Communicating With a Relativistic Spacecraft Gets Pretty Weird

Artistic rendition of an interstellar spacecraft traveling near the speed of light. Credit: Made with ChatGPT

Someday, in the not-too-distant future, humans may send robotic probes to explore nearby star systems. These robot explorers will likely take the form of lightsails and wafercraft (a la Breakthrough Starshot) that will rely on directed energy (lasers) to accelerate to relativistic speeds – aka. a fraction of the speed of light. With that kind of velocity, lightsails and wafercraft could make the journey across interstellar space in a matter of decades instead of centuries (or longer!) Given time, these missions could serve as pathfinders for more ambitious exploration programs involving astronauts.

Of course, any talk of interstellar travel must consider the massive technical challenges this entails. In a recent paper, a team of engineers and astrophysicists considered the effects that relativistic space travel will have on communications. Their results showed that during the cruise phase of the mission (where a spacecraft is traveling close to the speed of light), communications become problematic for one-way and two-way transmissions. This will pose significant challenges for crewed missions but will leave robotic missions largely unaffected.

Continue reading “Communicating With a Relativistic Spacecraft Gets Pretty Weird”

Are We Entering the Era of Quantum Telescopes?

Beyond James Webb and LUVOIR, the future of astronomy could come down to telescopes that rely on quantum mechanics. Credit: Anton Pozdnyakov

For astronomers, one of the greatest challenges is capturing images of objects and phenomena that are difficult to see using optical (or visible light) telescopes. This problem has been largely addressed by interferometry, a technique where multiple telescopes gather signals, which is then combined to create a more complete picture. Examples include the Event Horizon Telescope, which relies on observatories from around the world to capture the first images of the supermassive black hole (SMBH) at the center of the M87 galaxy, and of Sagittarius A* at the center of the Milky Way.

That being said, classic interferometry requires that optical links be maintained between observatories, which imposes limitations and can lead to drastically increased costs. In a recent study, a team of astrophysicists and theoretical physicists proposed how these limitations could be overcome by relying on quantum mechanics. Rather than relying on optical links, they propose how the principle of quantum entanglements could be used to share photons between observatories. This technique is part of a growing field of research that could lead to “quantum telescopes” someday.

Continue reading “Are We Entering the Era of Quantum Telescopes?”

Massive Photons Could Explain Dark Matter, But Don’t

A computer simulation of the distribution of matter in the universe. Orange regions host galaxies; blue structures are gas and dark matter. Credit: TNG Collaboration

I’ll be the first to admit that we don’t understand dark matter. We do know for sure that something funny is going on at large scales in the universe (“large” here meaning at least as big as galaxies). In short, the numbers just aren’t adding up. For example, when we look at a galaxy and count up all the hot glowing bits like stars and gas and dust, we get a certain mass. When we use any other technique at all to measure the mass, we get a much higher number. So the natural conclusion is that not all the matter in the universe is all hot and glowy. Maybe some if it is, you know, dark.

But hold on. First we should check our math. Are we sure we’re not just getting some physics wrong?

Continue reading “Massive Photons Could Explain Dark Matter, But Don’t”

Could Space Travelers Melt As They Accelerate Through Deep Space?

Artist Mark Rademaker's concept for the IXS Enterprise, a theoretical interstellar spacecraft. Credit: Mark Rademaker/flickr.com

Forty years ago, Canadian physicist Bill Unruh made a surprising prediction regarding quantum field theory. Known as the Unruh effect, his theory predicted that an accelerating observer would be bathed in blackbody radiation, whereas an inertial observer would be exposed to none. What better way to mark the 40th anniversary of this theory than to consider how it could affect human beings attempting relativistic space travel?

Such was the intent behind a new study by a team of researchers from Sao Paulo, Brazil. In essence, they consider how the Unruh effect could be confirmed using a simple experiment that relies on existing technology. Not only would this experiment prove once and for all if the Unruh effect is real, it could also help us plan for the day when interstellar travel becomes a reality.

To put it in layman’s terms, Einstein’s Theory of Relativity states that time and space are dependent upon the inertial reference frame of the observer. Consistent with this is the theory that if an observer is traveling at a constant speed through empty vacuum, they will find that the temperature of said vacuum is absolute zero. But if they were to begin to accelerate, the temperature of the empty space would become hotter.

According to the theory of the Unruh effect, accelerating particles are subject to increased radiation. Credit: NASA/Sonoma State University/Aurore Simonnet

This is what William Unruh – a theorist from the University of British Columbia (UBC), Vancouver – asserted in 1976. According to his theory, an observer accelerating through space would be subject to a “thermal bath” – i.e. photons and other particles – which would intensify the more they accelerated. Unfortunately, no one has ever been able to measure this effect, since no spacecraft exists that can achieve the kind of speeds necessary.

For the sake of their study – which was recently published in the journal Physical Review Letters under the title “Virtual observation of the Unruh effect” – the research team proposed a simple experiment to test for the Unruh effect. Led by Gabriel Cozzella of the Institute of Theoretical Physics (IFT) at Sao Paulo State University, they claim that this experiment would settle the issue by measuring an already-understood electromagnetic phenomenon.

Essentially, they argue that it would be possible to detect the Unruh effect by measuring what is known as Larmor radiation. This refers to the electromagnetic energy that is radiated away from charged particles (such as electrons, protons or ions) when they accelerate. As they state in their study:

“A more promising strategy consists of seeking for fingerprints of the Unruh effect in the radiation emitted by accelerated charges. Accelerated charges should back react due to radiation emission, quivering accordingly. Such a quivering would be naturally interpreted by Rindler observers as a consequence of the charge interaction with the photons of the Unruh thermal bath.”

Diagram of the experiment to test the Unruh effect, where electrons are injected into a magnetic field and subjected to lateral and vertical pulls. Credit: Cozzella, Gabriel (et al.)

As they describe in their paper, this would consist of monitoring the light emitted by electrons within two separate reference frames. In the first, known as the “accelerating frame”, electrons are fired laterally across a magnetic field, which would cause the electrons to move in a circular pattern. In the second, the “laboratory frame”, a vertical field is applied to accelerate the electrons upwards, causing them to follow a corkscrew-like path.

In the accelerating frame, Cozzella and his colleagues assume that the electrons would encounter the “fog of photons”, where they both radiate and emit them. In the laboratory frame, the electrons would heat up once vertical acceleration was applied, causing them to show an excess of long-wavelength photons. However, this would be dependent on the “fog” existing in the accelerated frame to begin with.

In short, this experiment offers a simple test which could determine whether or not the Unruh effect exists, which is something that has been in dispute ever since it was proposed. One of the beauties of the proposed experiment is that it could be conducted using particle accelerators and electromagnets that are currently available.

On the other side of the debate are those who claim that the Unruh effect is due to a mathematical error made by Unruh and his colleagues. For those individuals, this experiment is useful because it would effectively debunk this theory. Regardless, Cozzella and his team are confident their proposed experiment will yield positive results.

Project Starshot, an initiative sponsored by the Breakthrough Foundation, is intended to be humanity’s first interstellar voyage. Credit: breakthroughinitiatives.org

“We have proposed a simple experiment where the presence of the Unruh thermal bath is codified in the Larmor radiation emitted from an accelerated charge,” they state. “Then, we carried out a straightforward classical-electrodynamics calculation (checked by a quantum-field-theory one) to confirm it by ourselves. Unless one challenges classical electrodynamics, our results must be virtually considered as an observation of the Unruh effect.”

If the experiments should prove successful, and the Unruh effect is proven to exist, it would certainly have consequences for any future deep-space missions that rely on advanced propulsion systems. Between Project Starshot, and any proposed mission that would involve sending a crew to another star system, the added effects of a “fog of photons” and a “thermal bath” will need to be factored in.

Further Reading: arXiv, ScienceMag

When Was the First Light in the Universe?

When Was the First Light in the Universe?
When Was the First Light in the Universe?


The speed of light gives us an amazing tool for studying the Universe. Because light only travels a mere 300,000 kilometers per second, when we see distant objects, we’re looking back in time.

You’re not seeing the Sun as it is today, you’re seeing an 8 minute old Sun. You’re seeing 642 year-old Betelgeuse. 2.5 million year-old Andromeda. In fact, you can keep doing this, looking further out, and deeper into time. Since the Universe is expanding today, it was closer in the past.

Run the Universe clock backwards, right to the beginning, and you get to a place that was hotter and denser than it is today.  So dense that the entire Universe shortly after the Big Bang was just a soup of protons, neutrons and electrons, with nothing holding them together.

Illustration of the Big Bang Theory
The Big Bang Theory: A history of the Universe starting from a singularity and expanding ever since. Credit: grandunificationtheory.com

In fact, once it expanded and cooled down a bit, the entire Universe was merely as hot and as dense as the core of a star like our Sun. It was cool enough for ionized atoms of hydrogen to form.

Because the Universe has the conditions of the core of a star, it had the temperature and pressure to actually fuse hydrogen into helium and other heavier elements. Based on the ratio of those elements we see in the Universe today: 74% hydrogen, 25% helium and 1% miscellaneous, we know how long the Universe was in this “whole Universe is a star” condition.

It lasted about 17 minutes. From 3 minutes after the Big Bang until about 20 minutes after the Big Bang.  In those few, short moments, clowns gathered all the helium they would ever need to haunt us with a lifetime of balloon animals.

The fusion process generates photons of gamma radiation. In the core of our Sun, these photons bounce from atom to atom, eventually making their way out of the core, through the Sun’s radiative zone, and eventually out into space. This process can take tens of thousands of years. But in the early Universe, there was nowhere for these primordial photons of gamma radiation to go. Everywhere was more hot, dense Universe.

The Universe was continuing to expand, and finally, just a few hundred thousand years after the Big Bang, the Universe was finally cool enough for these atoms of hydrogen and helium to attract free electrons, turning them into neutral atoms.

Artist's impression of how huge cosmic structures deflect photons in the cosmic microwave background (CMB). Credit: ESA and the Planck Collaboration
Artist’s impression of how huge cosmic structures deflect photons in the cosmic microwave background (CMB). Credit: ESA and the Planck Collaboration

This was the moment of first light in the Universe, between 240,000 and 300,000 years after the Big Bang, known as the Era of Recombination. The first time that photons could rest for a second, attached as electrons to atoms. It was at this point that the Universe went from being totally opaque, to transparent.

And this is the earliest possible light that astronomers can see. Go ahead, say it with me: the Cosmic Microwave Background Radiation. Because the Universe has been expanding over the 13.8 billion years from then until now, the those earliest photons were stretched out, or red-shifted, from ultraviolet and visible light into the microwave end of the spectrum.

If you could see the Universe with microwave eyes, you’d see that first blast of radiation in all directions. The Universe celebrating its existence.

After that first blast of light, everything was dark, there were no stars or galaxies, just enormous amounts of these primordial elements. At the beginning of these dark ages, the temperature of the entire Universe was about 4000 kelvin. Compare that with the 2.7 kelvin we see today. By the end of the dark ages, 150 million years later, the temperature was a more reasonable 60 kelvin.

Artist's concept of the first stars in the Universe turning on some 200 million years after the Big Bang. These first suns were made of almost pure hydrogen and helium. They and later generations of stars cooked up the heavier elements from these simple ones. Credit: NASA/WMAP Science Team
Artist’s concept of the first stars in the Universe turning on some 200 million years after the Big Bang. These first suns were made of almost pure hydrogen and helium. They and later generations of stars cooked up the heavier elements from these simple ones. Credit: NASA/WMAP Science Team

For the next 850 million years or so, these elements came together into monster stars of pure hydrogen and helium. Without heavier elements, they were free to form stars with dozens or even hundreds of times the mass of our own Sun. These are the Population III stars, or the first stars, and we don’t have telescopes powerful enough to see them yet. Astronomers indirectly estimate that those first stars formed about 560 million years after the Big Bang.

Then, those first stars exploded as supernovae, more massive stars formed and they detonated as well. It’s seriously difficult to imagine what that time must have looked like, with stars going off like fireworks. But we know it was so common and so violent that it lit up the whole Universe in an era called reionization. Most of the Universe was hot plasma.

Scientists have used ESO’s Very Large Telescope to probe the early Universe at several different times as it was becoming transparent to ultraviolet light. This brief but dramatic phase in cosmic history — known as reionisation — occurred around 13 billion years ago. By carefully studying some of the most distant galaxies ever detected, the team has been able to establish a timeline for reionisation for the first time. They have also demonstrated that this phase must have happened quicker than astronomers previously thought.
Scientists have used ESO’s Very Large Telescope to probe the early Universe at several different times as it was becoming transparent to ultraviolet light. This brief but dramatic phase in cosmic history — known as reionisation — occurred around 13 billion years ago.

The early Universe was hot and awful, and there weren’t a lot of the heavier elements that life as we know it depends on. Just think about it. You can’t get oxygen without fusion in a star, even multiple generations. Our own Solar System is the result of several generations of supernovae that exploded, seeding our region with heavier and heavier elements.

As I mentioned earlier in the article, the Universe cooled from 4000 kelvin down to 60 kelvin. About 10 million years after the Big Bang, the temperature of the Universe was 100 C, the boiling point of water. And then 7 million years later, it was down to 0 C, the freezing point of water.

This has led astronomers to theorize that for about 7 million years, liquid water was present across the Universe… everywhere. And wherever we find liquid water on Earth, we find life.

An artists illustration of the early Universe. Image Credit: NASA
An artists illustration of the early Universe. Image Credit: NASA

So it’s possible, possible that primitive life could have formed with the Universe was just 10 million years old. The physicist Avi Loeb calls this the habitable Epoch of the Universe. No evidence, but it’s a pretty cool idea to think about.

I always find it absolutely mind bending to think that all around us in every direction is the first light from the Universe. It’s taken 13.8 billion years to reach us, and although we need microwave eyes to actually see it, it’s there, everywhere.

What is the Speed of Light?

Artist's impression of a spaceship making the jump to "light speed". Credit: NASA/Glenn Research Center

Since ancient times, philosophers and scholars have sought to understand light. In addition to trying to discern its basic properties (i.e. what is it made of – particle or wave, etc.) they have also sought to make finite measurements of how fast it travels. Since the late-17th century, scientists have been doing just that, and with increasing accuracy.

In so doing, they have gained a better understanding of light’s mechanics and the important role it plays in physics, astronomy and cosmology. Put simply, light moves at incredible speeds and is the fastest moving thing in the Universe. Its speed is considered a constant and an unbreakable barrier, and is used as a means of measuring distance. But just how fast does it travel?

Speed of Light (c):

Light travels at a constant speed of 1,079,252,848.8 (1.07 billion) km per hour. That works out to 299,792,458 m/s, or about 670,616,629 mph (miles per hour). To put that in perspective, if you could travel at the speed of light, you would be able to circumnavigate the globe approximately seven and a half times in one second. Meanwhile, a person flying at an average speed of about 800 km/h (500 mph), would take over 50 hours to circle the planet just once.

Illustration showing the distance between Earth and the Sun. Credit: LucasVB/Public Domain
Illustration showing the distance light travels between the Earth and the Sun. Credit: LucasVB/Public Domain

To put that into an astronomical perspective, the average distance from the Earth to the Moon is 384,398.25 km (238,854 miles ). So light crosses that distance in about a second. Meanwhile, the average distance from the Sun to the Earth is ~149,597,886 km (92,955,817 miles), which means that light only takes about 8 minutes to make that journey.

Little wonder then why the speed of light is the metric used to determine astronomical distances. When we say a star like Proxima Centauri is 4.25 light years away, we are saying that it would take – traveling at a constant speed of 1.07 billion km per hour (670,616,629 mph) – about 4 years and 3 months to get there. But just how did we arrive at this highly specific measurement for “light-speed”?

History of Study:

Until the 17th century, scholars were unsure whether light traveled at a finite speed or instantaneously. From the days of the ancient Greeks to medieval Islamic scholars and scientists of the early modern period, the debate went back and forth. It was not until the work of Danish astronomer Øle Rømer (1644-1710) that the first quantitative measurement was made.

In 1676, Rømer observed that the periods of Jupiter’s innermost moon Io appeared to be shorter when the Earth was approaching Jupiter than when it was receding from it. From this, he concluded that light travels at a finite speed, and estimated that it takes about 22 minutes to cross the diameter of Earth’s orbit.

Prof. Albert Einstein uses the blackboard as he delivers the 11th Josiah Willard Gibbs lecture at the meeting of the American Association for the Advancement of Science in the auditorium of the Carnegie Institue of Technology Little Theater at Pittsburgh, Pa., on Dec. 28, 1934. Using three symbols, for matter, energy and the speed of light respectively, Einstein offers additional proof of a theorem propounded by him in 1905 that matter and energy are the same thing in different forms. (AP Photo)
Prof. Albert Einstein delivering the 11th Josiah Willard Gibbs lecture at the Carnegie Institute of Technology on Dec. 28th, 1934, where he expounded on his theory of how matter and energy are the same thing in different forms. Credit: AP Photo

Christiaan Huygens used this estimate and combined it with an estimate of the diameter of the Earth’s orbit to obtain an estimate of 220,000 km/s. Isaac Newton also spoke about Rømer’s calculations in his seminal work Opticks (1706). Adjusting for the distance between the Earth and the Sun, he calculated that it would take light seven or eight minutes to travel from one to the other. In both cases, they were off by a relatively small margin.

Later measurements made by French physicists Hippolyte Fizeau (1819 – 1896) and Léon Foucault (1819 – 1868) refined these measurements further – resulting in a value of 315,000 km/s (192,625 mi/s). And by the latter half of the 19th century, scientists became aware of the connection between light and electromagnetism.

This was accomplished by physicists measuring electromagnetic and electrostatic charges, who then found that the numerical value was very close to the speed of light (as measured by Fizeau). Based on his own work, which showed that electromagnetic waves propagate in empty space, German physicist Wilhelm Eduard Weber proposed that light was an electromagnetic wave.

The next great breakthrough came during the early 20th century/ In his 1905 paper, titled “On the Electrodynamics of Moving Bodies”, Albert Einstein asserted that the speed of light in a vacuum, measured by a non-accelerating observer, is the same in all inertial reference frames and independent of the motion of the source or observer.

A laser shining through a glass of water demonstrates how many changes in speed it undergoes - from 186,222 mph in air to 124,275 mph through the glass. It speeds up again to 140,430 mph in water, slows again through glass and then speeds up again when leaving the glass and continuing through the air. Credit: Bob King
A laser shining through a glass of water demonstrates how many changes in speed (in mph) it undergoes as it passes from air, to glass, to water, and back again. Credit: Bob King

Using this and Galileo’s principle of relativity as a basis, Einstein derived the Theory of Special Relativity, in which the speed of light in vacuum (c) was a fundamental constant. Prior to this, the working consensus among scientists held that space was filled with a “luminiferous aether” that was responsible for its propagation – i.e. that light traveling through a moving medium would be dragged along by the medium.

This in turn meant that the measured speed of the light would be a simple sum of its speed through the medium plus the speed of that medium. However, Einstein’s theory effectively  made the concept of the stationary aether useless and revolutionized the concepts of space and time.

Not only did it advance the idea that the speed of light is the same in all inertial reference frames, it also introduced the idea that major changes occur when things move close the speed of light. These include the time-space frame of a moving body appearing to slow down and contract in the direction of motion when measured in the frame of the observer (i.e. time dilation, where time slows as the speed of light approaches).

His observations also reconciled Maxwell’s equations for electricity and magnetism with the laws of mechanics, simplified the mathematical calculations by doing away with extraneous explanations used by other scientists, and accorded with the directly observed speed of light.

During the second half of the 20th century, increasingly accurate measurements using laser inferometers and cavity resonance techniques would further refine estimates of the speed of light. By 1972, a group at the US National Bureau of Standards in Boulder, Colorado, used the laser inferometer technique to get the currently-recognized value of 299,792,458 m/s.

Role in Modern Astrophysics:

Einstein’s theory that the speed of light in vacuum is independent of the motion of the source and the inertial reference frame of the observer has since been consistently confirmed by many experiments. It also sets an upper limit on the speeds at which all massless particles and waves (which includes light) can travel in a vacuum.

One of the outgrowths of this is that cosmologists now treat space and time as a single, unified structure known as spacetime – in which the speed of light can be used to define values for both (i.e. “lightyears”, “light minutes”, and “light seconds”). The measurement of the speed of light has also become a major factor when determining the rate of cosmic expansion.

Beginning in the 1920’s with observations of Lemaitre and Hubble, scientists and astronomers became aware that the Universe is expanding from a point of origin. Hubble also observed that the farther away a galaxy is, the faster it appears to be moving. In what is now referred to as the Hubble Parameter, the speed at which the Universe is expanding is calculated to 68 km/s per megaparsec.

This phenomena, which has been theorized to mean that some galaxies could actually be moving faster than the speed of light, may place a limit on what is observable in our Universe. Essentially, galaxies traveling faster than the speed of light would cross a “cosmological event horizon”, where they are no longer visible to us.

Also, by the 1990’s, redshift measurements of distant galaxies showed that the expansion of the Universe has been accelerating for the past few billion years. This has led to theories like “Dark Energy“, where an unseen force is driving the expansion of space itself instead of objects moving through it (thus not placing constraints on the speed of light or violating relativity).

Along with special and general relativity, the modern value of the speed of light in a vacuum has gone on to inform cosmology, quantum physics, and the Standard Model of particle physics. It remains a constant when talking about the upper limit at which massless particles can travel, and remains an unachievable barrier for particles that have mass.

Perhaps, someday, we will find a way to exceed the speed of light. While we have no practical ideas for how this might happen, the smart money seems to be on technologies that will allow us to circumvent the laws of spacetime, either by creating warp bubbles (aka. the Alcubierre Warp Drive), or tunneling through it (aka. wormholes).

Until that time, we will just have to be satisfied with the Universe we can see, and to stick to exploring the part of it that is reachable using conventional methods.

We have written many articles about the speed of light for Universe Today. Here’s How Fast is the Speed of Light?, How are Galaxies Moving Away Faster than Light?, How Can Space Travel Faster than the Speed of Light?, and Breaking the Speed of Light.

Here’s a cool calculator that lets you convert many different units for the speed of light, and here’s a relativity calculator, in case you wanted to travel nearly the speed of light.

Astronomy Cast also has an episode that addresses questions about the speed of light – Questions Show: Relativity, Relativity, and more Relativity.

Sources:

Astronomy Cast Ep. 369: The Fizeau Experiment

Light is tricky stuff, and it took scientists hundreds of years to puzzle out what this stuff is. But they poked and prodded at it with many clever experiments to try to measure its speed, motion and interaction with the rest of the Universe. For example, the Fizeau Experiment, which ran light through moving water to see if that caused a difference.
Continue reading “Astronomy Cast Ep. 369: The Fizeau Experiment”

When Light Just Isn’t Fast Enough

A pile of Skittles candy seen at rest. Credit: PiccoloNamek

Take a speed of light trip across the solar system starting at the Sun

We’ve heard it over and over. There’s nothing faster than the speed of light. Einstein set the speed limit at 186,000 miles per second (299,792 km/sec). No material object can theoretically travel faster. For all practical purposes, only light is lithe enough to travel at the speed of light.

Moving in such haste, a beam of light can zip around the Earth 8 times in just one second. A trip to the moon takes just 1.3 seconds. Fast for sure but unfortunately not fast enough. Hit play on the video and you’ll soon know what I mean. The view begins at the Sun and travels outward into the solar system at the speed of light.

Planet           Distance in AU            Travel time
....................................................................
Mercury              0.387        193.0 seconds   or    3.2 minutes
Venus                0.723        360.0 seconds   or    6.0 minutes
Earth                1.000        499.0 seconds   or    8.3 minutes
Mars                 1.523        759.9 seconds   or   12.6 minutes
Jupiter              5.203       2595.0 seconds   or   43.2 minutes
Saturn               9.538       4759.0 seconds   or   79.3 minutes
Uranus              19.819       9575.0 seconds   or  159.6 minutes
Neptune             30.058      14998.0 seconds   or    4.1 hours
Pluto               39.44       19680.0 seconds   or    5.5 hours
...................................................................

Distances and light times to the planets and Pluto (from Alphonse Swinehart)

You might first think that moving that fast will get us across the orbits of the eight planets in a hurry. I shouldn’t have been surprised, but I found myself already getting impatient by the time Mercury flew by … after 3.2 minutes. Earth was still 5 minutes away and Jupiter another 40! That’s why the video cuts off at Jupiter – no one would stick around for Pluto’s appearance 5 1/2 hours later.

As the video tediously but effectively demonstrates we live in a solar system where a few planets are separated by vast spaces. Not even light is fast enough to satisfy the human need for speed. But just to put things in perspective, the fastest current human-made objects is NASA’s Voyager I spacecraft, which recently reached interstellar space traveling at 38,000 mph (17 km/sec) or nearly 18,000 times slower than light speed.

Let’s explore further. Any material object, a Skittle for instance, moving that fast would become infinitely massive. Why? You’d need an infinite amount of energy to accelerate the Skittle to the exact speed of light. Since matter and energy are two faces of the same coin, all that energy creates an infinitely massive Skittle. Sweet revenge if there ever was.

You can however accelerate the pill-like candy to 99.9999% light speed with a finite if incredibly large amount of energy. Einstein’s cool with that. Here’s the weird thing. If you were travelling along at the speed of light it would look like a perfectly normal piece of candy, but if you were to look at it from the outside world, the sugary treat would be the entire universe. Both viewpoints are equally valid, and that’s the essence of relatively.


Wave-particle duality of light

To better imagine a day in the life of a photon, let’s go along for the ride. Photons are the particle form of light, which for a long time was only understood as waves of electromagnetic energy. In the weirdness of quantum world, light is both a particle and a wave. From our perspective, a photon rip by at 186,000 miles per second, but to the photon itself, the world stands still and time stops. Photons are everywhere at once. Omnipresent. No time passes for them.

In relativity theory, the movement of anything is defined entirely from an observer’s point of view. From the photon’s perspective, it’s at rest. From ours, it’s moving across time and space. We all have our own “coordinate frame”, so that wherever we are, we’re at rest. That’s relativity for you – all frames are equally valid.

Let say you’re in a plane. That sad bag of pretzels you were just handed is at rest because it’s in your coordinate frame. The person next to you is likewise at rest (and hopefully not snoring). Even the plane’s at rest. According to Einstein, it’s just as valid to picture the world outside the airplane window moving while the plane itself remains at rest. Next time you fly, close your eyes once the plane reaches altitude and a constant speed. You’ll hear the noise of engines, but there’s no way to know you’re actually moving.

Diagram showing how an object (sphere) contracts in the direction of motion as its speed increases. At far left, its velocity (V) is 0.3 times the speed of light. Credit: Askamathematician.com
Diagram showing how an object (sphere) contracts in the direction of motion as its speed increases. At far left, its velocity (V) is 0.3 times the speed of light. Credit: Askamathematician.com

Relativity also predicts that objects contract in the direction of their motion. Strange as it sounds, this has been verified by many experiments. The faster things travel, the more they contract.

The effect doesn’t become noticeable until an object approaches light speed, but the Apollo 10 service and crew modules reached a velocity of 0.0037% the speed of light. From the perspective of someone on the ground, the 11.03-meter-long module shrank by approximately 7.5 nanometers, an exceedingly tiny but measurable amount. (A sheet of paper is 100,000 nanometers thick). Likewise, distances contract, bottoming out at zero at light speed.

Length contraction occurs because a stationary observer sees a speedy spaceship traveler’s time tick by more slowly. Since light is measured in time units – light seconds, light years – in order for the two to agree on the speed of light (a constant across the universe) the traveler’s “ruler” has to be shorter. And it really is from your stationary perspective if you could somehow peer inside the ship. Traveling at 10% light speed, a 200-foot spaceship shrinks to 199 feet. At 86.5%, it’s 100 feet or half the size and at 99.99% only 3 feet!

We’ve traveled far today – sitting quietly in our frames of reference.

Why Can’t We See the Big Bang?

Why Can’t We See the Big Bang?

Since telescopes let us look back in time, shouldn’t we be able to see all the way back to the very beginning of time itself? To the moment of the Big Bang?

You’ve probably heard that looking out into space is like looking back in time. As it takes light 1 second to get from the Moon to us. Whenever we view it, we’re seeing it 1 second in the past. The Sun is 8 light minutes away, and the light we see from it is from 8 minutes into the past.

A better example might be Andromeda, it’s 2.5 million light years away… and you guessed it, we’re seeing it 2.5 million years in the past. Since the Big Bang happened 13.7 billion years ago, using this idea, shouldn’t we be able look all the way back to the beginning of time, even if we’ve misplaced the key to our Tardis?

At the very beginning of the Universe, seconds after the Big Bang, everything was mushed together. Energy and matter were the same thing. Dogs and cats lived together. There was no difference between light and radiation, it was all just one united force.

You couldn’t see it, because light didn’t actually exist. There were no such thing as photons.

However, if you’re still insisting there’s no such thing as photons, you might want to check yourself. After these things started to separate. Photons and particles became actual things. Electromagnetism and the weak nuclear force split off and formed new bands, but could never quite get the momentum of the original lineup.

By the end of the first second, neutrons and protons were around, and they were getting mashed by the intense heat and pressure into the first elements. But you still couldn’t see that because the whole Universe was like the inside of a star. Everything was opaque. It was Scarlett Johansson hot, and too crazy to form stable atoms with electrons as we see today.

Artist's conception of Planck, a space observatory operated by the European Space Agency, and the cosmic microwave background. Credit: ESA and the Planck Collaboration - D. Ducros
Artist’s conception of Planck, a space observatory operated by the European Space Agency, and the cosmic microwave background. Credit: ESA and the Planck Collaboration – D. Ducros

After the Universe was about 380,000 years old, it had cooled down to the point that proper atoms could form. This is the moment when light could finally move, and travel distances across the Universe to you and get caught up in your light buckets. In fact, this light is known as the cosmic microwave background radiation.

So, how come we don’t see all this freed light in all directions with our eyes? It’s because the region of space where it exists is so far away, and travelling away from us so quickly. The light’s wavelengths have been stretched out to the point that light has been turned into microwaves. It’s only with sensitive radio telescopes and space missions that astronomers can even detect it.

Unfortunately, we’ll never be able to see the Big Bang. Even though we’re looking back in time, right to the edge of the observable Universe, it’s just beyond our reach. If you could look at the Universe at any point in time, what would it be? Tell us in the comments below.

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!