VP Pence Unveils the Spacecraft that will Take Astronauts Back to the Moon in 2024!

Credit:NASA/Kennedy Space Center

In accordance with Space Policy Directive-1 – which was issued on December 11th, 2017 – NASA is busy developing all the necessary hardware to return astronauts to the Moon. On March 26th, 2019, NASA was officially directed to expedite the process and land the first astronauts of the post-Apollo era around the lunar South Pole by 2024. This mission is named Project Artemis, who is the twin sister of Apollo in Greek mythology.

Over the weekend, Vice President Mike Pence visited the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida to commemorate the 50th anniversary of the Apollo 11 Moon Landing. The occasion also saw the unveiling of the Orion crew capsule that will be used for the first Artemis lunar mission. The event, therefore, served as both a retrospective and a look at the future of lunar exploration.

Continue reading “VP Pence Unveils the Spacecraft that will Take Astronauts Back to the Moon in 2024!”

Is NASA Sacrificing Sending Astronauts to Mars in Order to Get to the Moon Sooner?

Artist's impression of the Lunar Orbital Platform-Gateway. Credit: NASA

On December 11th, 2017, President Trump issued Space Policy Directive-1, a change in national space policy which tasked NASA with the creation of an innovative and sustainable program of exploration that would send astronauts back to the Moon. This was followed on March 26th, 2019, with President Trump directing NASA to land the first astronauts since the Apollo era on the lunar South Pole by 2024.

Named Project Artemis, after twin sister of Apollo and goddess of the Moon in Greek mythology, this project has expedited efforts to get NASA back to the Moon. However, with so much focus dedicated to getting back to the Moon, there are concerns that other projects being neglected – like the development of the Lunar Orbital Platform-Gateway, a central part of creating a sustained human presence on the Moon and going on to Mars.

Continue reading “Is NASA Sacrificing Sending Astronauts to Mars in Order to Get to the Moon Sooner?”

Orion Capsule Passes Key Launch Abort Test. Next Stop: The Moon!

The Ascent Abort -2 flight test proved that the abort system can pull crew to safety in the unlikely event of an emergency during ascent. Photo credit: NASA/Tony Gray and Kevin O’Connell

When it comes to the future of space exploration, a number of systems will come into play. In addition to the Space Launch System (SLS) that will send astronauts beyond Low Earth Orbit (LEO), there is also the Orion capsule. This is the vehicle that will take astronauts to the Moon again as part of Project Artemis (which is currently slated for 2024) and facilitate missions to Mars by the 2030s.

In preparation, the Orion capsule is being put through its paces to show that it’s up to the challenge. This past Tuesday, July 2nd, NASA successfully conducted the Ascent Abort-2 (AA-2) test, bringing the Orion one step closer to completion. The launch took place during the early morning hours and involved the capsule being launched from NASA’s Space Launch Complex 46 at Cape Canaveral aboard a modified Peacekeeper missile.

Continue reading “Orion Capsule Passes Key Launch Abort Test. Next Stop: The Moon!”

NASA Report Outlines How it Will Go Back to the Moon, to Mars, and Beyond in a Sustainable Way

NASA's Exploration Campaign includes active leadership in low-Earth orbit, in orbit around the Moon and on its surface, and at destinations far beyond, including Mars. Credits: NASA

In the coming decades, NASA intends to mount some bold missions to space. In addition to some key operations to Low Earth Orbit (LEO), NASA intends to conduct the first crewed missions beyond Earth in over 40 years. These include sending astronauts back to the Moon and eventually mounting a crewed mission to Mars.

To this end, NASA recently submitted a plan to Congress that calls for human and robotic exploration missions to expand the frontiers of humanity’s knowledge of Earth, the Moon, Mars, and the Solar System. Known as the National Space Exploration Campaign, this roadmap outlines a sustainable plan for the future of space exploration.

Continue reading “NASA Report Outlines How it Will Go Back to the Moon, to Mars, and Beyond in a Sustainable Way”

Construction on the Orion Capsule is Done. Next it’ll be Sent to Florida for Final Assembly

The Orion pressure vessel for Exploration Mission-2 arrives at the Neil Armstrong Operations and Checkout Building at NASA's Kennedy Space Center in Florida on Aug. 24, 2018. Credit: NASA/Christopher Swanson

In recent years, NASA has been busy developing the technology and components that will allow astronauts to return to the Moon and conduct the first crewed mission to Mars. These include the Space Launch System (SLS), which will be the most powerful rocket since the Saturn V (which brought the Apollo astronauts to the Moon), and the Orion Multi-Purpose Crew Vehicle (MPCV).

Continue reading “Construction on the Orion Capsule is Done. Next it’ll be Sent to Florida for Final Assembly”

Ready to Leave Low Earth Orbit? Prototype Construction Begins for a Deep Space Habitat

Artist illustration of Habitation Module. Credit: Lockheed Martin
Artist illustration of Habitation Module aboard the Deep Space Gateway. Credit: Lockheed Martin

In 2010, NASA announced its commitment to mount a crewed mission to Mars by the third decade of the 21st century. Towards this end, they have working hard to create the necessary technologies – such as the Space Launch System (SLS) rocket and the Orion spacecraft. At the same time, they have partnered with the private sector to develop the necessary components and expertise needed to get crews beyond Earth and the Moon.

To this end, NASA recently awarded a Phase II contract to Lockheed Martin to create a new space habitat that will build on the lessons learned from the International Space Station (ISS). Known as the Deep Space Gateway, this habitat will serve as a spaceport in lunar orbit that will facilitate exploration near the Moon and assist in longer-duration missions that take us far from Earth.

The contract was awarded as part of the Next Space Technologies for Exploration Partnership (NextSTEP) program, which NASA launched in 2014. In April of 2016, as part of the second NextSTEP Broad Agency Announcement (NextSTEP-2) NASA selected six U.S. companies to begin building full-sized ground prototypes and concepts for this deep space habitat.

Artist’s impression of the Deep Space Gateway, currently under development by Lockheed Martin. Credit: NASA

Alongside such well-known companies like Bigelow Aerospace, Orbital ATK and Sierra Nevada, Lockheed Martin was charged with investigating habitat designs that would enhance missions in space near the Moon, and also serve as a proving ground for missions to Mars. Intrinsic to this is the creation of something that can take effectively integrate with SLS and the Orion capsule.

In accordance with NASA’s specifications on what constitutes an effective habitat, the design of the Deep Space Gateway must include a pressurized crew module, docking capability, environmental control and life support systems (ECLSS), logistics management, radiation mitigation and monitoring, fire safety technologies, and crew health capabilities.

The design specifications for the Deep Space Gateway also include a power bus, a small habitat to extend crew time, and logistics modules that would be intended for scientific research. The propulsion system on the gateway would rely on high-power electric propulsion to maintain its orbit, and to transfer the station to different orbits in the vicinity of the Moon when required.

With a Phase II contract now in hand, Lockheed Martin will be refining the design concept they developed for Phase I. This will include building a full-scale prototype at the Space Station Processing Facility at NASA’s Kennedy Space Center at Cape Canaveral, Florida, as well as the creation of a next-generation Deep Space Avionics Integration Lab near the Johnson Space Center in Houston.

Artist’s concept of space habitat operating beyond Earth and the Moon. Credit: NASA

As Bill Pratt, Lockheed Martin’s NextSTEP program manager, said in a recent press statement:

“It is easy to take things for granted when you are living at home, but the recently selected astronauts will face unique challenges. Something as simple as calling your family is completely different when you are outside of low Earth orbit. While building this habitat, we have to operate in a different mindset that’s more akin to long trips to Mars to ensure we keep them safe, healthy and productive.”

The full-scale prototype will essentially be a refurbished Donatello Multi-Purpose Logistics Module (MPLM), which was one of three large modules that was flown in the Space Shuttle payload bay and used to transfer cargo to the ISS. The team will also be relying on “mixed-reality prototyping”, a process where virtual and augmented reality are used to solve engineering issues in the early design phase.

“We are excited to work with NASA to repurpose a historic piece of flight hardware, originally designed for low Earth orbit exploration, to play a role in humanity’s push into deep space,” said Pratt. “Making use of existing capabilities will be a guiding philosophy for Lockheed Martin to minimize development time and meet NASA’s affordability goals.”

The Deep Space Gateway will also rely on the Orion crew capsule’s advanced capabilities while crews are docked with the habitat. Basically, this will consist of the crew using the Orion as their command deck until a more permanent command module can be built and incorporated into the habitat. This process will allow for an incremental build-up of the habitat and the deep space exploration capabilities of its crews.

Credit: NASA

As Pratt indicated, when uncrewed, the habitat will rely on systems that Lockheed Martin has incorporated into their Juno and MAVEN spacecraft in the past:

“Because the Deep Space Gateway would be uninhabited for several months at a time, it has to be rugged, reliable and have the robotic capabilities to operate autonomously. Essentially it is a robotic spacecraft that is well-suited for humans when Orion is present. Lockheed Martin’s experience building autonomous planetary spacecraft plays a large role in making that possible.”

The Phase II work will take place over the next 18 months and the results (provided by NASA) are expected to improve our understanding of what is needed to make long-term living in deep space possible. As noted, Lockheed Martin will also be using this time to build their Deep Space Avionics Integration Laboratory, which will serve as an astronaut training module and assist with command and control between the Gateway and the Orion capsule.

Beyond the development of the Deep Space Gateway, NASA is also committed to the creation of a Deep Space Transport – both of which are crucial for NASA’s proposed “Journey to Mars”. Whereas the Gateway is part of the first phase of this plan – the “Earth Reliant” phase, which involves exploration near the Moon using current technologies – the second phase will be focused on developing long-duration capabilities beyond the Moon.

NASA’s Journey to Mars. NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Credit: NASA/JPL

For this purpose, NASA is seeking to create a reusable vehicle specifically designed for crewed missions to Mars and deeper into the Solar System. The Deep Space Transport would rely on a combination of Solar Electric Propulsion (SEP) and chemical propulsion to transport crews to and from the Gateway – which would also serve as a servicing and refueling station for the spacecraft.

This second phase (the “Proving Ground” phase) is expected to culminate at the end of the 2020s, at which time a one-year crewed mission will take place. This mission will consist of a crew being flown to the Deep Space Gateway and back to Earth for the purpose of validating the readiness of the system and its ability to conduct long-duration missions independent of Earth.

This will open the door to Phase Three of the proposed Journey, the so-called “Earth Indepedent” phase. At this juncture, the habitation module and all other necessary mission components (like a Mars Cargo Vehicle) will be transferred to an orbit around Mars. This is expected to take place by the early 2030s, and will be followed (if all goes well) by missions to the Martian surface.

While the proposed crewed mission to Mars is still a ways off, the architecture is gradually taking shape. Between the development of spacecraft that will get the mission components and crew to cislunar space – the SLS and Orion – and the development of space habitats that will house them, we are getting closer to the day when astronauts finally set foot on the Red Planet!

Further Reading: NASA, Lockheed Martin

Approval For NASA Authorization Bill

NASA has unveiled a new exercise device that will be used by Orion crews to stay healthy on their mission to Mars. Credit: NASA

On Sept. 15th, the Senate Committee on Commerce, Science, and Transportation met to consider legislation formally introduced by a bipartisan group of senators. Among the bills presented was the NASA Transition Authorization Act of 2016, a measure designed to ensure short-term stability for the agency in the coming year.

And as of Thursday, Sept. 22nd, the Senate Commerce Committee approved the bill, providing $19.5 billion in funding for NASA for fiscal year 2017. This funding was intended for the purpose of advancing the agency’s plans for deep space exploration, the Journey to Mars, and operations aboard the International Space Station.

According to Senator Ted Cruz, the bill’s lead sponsor, the Act was introduced in order to ensure that NASA’s major programs would be stable during the upcoming presidential transition. As Cruz was quoted as saying by SpaceNews:

“The last NASA reauthorization act to pass Congress was in 2010. And we have seen in the past the importance of stability and predictability in NASA and space exploration: that whenever one has a change in administration, we have seen the chaos that can be caused by the cancellation of major programs.”

Graphic shows Block I configuration of NASA’s Space Launch System (SLS). Credits: NASA/MSFC
Graphic shows Block I configuration of NASA’s Space Launch System (SLS). Credits: NASA/MSFC

This last act was known as the “NASA Authorization Act of 2010“, which authorized appropriations for NASA between the years of 2011-2013. In addition to providing a total of $58 billion in funding for those three years, it also defined long-term goals for the space agency, which included expanding human space flight beyond low-Earth orbit and developing technical systems for the “Journey to Mars”.

Intrinsic to this was the creation of the Space Launch System (SLS) as a successor to the Space Shuttle Program, the development of the Orion Multipurpose Crew Vehicle, full utilization of the International Space Station, leveraging international partnerships, and encouraging public participation by investing in education.

These aims are outlined in Section 415 of the bill, titled “Stepping Stone Approach to Exploration“:

“In order to maximize the cost-effectiveness of the long-term exploration and utilization activities of the United States, the Administrator shall take all necessary steps, including engaging international, academic, and industry partners to ensure that activities in the Administration’s human exploration program balance how those activities might also help meet the requirements of future exploration and utilization activities leading to human habitation on the surface of Mars.”

NASA has unveiled a new exercise device that will be used by Orion crews to stay healthy on their mission to Mars. Credit: NASA
NASA has unveiled a new exercise device that will be used by Orion crews to stay healthy on their mission to Mars. Credit: NASA

While the passage of the bill is certainly good news for NASA’s bugeteers, it contains some provisions which could pose problems. For example, while the bill does provide for continued development of the SLS and Orion capsule, it advised that NASA find alternatives for its Asteroid Robotic Redirect Missions (ARRM), which is currently planned for the 2020s.

This mission, which NASA deemed essential for testing key systems and developing expertise for their eventual crewed mission to Mars, was cited for not falling within original budget constraints. Section 435 (“Asteroid Robotic Redirect Mission“), details these concerns, stating that an initial estimate put the cost of the mission at $1.25 billion, excluding launch and operations.

However, according to a Key Decision Point-B review conducted by NASA on July 15th, 2016, a new estimate put the cost at $1.4 billion (excluding launch and operations). As a result, the bill’s sponsors concluded that ARM is in competition with other programs, and that an independent cost assessment and some hard choices may be necessary.

In Section 435, subsection b (parts 1 and 2), its states that:

“[T]he technological and scientific goals of the Asteroid Robotic Redirect Mission may not be commensurate with the cost; and alternative missions may provide a more cost effective and scientifically beneficial means to demonstrate the technologies needed for a human mission to Mars that would otherwise be demonstrated by the Asteroid Robotic Redirect Mission.”

NASA's new budget could mean the end of their Asteroid Redirect Mission. Image: NASA (Artist's illustration)
Artist’s impression of NASA’s ARM, which could be threatened by the agency’s new budget. Credit: NASA

The bill was also subject to amendments, which included the approval of funding for the development of satellite servicing technology. Under this arrangement, NASA would have the necessary funds to create spacecraft capable of repairing and providing maintenance to orbiting satellites, thus ensuring long-term functionality.

Also, Cruz and Bill Nelson (D-Fla), the committee ranking member, also supported an amendment that would indemnify companies or third parties executing NASA contracts. In short, companies like SpaceX or Blue Origin would now be entitled to compensation (above a level they are required to insure against) in the event of damages or injuries incurred as a result of launch and reentry services being provided.

According to a Commerce Committee press release, Sen. Bill Nelson had this to say about the bill’s passage:

“I want to thank Chairman Thune and the members of the committee for their continued support of our nation’s space program. Last week marked the 55th anniversary of President Kennedy’s challenge to send a man to the Moon by the end of the decade.  The NASA bill we passed today keeps us moving toward a new and even more ambitious goal – sending humans to Mars.”

With the approval of the Commerce Committee, the bill will now be sent to the Senate for approval. It is hoped that the bill will pass through the Senate quickly so it can be passed by the House before the year is over. Its supporters see this as crucial to maintaining NASA’s funding in the coming years, during which time they will be taking several crucial steps towards the proposed crewed mission to Mars.

Further Reading: SpaceNews, congress.gov

NASA Successfully Test Fires Mars Mega Rocket Engine with Modernized ‘Brain’ Controller

NASA engineers successfully conducted a development test of the RS-25 rocket engine Thursday, Aug. 18, 2016 at NASA’s Stennis Space Center near Bay St. Louis, Miss. The RS-25 will help power the core stage of the agency’s new Space Launch System (SLS) rocket for the journey to Mars. Credit: Ken Kremer/kenkremer.com

NASA engineers successfully conducted a development test of the RS-25 rocket engine Thursday, Aug. 18 at NASA’s Stennis Space Center near Bay St. Louis, Miss. The RS-25 will help power the core stage of the agency’s new Space Launch System (SLS) rocket for the journey to Mars.  Credit: Ken Kremer/kenkremer.com
NASA engineers successfully conducted a development test of the RS-25 rocket engine Thursday, Aug. 18 at NASA’s Stennis Space Center near Bay St. Louis, Miss. The RS-25 will help power the core stage of the agency’s new Space Launch System (SLS) rocket for the journey to Mars. Credit: Ken Kremer/kenkremer.com

NASA STENNIS SPACE CENTER, MISS – NASA engineers successfully carried out a key developmental test firing of an RS-25 rocket engine along with its modernized ‘brain’ controller at the Stennis Space Center on Thursday, Aug. 18, as part of the ongoing huge development effort coordinating the agency’s SLS Mars mega rocket slated for its maiden blastoff by late 2018.

“Today’s test was very successful,” Steve Wofford, manager of the SLS Liquid Engines Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, told Universe Today in an exclusive interview at the conclusion of the exciting RS-25 engine test gushing a huge miles long plume of steam at NASA Stennis on Aug. 18 under sweltering Gulf Coast heat.

“It was absolutely great!”

Thursday’s full thrust RS-25 engine hot fire test, using engine No. 0528, ran for its planned full duration of 7.5 minutes and met a host of critical test objectives required to confirm and scope out the capabilities and operating margins of the upgraded engines ,which are recycled from the shuttle era.

“We ran a full program duration of 420 seconds . And we had no failure identifications pop up.”

“It looks like we achieved all of our data objectives,” Wofford elaborated to Universe Today, after we witnessed the test from a viewing area just a few hundred meters away, with our ears protected by ear plugs.

A cluster of four RS-25 engines will power the Space Launch System (SLS) at the base of the first stage, also known as the core stage.

Huge plume of steam gushes as NASA engineers successfully conducted a development test of the RS-25 rocket engine Thursday, Aug. 18 at NASA’s Stennis Space Center near Bay St. Louis, Miss., in this panoramic view.  The RS-25 will help power the core stage of the agency’s new Space Launch System (SLS) rocket for the journey to Mars.  Credit: Ken Kremer/kenkremer.com
Huge plume of steam gushes as NASA engineers successfully conducted a development test of the RS-25 rocket engine Thursday, Aug. 18 at NASA’s Stennis Space Center near Bay St. Louis, Miss., in this panoramic view. The RS-25 will help power the core stage of the agency’s new Space Launch System (SLS) rocket for the journey to Mars. Credit: Ken Kremer/kenkremer.com

SLS is the most powerful booster the world has even seen and one day soon will propel NASA astronauts in the agency’s Orion crew capsule on exciting missions of exploration to deep space destinations including the Moon, Asteroids and Mars – venturing further out than humans ever have before!

NASA’s goal is to send humans to Mars by the 2030s with SLS and Orion.

Ignition of the RS-25 engine creates a huge plume of steam gushing out the test stand during successful  hot fire development test on Thursday, Aug. 18 at NASA’s Stennis Space Center near Bay St. Louis, Miss., in this panoramic view.  The RS-25 will help power the core stage of the agency’s new Space Launch System (SLS) rocket for the journey to Mars.  Credit: Ken Kremer/kenkremer.com
Ignition of the RS-25 engine creates a huge plume of steam gushing out the test stand during successful hot fire development test on Thursday, Aug. 18 at NASA’s Stennis Space Center near Bay St. Louis, Miss., in this panoramic view. The RS-25 will help power the core stage of the agency’s new Space Launch System (SLS) rocket for the journey to Mars. Credit: Ken Kremer/kenkremer.com

The primary goal of the development tests is to validate the capabilities of a new controller – or, “brain” – for the engine and to verify the different operating conditions needed for the SLS vehicle.

The test was part of a long continuing and new series aimed at certifying the engines for flight.

“We continue this test series in the fall. Which is a continuing part of our certification series to fly these engines on NASA’s SLS vehicle,” Wofford told me.

What was the primary objective of today’s test?

“Today’s test was mostly about wringing out the new control system. We have a new engine controller on this engine. And we have to certify that new controller for flight.”

“So to certify it we run it through its paces in ground tests. And we put it through a more stringent set of test conditions than it will ever see in flight.”

“The objectives we tested today required 420 seconds of testing to complete.”

Watch this NASA video of the full test:

Video Caption: RS-25 Rocket Engine Test Firing on 18 Aug. 2016: The 7.5-minute test conducted at NASA’s Stennis Space Center is part of a series of tests designed to put the upgraded former space shuttle engines through the rigorous temperature and pressure conditions they will experience during a launch of NASA’s Space Launch System mega rocket. Credit: NASA

What are the additional objectives from today’s test?

“Well you can’t do all of your objectives in one test. So the certification series are all about technical objectives and total accumulated time. So one thing we did was we accumulated time toward the time we need to certify this control system for the SLS engine,” Wofford explained.

“The other thing we did was you pick some technical objectives you want to put the controller through its paces for. And again you can’t do all of those in one test. So you spread them over a series. And we did some of those on this test.”

Aerojet Rocketdyne is the prime contractor for the RS-25 engine work and originally built them during the shuttle era.

The remaining cache of 16 heritage RS-25 engines are being recycled from their previous use as reusable space shuttle main engines (SSMEs). They are now being refurbished, upgraded and tested by NASA and Aerojet Rocketdyne to power the core stage of the Space Launch System rocket now under full development.

During launch they will fire at 109 percent thrust level for some eight and a half minutes while generating a combined two million pounds of thrust.

The SLS core stage is augmented with a pair of five segment solid rocket boosters (SRBs) generating about 3.3 million pounds of thrust each. NASA and Orbital just completed the QM-2 SRB qualification test on June 28.

Each of the RS-25’s engines generates some 500,000 pounds of thrust. They are fueled by cryogenic liquid hydrogen (LH2) and liquid oxygen (LOX).

The first liquid hydrogen (LH2) qualification fuel tank for the core stage was just welded together at NASA’s Michoud Assembly Facility in New Orleans – as I witnessed exclusively and reported here.

The first liquid hydrogen tank, also called the qualification test article, for NASA's new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine on July 22, 2016 after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans.  Credit: Ken Kremer/kenkremer.com
The first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine on July 22, 2016 after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

The RS-25 engines measure 14 feet tall and 8 feet in diameter.

For SLS they will be operating at 109% of power – a higher power level compared to a routine usage of 104.5% during the shuttle era.

They have to withstand and survive temperature extremes ranging from -423 degrees F to more than 6000 degrees F.

Why was about five seconds of Thursday’s test run at the 111% power level? Will that continue in future tests?

“We did that because we plan to fly this engine on SLS at 109% of power level. So it’s to demonstrate the feasibility of doing that. On shuttle we were certified to fly these engines at 109%,” Wofford confirmed to Universe Today.

“So to demonstrate the feasibility of doing 109% power level on SLS we ‘overtest’ . So we ran [today’s test] at 2 % above where we are going to fly in flight.”

“We will do more in the future.”

The fully assembled core stage intergrated with all 4 RS-25 flight engines will be tested at the B-2 test stand in Stennis during the first quarter of 2018 – some 6 months or more before the launch in late 2018.

How many more engines tests will be conducted prior to the core stage test?

“After today we will run 7 more tests before the core stage test and the first flight.”

“I’m thrilled. I’ve see a lot of these and it never gets old!” Wofford gushed.

The hardware for SLS and Orion is really coming together now and its becoming more and more real every day.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket.  Credit: Ken Kremer/kenkremer.com
Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

These are exciting times for NASA’s human deep space exploration strategy.

The maiden test flight of the SLS/Orion is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) Block 1 configuration with a liftoff thrust of 8.4 million pounds – more powerful than NASA’s Saturn V moon landing rocket.

Although the SLS-1 flight in 2018 will be uncrewed, NASA plans to launch astronauts on the SLS-2/EM-2 mission slated for the 2021 to 2023 timeframe.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Steve Wofford, manager of the SLS Liquid Engines Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, interviewed by Ken Kremer, Universe Today about the RS-25 hot fire engine test on Aug. 18 at NASA’s Stennis Space Center near Bay St. Louis, Miss.  The RS-25 will help power NASA’s Space Launch System (SLS) rocket.  Credit: Ken Kremer/kenkremer.com
Steve Wofford, manager of the SLS Liquid Engines Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, interviewed by Ken Kremer, Universe Today about the RS-25 hot fire engine test on Aug. 18 at NASA’s Stennis Space Center near Bay St. Louis, Miss. The RS-25 will help power NASA’s Space Launch System (SLS) rocket. Credit: Ken Kremer/kenkremer.com

Major Overhaul of VAB for NASA’s SLS Mars Rocket Reaches Halfway Point With Platform Installation

Looking up to the 5 pairs of newly installed massive work platforms inside High Bay 3 of the Vehicle Assembly Building on July 28, 2016 during exclusive facility visit by Universe Today. The new platforms are required to give technicians access to assemble NASA’s Space Launch System rocket at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Looking up to the 5 pairs of newly installed massive work platforms inside High Bay 3 of the Vehicle Assembly Building required to assemble NASA’s Space Launch System rocket at the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Looking up to the 5 pairs of newly installed massive work platforms inside High Bay 3 of the Vehicle Assembly Building on July 28, 2016 during exclusive facility visit by Universe Today. The new platforms give technicians access to assemble NASA’s Space Launch System rocket at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – A major overhaul of the iconic Vehicle Assembly Building (VAB) readying it for launches of NASA’s SLS Mars rocket by 2018 has reached the halfway point with installation of massive new access platforms required to enable assembly of the mammoth booster at the Kennedy Space Center (KSC) – as seen firsthand during an exclusive up close facility tour by Universe Today.

“We are in the full development stage right now and roughly 50% complete with the platforms on this job,” David Sumner, GSDO Deputy Sr. project manager for VAB development work at KSC, told Universe Today in an exclusive interview inside the VAB’s High Bay 3 on July 28, amidst workers actively turning NASA’s deep space dreams into full blown reality. See our exclusive up close photos herein – detailing the huge ongoing effort.

Upgrading and renovating the VAB is specifically the responsibility of NASA’s Ground Systems Development and Operations Program (GSDO) at Kennedy.

Inside VAB High Bay 3 – where previous generations of space workers proudly assembled NASA’s Saturn V Moon rocket and the Space Shuttle Orbiter launch stacks – today’s crews of workers were actively installing the newly manufactured work platforms needed to process and build the agency’s Space Launch System (SLS) rocket that will soon propel our astronauts back to exciting deep space destinations.

“We are very excited. We are at the beginning of a new program!” Sumner told me. “We have the infrastructure and are getting into operations soon.”

A heavy-lift crane lifts the first half of the F-level work platforms, F south, for NASA’s Space Launch System rocket, into position for installation July 15, in High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Photo credit: NASA/Bill White
A heavy-lift crane lifts the first half of the F-level work platforms, F south, for NASA’s Space Launch System rocket, into position for installation July 15, in High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Photo credit: NASA/Bill White

It’s certainly an exciting time as NASA pushes forward on all fronts in a coordinated nationwide effort to get the SLS rocket with the Orion EM-1 crew vehicle bolted on top ready and rolled out to Kennedy’s pad 39B for their planned maiden integrated blastoff by Fall 2018.

SLS and Orion are at the heart of NASA’s agency wide strategy to send astronauts on a ‘Journey to Mars’ by the 2030s.

SLS is the most powerful booster the world has even seen and is designed to boost NASA astronauts in the agency’s Orion crew capsule on exciting missions of exploration to deep space destinations including the Moon, Asteroids and Mars – venturing further out than humans ever have before!

I walked into High Bay 3, scanned all around and up to the ceiling some 525 feet away and was thrilled to see a bustling construction site – the future of human voyages in deep space unfolding before my eyes. As I looked up to see the newly installed work platforms, I was surrounded by the constant hum of plenty of hammering, cutting, welding, hoisting, fastening, banging and clanging and workers moving equipment and gear around.

Welding work in progress by workers in the VAB transfer aisle for installation of huge work platforms inside High Bay 3 at KSC on July 28, 2016.  Credit: Julian Leek
Welding work in progress by workers in the VAB transfer aisle for installation of huge work platforms inside High Bay 3 at KSC on July 28, 2016. Credit: Julian Leek

Altogether a total of 10 levels of work platform levels will be installed in High Bay 3 – labeled K to A, from bottom to top. Each level consists of two platform halves, denoted as the North and South side platforms.

Looking up to the 5 pairs of newly installed massive work platforms inside High Bay 3 of the Vehicle Assembly Building on July 28, 2016.  Heavy duty cranes are used to install the new platforms which will enable access to assemble NASA’s SLS rocket at KSC in Florida.  Credit: Julian Leek
Looking up to the 5 pairs of newly installed massive work platforms inside High Bay 3 of the Vehicle Assembly Building on July 28, 2016. Heavy duty cranes are used to install the new platforms which will enable access to assemble NASA’s SLS rocket at KSC in Florida. Credit: Julian Leek

What’s the status today?

“We are looking up at 5 of 10 platform levels with 10 of 20 platform halves installed here. A total of ten levels are being installed,” Sumner explained.

“We are installing them from the bottom up. The bottom five levels are installed so far.”

“We are up to about the 190 foot level right now with Platform F installation. Then we are going up to about the 325 foot level with the 10th platform [Platform A].

“So there are 10 levels for EM-1.”

Up close view looking out to the edge of Platform F showing the outer mold line snaking around the SLS core stage and a solid rocket booster from the 190 foot level under construction inside the VAB High Bay 3 on July 28, 2016 at the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Up close view looking out to the edge of Platform F showing the outer mold line snaking around the SLS core stage and a solid rocket booster from the 190 foot level under construction inside the VAB High Bay 3 on July 28, 2016 at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

So much work was visible and actively in progress I definitely got the feeling from the ground up that NASA is now rapidly moving into the new post shuttle Era – dominated by the mammoth new SLS making its assembly debut inside these hallowed walls some 18 months or so from today.

“The work today is some outfitting on the platforms overhead here, as well as more work on the platform halves sitting in the transfer aisle and High Bay 4 to get them ready to lift and install into High Bay 3.”

“Overhead steel work is also ongoing here in High Bay 3 with additional steel work going vertical for reinforcement and mounting brackets for all the platforms going vertically.”

“So quite a few work locations are active with different crews and different groups.”

Two additional new platform halves are sitting in the VAB transfer aisle and are next in line for installation. With two more awaiting in VAB High Bay 4. Fabrication of additional platform halves is ongoing at KSC’s nearby Oak Hill facility.

“The rest are being fabricated in our Oak Hill facility. So we have almost everything on site so far.”

Two halves of Platform D sit in the VAB transfer aisle on July 28, 2016 awaiting installation into High Bay 3.   The new platforms give technicians access to assemble NASA’s Space Launch System rocket at the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Two halves of Platform D sit in the VAB transfer aisle on July 28, 2016 awaiting installation into High Bay 3. The new platforms give technicians access to assemble NASA’s Space Launch System rocket at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Hensel Phelps is the general contractor for the VAB transformation. Subcontractors include S&R, Steel LLC, Sauer Inc., Jacobs and Beyel Bros Crane and Rigging.

The work platforms enable access to the SLS rocket at different levels up and down the over 300 foot tall rocket topped by the Orion crew capsule. They will fit around the outer mold line of SLS – including the twin solid rocket boosters, the core stage, and upper stage – and Orion.

The SLS core stage is being manufactured at NASA’s Michoud Assembly Facility in New Orleans, where I recently inspected the first completed liquid hydrogen tank test article – as reported here. Orion EM-1 is being manufactured here at Kennedy – as I reported here.

The first liquid hydrogen tank, also called the qualification test article, for NASA's new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine on July 22, 2016 after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans.  Credit: Ken Kremer/kenkremer.com
The first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine on July 22, 2016 after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

The platforms will provide access for workers to assemble, process and test all the SLS and Orion components before rolling out to Launch Complex 39B atop the 380 foot tall Mobile Launcher – which is also undergoing a concurrent major renovation and overhaul.

As of today, five of the ten levels of platforms are in place.

Each of the giant platforms made of steel measures about 38 feet long and close to 62 feet wide. They weigh between 300,000 and 325,000 pounds.

The most recently installed F North and South platforms were put in place on the north and south walls of the high bay on July 15 and 19, respectively.

Here’s the view looking out to Platform F:

View looking out to both halves of Platform F and down to Platform G showing the outer mold line snaking around the SLS core stage and a solid rocket booster from the 190 foot level under construction inside the VAB High Bay 3 on July 28, 2016 at the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
View looking out to both halves of Platform F and down to Platform G showing the outer mold line snaking around the SLS core stage and a solid rocket booster from the 190 foot level under construction inside the VAB High Bay 3 on July 28, 2016 at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

How are the platforms installed ?

The platforms are carefully lifted into place by workers during a process that lasts about four hours.

“The 325 and 250 ton overhead facility cranes are used to [slowly] lift and move the platform halves back and forth between the VAB transfer aisle and High Bay 4 and into the SLS High Bay 3.”

Then they are attached to rail beams on the north and south walls of the high bay.

Construction workers from Beyel Bros Crane and Rigging also use a Grove 40 ton all terrain crane. It is also outfitted with man baskets to get to the places that cannot be reached by scaffolding in High Bay 3.

Installation of the remaining five levels of platforms should be completed by mid-2017.

“The job will be done by the middle of 2017. All the construction work will be done,” Sumner explained.

“Then we will get into our verification and validations with the Mobile Launcher (ML). Then the ML will roll in here around middle to late 2017 [for checkouts and testing] and then roll out to the pad [for more testing]. After that it will roll back in here. Then we will be ready to stack the SLS starting after that!”

Looking up from beneath the enlarged exhaust hole of the Mobile Launcher to the 380 foot-tall tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars.   The ML will support NASA's Space Launch System (SLS) and Orion spacecraft during Exploration Mission-1 at NASA's Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Looking up from beneath the enlarged exhaust hole of the Mobile Launcher to the 380 foot-tall tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars. The ML will support NASA’s Space Launch System (SLS) and Orion spacecraft during Exploration Mission-1 at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

The platforms will be tested beginning later this year, starting with the lowest platforms at the K-level, and working all the way up to the top, the A-level.

The platforms are attached to a system of rail beams that “provide structural support and contain the drive mechanisms to retract and extend the platforms,” according to a NASA fact sheet.

“Each platform will reside on four Hillman roller systems on each side – much like a kitchen drawer slides in and out. A mechanical articulated tray also moves in and out with each platform.”

The F-level platforms are located about 192 feet above the VAB floor.

“They will provide access to the SLS core stage (CS) intertank for umbilical mate operations. The “F-1” multi-level ground support equipment access platform will be used to access the booster forward assemblies and the CS to booster forward attach points. The upper level of F-1 will be used to remove the lifting sling used to support forward assembly mate for booster stacking operations.”

“Using the five platforms that are now installed, workers will have access to all of the Space Launch System rocket’s booster field joints and forward skirts, the core stage intertank umbilical and interface plates,” says Mike Bolger, GSDO program manager at Kennedy.

Looking190 feet down from Platform F to the VAB floor along all five newly installed access platforms in High Bay 3. Construction worker on Platform G below is working near the outer mold line for the SLS rocket that will fill this space by early 2018 at KSC in Florida.  Credit: Ken Kremer/kenkremer.com
Looking 190 feet down from Platform F to the VAB floor along all five newly installed access platforms in High Bay 3. Construction worker on Platform G below is working near the outer mold line for the SLS rocket that will fill this space by early 2018 at KSC in Florida. Credit: Ken Kremer/kenkremer.com

‘NASA is transforming KSC into a launch complex for the 21st Century,’ as KSC Center Director and former shuttle commander Bob Cabana often explains.

So it was out with the old and in with the new to carry out that daunting task.

“We took the old shuttle platforms out, went down to the [building] structure over the past few years and are now putting up the new SLS platforms,” Sumner elaborated.

“All the demolition work was done a few years ago. So we are in the full development stage right now and roughly 50% complete with the platforms on this job.”

And after NASA launches EM-1, significantly more VAB work lies ahead to prepare for the first manned Orion launch on the EM-2 mission set for as soon as 2021 – because it will feature an upgraded and taller version of the SLS rocket – including a new upper stage.

“For EM-2, the plan right now is we will add two more levels and relocate three more. So we will do some adjustments and new installations in the upper levels for EM-2.”

“It’s been an honor to be here and work here in the VAB every day – and prepare for the next 50 years of its life.”

“We are at the beginning of a new program. We have the infrastructure and are getting into operations soon,” Sumner said. “We have hopefully got a long way to go on the future of space exploration, with many decades of exploration ahead.”

“We are on a ‘Journey to Mars’ and elsewhere. So this is the beginning of all that. It’s very exciting!”

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration.   Credit: NASA/MSFC
NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Looking down from newly installed VAB High Bay 3 Platform F to Platform G on July 28, 2016.  New platforms enable access to assemble NASA’s SLS rocket at KSC in Florida.  Credit: Julian Leek
Looking down from newly installed VAB High Bay 3 Platform F to Platform G on July 28, 2016. New platforms enable access to assemble NASA’s SLS rocket at KSC in Florida. Credit: Julian Leek

Two halves of Platform D sit in the VAB transfer aisle on July 28, 2016 awaiting installation into High Bay 3.   The new platforms give technicians access to assemble NASA’s SLS rocket at KSC in Florida.  Credit: Julian Leek
Two halves of Platform D sit in the VAB transfer aisle on July 28, 2016 awaiting installation into High Bay 3. The new platforms give technicians access to assemble NASA’s SLS rocket at KSC in Florida. Credit: Julian Leek

Looking up to the 5 pairs of newly installed massive work platforms inside High Bay 3 of the Vehicle Assembly Building on July 28, 2016 during exclusive facility visit by Universe Today.  The new platforms are required to give technicians access to assemble NASA’s Space Launch System rocket at the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Looking up to the 5 pairs of newly installed massive work platforms inside High Bay 3 of the Vehicle Assembly Building on July 28, 2016 during exclusive facility visit by Universe Today. The new platforms are required to give technicians access to assemble NASA’s Space Launch System rocket at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

US Flag hangs proudly inside the VAB - America’s Premier Spaceport to Deep Space.  Credit: Lane Hermann
US Flag hangs proudly inside the VAB – America’s Premier Spaceport to Deep Space. Credit: Lane Hermann

View of the VAB and Mobile Launcher from the KSC Launch Complex 39 Press Site.   NASA is upgrading the VAB with new platforms to assemble and launch  NASA’s Space Launch System rocket at the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
View of the VAB and Mobile Launcher from the KSC Launch Complex 39 Press Site. NASA is upgrading the VAB with new platforms to assemble and launch NASA’s Space Launch System rocket at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Floor level view of the Mobile Launcher and enlarged exhaust hole with 380 foot-tall launch tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars.   The ML will support NASA's Space Launch System (SLS) and Orion spacecraft  for launches from Space Launch Complex 39B the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Floor level view of the Mobile Launcher and enlarged exhaust hole with 380 foot-tall launch tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars. The ML will support NASA’s Space Launch System (SLS) and Orion spacecraft for launches from Space Launch Complex 39B the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

NASA’s Orion EM-1 Crew Module Passes Critical Pressure Tests

Lockheed Martin engineers and technicians prepare the Orion pressure vessel for a series of tests inside the proof pressure cell in the Neil Armstrong Operations and Checkout Building at NASA's Kennedy Space Center in Florida. Photo credit: NASA/Kim Shiflett

Lockheed Martin engineers and technicians prepare the Orion pressure vessel for a series of tests inside the proof pressure cell in the Neil Armstrong Operations and Checkout Building at NASA's Kennedy Space Center in Florida. Photo credit: NASA/Kim Shiflett
Lockheed Martin engineers and technicians prepare the Orion pressure vessel for a series of tests inside the proof pressure cell in the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. Photo credit: NASA/Kim Shiflett

The next Orion crew module in line to launch to space on NASA’s Exploration Mission-1 (EM-1) has passed a critical series of proof pressure tests which confirm the effectiveness of the welds holding the spacecraft structure together.

Any leaks occurring in flight could threaten the astronauts lives.

Engineers and technicians conducted the pressure tests on the Orion EM-1 pressure vessel, which was welded together at NASA’s Michoud Assembly Facility in New Orleans and then shipped to NASA’s Kennedy Space Center in Florida just 3 months ago.

The pressure vessel is the structural backbone for the vehicles that will launch American astronauts to deep space destinations.

“This is the first mission where the Orion spacecraft will be integrated with the large Space Launch System rocket. Orion is the vehicle that’s going to take astronauts to deep space,” NASA Orion program manager Scott Wilson told Universe Today.

“The tests confirmed that the weld points of the underlying structure will contain and protect astronauts during the launch, in-space, re-entry and landing phases on the Exploration Mission 1 (EM-1), when the spacecraft performs its first uncrewed test flight atop the Space Launch System rocket,” according to a NASA statement.

After flying to KSC on Feb 1, 2016 inside NASA’s unique Super Guppy aircraft, this “new and improved” Orion EM-1 pressure vessel was moved to the Neil Armstrong Operations and Checkout (O&C) Building for final assembly by prime contractor Lockheed Martin into a flight worthy vehicle.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket.  Credit: Ken Kremer/kenkremer.com
Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

Since then, technicians have worked to meticulously attach hundreds of strain gauges to the interior and exterior surfaces of the vehicle to prepare for the pressure tests.

The strain gauges provide real time data to the analysts monitoring the changes during the pressurization.

Orion was moved to a test stand inside the proof pressure cell high bay and locked inside behind large doors.

Lockheed Martin engineers then incrementally increased the pressure in the proof testing cell in a series of steps over two days. They carefully monitored the results along the way and how the spacecraft reacted to the stresses induced by the pressure increases.

The maximum pressure reached was 1.25 times normal atmospheric pressure – which exceeds the maximum pressure it is expected to encounter on orbit.

“We are very pleased with the performance of the spacecraft during proof pressure testing,” said Scott Wilson, NASA manager of production operations for the Orion Program.

“The successful completion of this test represents another major step forward in our march toward completing the EM-1 spacecraft, and ultimately, our crewed missions to deep space.”

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket.  Credit: Ken Kremer/kenkremer.com
Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

With the pressure testing satisfactorily completed, technicians will move Orion back to birdcage assembly stand for the “intricate work of attaching hundreds of brackets to the vessel’s exterior to hold the tubing for the vehicle’s hydraulics and other systems.”

To prepare for launch in 2018, engineers and technicians from NASA and prime contractor Lockheed Martin will spend the next two years meticulously installing all the systems amounting to over 100,000 components and gear required for flight.

This particular ‘Lunar Orion’ crew module is intended for blastoff to the Moon in 2018 on NASA’s Exploration Mission-1 (EM-1) atop the agency’s mammoth new Space Launch System (SLS) rocket, simultaneously under development. The pressurized crew module serves as the living quarters for the astronauts comprising up to four crew members.

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration.   Credit: NASA/MSFC
NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

EM-1 itself is a ‘proving ground’ mission that will fly an unmanned Orion thousands of miles beyond the Moon, further than any human capable vehicle, and back to Earth, over the course of a three-week mission.

The 2018 launch of NASA’s Orion on the unpiloted EM-1 mission counts as the first joint flight of SLS and Orion, and the first flight of a human rated spacecraft to deep space since the Apollo Moon landing era ended more than 4 decades ago.

Orion is designed to send astronauts deeper into space than ever before, including missions to the Moon, asteroids and the Red Planet.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

NASA’s Orion EM-1 crew module pressure vessel arrived at the Kennedy Space Center’s Shuttle Landing Facility tucked inside NASA’s Super Guppy aircraft on Feb 1, 2016. The Super Guppy opens its hinged nose to unload cargo.  Credit: Ken Kremer/kenkremer.com
NASA’s Orion EM-1 crew module pressure vessel arrived at the Kennedy Space Center’s Shuttle Landing Facility tucked inside NASA’s Super Guppy aircraft on Feb 1, 2016. The Super Guppy opens its hinged nose to unload cargo. Credit: Ken Kremer/kenkremer.com