J-E-T-S, Jets, Jets, Jets!

Bipolar jet from a young stellar object (YSO). Credit: Gemini Observatory, artwork by Lynette Cook

[/caption]

It seems oddly appropriate to be writing about astrophysical jets on Thanksgiving Day, when the New York football Jets will be featured on television. In the most recent issue of Science, Carlos Carrasco-Gonzalez and collaborators write about how their observations of radio emissions from young stellar objects (YSOs) shed light one of the unsolved problems in astrophysics; what are the mechanisms that form the streams of plasma known as polar jets? Although we are still early in the game, Carrasco-Gonzalez et al have moved us closer to the goal line with their discovery.

Astronomers see polar jets in many places in the Universe. The largest polar jets are those seen in active galaxies such as quasars. They are also found in gamma-ray bursters, cataclysmic variable stars, X-ray binaries and protostars in the process of becoming main sequence stars. All these objects have several features in common: a central gravitational source, such as a black hole or white dwarf, an accretion disk, diffuse matter orbiting around the central mass, and a strong magnetic field.

Relativistic jet from an AGN. Credit: Pearson Education, Inc., Upper Saddle River, New Jersey

When matter is emitted at speeds approaching the speed of light, these jets are called relativistic jets. These are normally the jets produced by supermassive black holes in active galaxies. These jets emit energy in the form of radio waves produced by electrons as they spiral around magnetic fields, a process called synchrotron emission. Extremely distant active galactic nuclei (AGN) have been mapped out in great detail using radio interferometers like the Very Large Array in New Mexico. These emissions can be used to estimate the direction and intensity of AGNs magnetic fields, but other basic information, such as the velocity and amount of mass loss, are not well known.

On the other hand, astronomers know a great deal about the polar jets emitted by young stars through the emission lines in their spectra. The density, temperature and radial velocity of nearby stellar jets can be measured very well. The only thing missing from the recipe is the strength of the magnetic field. Ironically, this is the one thing that we can measure well in distant AGN. It seemed unlikely that stellar jets would produce synchrotron emissions since the temperatures in these jets are usually only a few thousand degrees. The exciting news from Carrasco-Gonzalez et al is that jets from young stars do emit synchrotron radiation, which allowed them to measure the strength and direction of the magnetic field in the massive Herbig-Haro object, HH 80-81, a protostar 10 times as massive and 17,000 times more luminous than our Sun.

Finally obtaining data related to the intensity and orientation of the magnetic field lines in YSO’s and their similarity to the characteristics of AGN suggests we may be that much closer to understanding the common origin of all astrophysical jets. Yet another thing to be thankful for on this day.

Astronomy Without A Telescope – Blazar Jets

A 5000 light year long jet observable in optical light from the giant elliptical galaxy M87 - which is not technically a blazar, but only because it's jet isn't more closely aligned with Earth. Credit: ESA/Hubble.

[/caption]

Polar jets are often found around objects with spinning accretion disks – anything from newly forming stars to ageing neutron stars. And some of the most powerful polar jets arise from accretion disks around black holes, be they of stellar or supermassive size. In the latter case, jets emerging from active galaxies such as quasars, with their jets roughly orientated towards Earth, are called blazars.

The physics underlying the production of polar jets at any scale is not completely understood. It is likely that twisting magnetic lines of force, generated within a spinning accretion disk, channel plasma from the compressed centre of the accretion disk into the narrow jets we observe. But exactly what energy transfer process gives the jet material the escape velocity required to be thrown clear is still subject to debate.

In the extreme cases of black hole accretion disks, jet material acquires escape velocities close to the speed of light – which is needed if the material is to escape from the vicinity of a black hole. Polar jets thrown out at such speeds are usually called relativistic jets.

Relativistic jets from blazars broadcast energetically across the electromagnetic spectrum – where ground based radio telescopes can pick up their low frequency radiation, while space-based telescopes, like Fermi or Chandra, can pick up high frequency radiation. As you can see from the lead image of this story, Hubble can pick up optical light from one of M87‘s jets – although ground-based optical observations of a ‘curious straight ray’ from M87 were recorded as early as 1918.

Polar jets are thought to be shaped (collimated) by twisting magnetic lines of force. The driving force that pushes the jets out may be magnetic and/or intense radiation pressure, but no-one is really sure at this stage. Credit: NASA.

A recent review of high resolution data obtained from Very Long Baseline Interferometry (VLBI) – involving integrating data inputs from geographically distant radio telescope dishes into a giant virtual telescope array – is providing a bit more insight (although only a bit) into the structure and dynamics of jets from active galaxies.

The radiation from such jets is largely non-thermal (i.e. not a direct result of the temperature of the jet material). Radio emission probably results from synchrotron effects – where electrons spun rapidly within a magnetic field emit radiation across the whole electromagnetic spectrum, but generally with a peak in radio wavelengths. The inverse Compton effect, where a photon collision with a rapidly moving particle imparts more energy and hence a higher frequency to that photon, may also contribute to the higher frequency radiation.

Anyhow, VLBI observations suggest that blazar jets form within a distance of between 10 or 100 times the radius of the supermassive black hole – and whatever forces work to accelerate them to relativistic velocities may only operate over the distance of 1000 times that radius. The jets may then beam out over light year distances, as a result of that initial momentum push.

Shock fronts can be found near the base of the jets, which may represent points at which magnetically driven flow (Poynting flux) fades to kinetic mass flow – although magnetohydrodynamic forces continue operating to keep the jet collimated (i.e. contained within a narrow beam) over light year distances.

Left: A Xray/radio/optical composite photo of Centaurus A - also not technically a blazar because its jets don't align with the Earth. Credit: X-ray: NASA/CXC/CfA/R.Kraft et al.; Submillimeter: MPIfR/ESO/APEX/A.Weiss et al.; Optical: ESO/WFI. Right: A composite image showing the radio glow from Centaurus A compared with that of the full Moon. The foreground antennas are CSIRO's Australia Telescope Compact Array, which gathered the data for this image.

That was about as much as I managed to glean from this interesting, though at times jargon-dense, paper.

Further reading: Lobanov, A. Physical properties of blazar jets from VLBI observations.