102 – was followed by several bursts with properties that were consistent with the original signal. Running the data which was gathered in May and June through a supercomputer at the McGill High Performance Computing Center, they determined that FRB 121102 had emitted a total of 10 new bursts after its initial detection.

This would seem to indicate that FRBs have more than just one cause, which presents some rather interesting possibilities. As Paul Scholz told Universe Today via email:

“All previous Fast Radio Bursts have only been one-time events, so a lot of explanations for them have involved a cataclysmic event that destroys the source of the bursts, such as a neutron star collapsing into a black hole. Our discovery of repeating bursts from FRB 121102 shows that the source cannot have been destroyed and it must have been due to a phenomenon that can repeat, such as bright pulses from a rotating neutron star.”

The Parkes Telescope in New South Wales, Australia. Credit: Roger Ressmeyer/Corbis
The Parkes Telescope in New South Wales, Australia. Credit: Roger Ressmeyer/Corbis

Another possibility which is making the rounds is that this signal is not natural in origin. Since their discovery, FRBs and other “transient signals” – i.e. seemingly random and temporary signals – from the Universe have been the subject of speculation. As would be expected, there have been some who have suggested that they might be the long sought-after proof that extra-terrestrial civilizations exist.

For example, in 1967, after receiving a strange reading from a radio array in a Cambridge field, astrophysicist Jocelyn Bell Burnell and her team considered the possibility that what they were seeing was an alien message. This would later be shown to be incorrect – it was, in fact, the first discovery of a pulsar. However, the possibility these signals are alien in origin has remained fixed in the public (and scientific) imagination.

This has certainly been the case since the discovery of FRBs. In an article published by New Scientists in April of 2015 – titled “Cosmic Radio Plays An Alien Tune” – writer and astrophysicist Sarah Scoles explores the possibility of whether or not the strange regularity of some FRBs that appeared to be coming from within the Milky Way could be seen as evidence of alien intelligence.

However, the likelihood that these signals are being sent by extra-terrestrials is quite low. For one, FRBs are not an effective way to send a message. As Dr. Maura McLaughlin of West Virginia University – who was part of the first FRB discovery –  has explained, it takes a lot of energy to make a signal that spreads across lots of frequencies (which is a distinguishing feature of FRBs).

Scientists have been exploring the possibility that radio bursts
For decades, scientists have been exploring the possibility that radio bursts are signals from alien civilizations. Credit: AdamBurn/DeviantArt

And if these bursts came from outside of our galaxy, which certainly seems to be the case, they would have to be incredibly energetic to get this far. As Dr. McLaughlin explained to Universe Today via email:

“The total amount of power required to produce just one FRB pulse is as much as the Sun produces in a month! Although we might expect extraterrestrial civilizations to send short-duration signals, sending a signal over the very wide radio bandwidths over which FRBs are detected would require an improbably immense amount of energy. We expect that extraterrestrial civilizations would transmit over a very narrow range of radio frequencies, much like a radio station on Earth. 

But regardless of whether these signals are natural or extra-terrestrial in origin, they do present some rather exciting possibilities for astronomical research and our knowledge of the Universe. Moving forward, Scholz and his team hope to identify the galaxy where the radio bursts originated, and plans to use test out some recently-developed techniques in the process.

“Next we would like to localize the source of the bursts to identify the galaxy that they are coming from,” he said. “This will let us know about the environment around the source. To do this, we need to use radio interferometry to get a precise enough sky location. But, to do this we need to detect a burst while we are looking at the source with such a radio telescope array. Since the source is not always bursting we will have to wait until we get a detection of a burst while we are looking with radio interferometry. So, if we’re patient, eventually we should be able to pinpoint the galaxy that the bursts are coming from.”

In the end, we may find that rapid burst radio waves are a more common occurrence than we thought. In all likelihood, they are being regularly emitted by rare and powerful stellar objects, ones which we’ve only begun to notice. As for the other possibility? Well, we’re not saying it’s aliens, but we’re quite sure others will be!

Credit: History.com/memegenerator.com
Credit: History.com/memegenerator.com

Further Reading: McGill University