New Horizons Team Pieces Together the Best Images They Have of Pluto’s Far Side

New Horizon's July 2015 flyby of Pluto captured this iconic image of the heart-shaped region called Tombaugh Regio. Credit: NASA/JHUAPL/SwRI.

Pluto was discovered in 1930 by astronomer Clyde Tombaugh. For decades, not much detail was known about the erstwhile planet. We assumed it was a frozen, dormant world.

Continue reading “New Horizons Team Pieces Together the Best Images They Have of Pluto’s Far Side”

Peering for Pluto: Our Guide to Opposition 2016

An enviable view, of the most distant eclipse seen yet, as New Horizons flies through the shadow of Pluto. Image credit: NASA/JPL.

What an age we live in. This summer marks the very first opposition of Pluto since New Horizons’ historic flyby of the distant world in July 2015. If you were like us, you sat transfixed during the crucial flyby phase, the climax of a decade long mission. We now live in an era where Pluto and its massive moon Charon are a known worlds, something that even Pluto discoverer Clyde Tombaugh never got to see.

Pluto in 2016

And this summer, with a little skill and patience and a good-sized telescope, you can see Pluto for yourself. Opposition 2016 sees the remote world looping through the star-rich fields of eastern Sagittarius. Hovering around declination 21 degrees south, +14.1 magnitude Pluto is higher in the June skies for observers in the southern hemisphere than the northern, but don’t let that stop you from trying. Opposition occurs on July 7th, when Pluto rises opposite from the setting Sun and rides across the meridian at 29 degrees above the southern horizon for observers based along 40 degrees north latitude at local midnight.

The general realm of Pluto in 2016. Image credit: Starry Night Education Software.
The general realm of Pluto in 2016. Image credit: Starry Night Education Software.

Pluto actually crossed the plane of the galactic equator in 2009, and won’t cross the celestial equator northward until 2109. Fun fact: astronomer Clyde Tombaugh discovered Pluto as it drifted through the constellation Gemini in 1930. Here we are 86 years later, and Pluto has only moved six zodiacal constellations along the ecliptic eastward in its 248 year orbit around the Sun.

A close up look at the path of Pluto for the remainder of 2016.
A close up look at the path of Pluto for the remainder of 2016. Note the position of New Horizons and KBO 2014 MU69 at the end of the year thrown in as well. Image credit: Starry Night Pro 7.

And Pluto is getting tougher to catch in a backyard scope, as well. The reason: Pluto passed perihelion or its closest point to the Sun in 1989 inside the orbit of Neptune, and it’s now headed out to aphelion about a century from now in 2114. Pluto is in a fairly eccentric orbit, ranging from 29.7 astronomical units (AU) to 49.4 AU from the Sun. This also means that Pluto near opposition can range from a favorable magnitude +13.7 near perihelion, to three magnitudes (16 times) fainter near aphelion hovering around magnitude +16.3. Clyde was lucky, in a way. Had Pluto been near aphelion in the 20th century rather than headed towards perihelion, it might have waited much longer for discovery.

2016 sees Pluto shining at +14.1, one magnitude (2.5 times) above the usual quoted mean. See Mars over in the constellation Libra shining at magnitude -1.5? It’s 100^3 (a 5-fold change in magnitude is equal to a factor of 100 in brightness), or over a million times brighter than Pluto.

The inner and outermost planet(?) Mercury meets Pluto earlier this year in January. Image credit and copyright: Shahrin Ahmad (@Shahgazer).
The inner and outermost planet(?) Mercury meets Pluto earlier this year in January. Image credit and copyright: Shahrin Ahmad (@Shahgazer).

You often see Pluto quoted as visible in a telescope aperture of ‘six inches or larger,’ but for the coming decade, we feel this should be amended to 8 inches and up. We once nabbed Pluto during public viewing using the 14” reflector at the Flandrau observatory.

And how about Pluto’s large moon, Charon? Shining at an even fainter +16th magnitude, Charon never strays more than 0.9” from Pluto… still, diligent amateurs have indeed caught the elusive moon… as did Wendy Clark just last year.

Pluto: imaged last year during New Horizons' historic encounter. Image credit and copyright: Wendy Clark
Pluto: imaged last year during New Horizons’ historic encounter. Image credit and copyright: Wendy Clark.

Lacking a telescope? Hey, so are we, as we trek through Morocco this summer… never fear, you can still wave in the general direction of Pluto and New Horizons on the evening of June 21st, one day after the northward solstice and the Full Moon, which passes three degrees north of Pluto.

The location of Pluto in relation to the rising Full Moon on the night of June 21st. Image credit: Stellarium.
The location of Pluto in relation to the rising Full Moon on the night of June 21st. Image credit: Stellarium.

And follow that spacecraft, as New Horizons is set to make a close pass by Kuiper Belt Object 2014 MU69 in January 2019 on New Year’s Day.

A key date to make your quest for Pluto is June 26th, when Pluto sits just 3′ minutes to the south of the +2.9 magnitude star Pi Sagittarii (Albaldah), making a great guidepost.

Does the region of Sagittarius near Pi Sagittarii sound familiar? That’s because the Wow! Signal emanated from a nearby region of the sky on August 15th, 1977. Pluto will cross the border into the constellation Capricornus in 2024.

After opposition, Pluto heads into the evening sky, towards solar conjunction on January 7th, 2017.

Observing Pluto requires patience, dark skies, and a good star chart plotted down to about +15th magnitude. One key problem: many star charts don’t go down this faint. We use Starry Night Pro 7, which includes online access to the USNO catalog and a database of 500 million stars down to magnitude +21, more than enough for most backyard scopes.

Don’t miss a chance to see Pluto for yourself this summer!

How to See Pluto at Opposition as New Horizons Crosses the One Year Out Mark

Pluto passing near the star cluster M25 in late 2013. Credit: Dave Walker.

Are you ready for 2015? On July 14th, 2015 — just a little over a year from now — NASA’s New Horizons spacecraft with perform its historic flyby of Pluto and its retinue of moons. Flying just 10,000 kilometres from the surface of Pluto — just 2.5% the distance from Earth to the Moon on closest approach — New Horizons is expected to revolutionize our understanding of these distant worlds.

And whether you see Pluto as a much maligned planetary member of the solar system, an archetypal Plutoid, or the “King of the Kuiper Belt,” you can spy this denizen of the outer solar system using a decent sized backyard telescope and a little patience.

New Horizon in the clean room having its plutonium-fueled MMRTG installed. (Credit: NASA).
New Horizons in the clean room having its plutonium-fueled MMRTG installed. (Credit: NASA).

Pluto reaches opposition for 2014 later this week on Friday, July 4th at 3:00 Universal Time (UT), or 11:00 PM EDT on July 3rd. This means that Pluto will rise to the east as the Sun sits opposite to it in the west at sunset and transits the local meridian high to the south at local midnight. This is typically the point of closest approach to Earth for any outer solar system object and the time it is brightest.

Dusk July 4th Credit
The location of Pluto at dusk on July 4th, the night of opposition. Credit: Stellarium.

But even under the best of circumstances, finding Pluto isn’t easy. Pluto never shows a resolvable disk in even the largest backyard telescope, and instead, always appears like a tiny star-like point. When opposition occurs near perihelion — as it last did in 1989 — Pluto can reach a maximum “brilliancy” of magnitude +13.6. However, Pluto has an extremely elliptical orbit ranging from 30 to 49 Astronomical Units (A.U.s) from the Sun. In 2014, Pluto has dropped below +14th magnitude at opposition as it heads back out towards aphelion one century from now in 2114.

Pluto from July-Dec
The path of Pluto from July to December 2014. Created using Starry Night Education Software.

Another factor that makes finding Pluto challenging this decade is the fact that it’s crossing through the star-rich plane of the galaxy in the direction of the constellation Sagittarius until 2023. A good finder chart and accurate pointing is essential to identifying Pluto as it moves 1’ 30” a day against the starry background from one night to the next.

In fact, scouring this star-cluttered field is just one of the challenges faced by the New Horizons team as they hunt for a potential target for the spacecraft post-Pluto encounter. But this has also meant that Pluto has crossed some pretty photogenic regions of the sky, traversing dark Bok globules and skirting near star clusters.

Pluto (marked) imaged by Jim Hendrickson on the morning of June 29th.
Pluto (marked) imaged by Jim Hendrickson @SkyscraperJim on the morning of June 28th.

You can use this fact to your advantage, as nearby bright stars make great “guideposts” to aid in your Pluto-quest. Pluto passes less than 30” from the +7th magnitude pair BB Sagittarii on July 7th and 8th and less than 3’ from the +5.2 magnitude star 25 Sagittarii on July 21st… this could also make for an interesting animation sequence.

Though Pluto has been reliably spotted in telescopes as small as 6” in diameter, you’ll most likely need a scope 10” or larger to spot it. We’ve managed to catch Pluto from the Flandrau observatory situated in downtown Tucson using its venerable 14” reflector.

June 28th-August 8th (inverted)
The path of Pluto June 28th-August 8th. (click here for an inverted white background view). Created using Starry Night Education Software.

Pluto was discovered by Clyde Tombaugh from the Lowell Observatory in 1930 while it was crossing the constellation Gemini. It’s sobering to think that it has only worked its way over to Sagittarius in the intervening 84 years. It was also relatively high in the northern hemisphere sky and headed towards perihelion decades later during discovery. 2014 finds Pluto at a southern declination of around -20 degrees, favoring the southern hemisphere. Had circumstances been reversed, or Pluto had been near aphelion, it could have easily escaped detection in the 20th century.

We’re also fortunate that Pluto is currently relatively close to the ecliptic plane, crossing it on October 24th, 2018. Its orbit is inclined 17 degrees relative to the ecliptic and had it been high above or below the plane of the solar system, sending a spacecraft to it in 2015 might have been out of the question due to fuel constraints.

The current location of New Horizons. (Credit: NASA/JPL).
The current location of New Horizons. (Credit: NASA/JPL).

And speaking of spacecraft, New Horizons now sits less than one degree from Pluto as seen from our Earthly vantage point. And although you won’t be able to spy this Earthly ambassador with a telescope, you can wave in its general direction on July 11th and 12th, using the nearby waxing gibbous Moon as a guide:

The Moon, Pluto and New Horizons as seen on July 11th. (Created Using Starry Night Education Software).
The Moon, Pluto and New Horizons as seen on July 11th. (Created Using Starry Night Education Software).

All eyes will be on Pluto and New Horizons in the coming year, as it heads towards a date with destiny… and we’ll bet that the “is Pluto a planet?” debate will rear its head once more as we get a good look at these far-flung worlds.

And hey, if nothing else, us science writers will at last have some decent pics of Pluto to illustrate articles with, as opposed to the same half-dozen blurry images and artist’s renditions…