Moroccan Meteorite May Be a 4.4-Billion-Year-Old Chunk of Dark Martian Crust

Mars! Martian meteorites make their way to Earth after being ejected from Mars by a meteor impact on the Red Planet. Image: NASA/National Space Science Data Center.
Mars! Martian meteorites make their way to Earth after being ejected from Mars by a meteor impact on the Red Planet. Image: NASA/National Space Science Data Center.

Mars is often referred to as the Red Planet. But its signature color is only skin-deep – or, I should say, dust-deep. Beneath its rusty regolith Mars has many other hues and shades as well, from pale greys like those found inside holes drilled by Curiosity to large dark regions that are the result of ancient lava flows. Now, researchers think we may have an actual piece of one of Mars’ dark plains here on Earth in the form of a meteorite that was found in the Moroccan desert in 2011.

Mars meteorite NWA 7034 (NASA)
Mars meteorite NWA 7034 (NASA)

Classified as NWA 7034 (for Northwest Africa) the meteorite is a 320-gram (11 oz.) piece of Martian basaltic breccia made up of small fragments cemented together in a dark matrix. Nicknamed “Black Beauty,” NWA 7034 is one of the oldest meteorites ever discovered and is like nothing else ever found on Earth.

According to a new study on a fragment of the meteorite by researchers from Brown University in Providence, Rhode Island and the University of New Mexico, Black Beauty is a 4.4-billion-year-old chunk of Mars’ dark crust – the only known piece of such to have landed on Earth.

While other meteorites originating from Mars have been identified, they are of entirely different types than Black Beauty.

The researchers used a hyperspectral imaging technique to obtain data from across the whole fragment. In doing this, the measurements matched what’s been detected from Mars orbit by NASA’s Mars Reconnaissance Orbiter.

“Other techniques give us measurements of a dime-sized spot,” said Kevin Cannon, a Brown University graduate student and lead author of a new paper published in the journal Icarus. “What we wanted to do was get an average for the entire sample. That overall measurement was what ended up matching the orbital data.”

In addition to indicating a truly ancient piece of another planet, these findings hint at what the surface of many parts of Mars might be like just below the rusty soil… a surface that’s been shattered and reassembled many times by meteorite impacts.

“This is showing that if you went to Mars and picked up a chunk of crust, you’d expect it to be heavily beat up, battered, broken apart and put back together,” Cannon said.

HiRISE image of dark terrain near Ganges Chasma (NASA/JPL/University of Arizona)
HiRISE image of dark terrain near Ganges Chasma (NASA/JPL/University of Arizona)

Source/read more at Brown University news.

Meteorite From Mars is Water-Rich

Meteorites from Mars, like NWA 7034 (shown here), contain evidence of Mars' watery past. Credit: NASA

Martian meteorite NWA 7034 weighs approximately 320 grams (11 ounces). Credit: NASA

A 2-billion-year-old rock found in the Sahara desert has been identified as a meteorite from Mars’ crust, and it contains ten times more water than any other Martian meteorite found on Earth. It also contains organic carbon. The age of the rock, called NWA 7034, would put its origins in the early era of the most recent geologic epoch on Mars, the Amazonian epoch. While its composition is different from any previously studied Martian meteorite, NASA says it matches surface rocks and outcrops that have been studied by Mars rovers and Mars-orbiting satellites.

“The contents of this meteorite may challenge many long held notions about Martian geology,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington. “These findings also present an important reference frame for the Curiosity rover as it searches for reduced organics in the minerals exposed in the bedrock of Gale Crater.”

This new class of meteorite was found in 2011 in the Sahara Desert. Designated Northwest Africa (NWA) 7034, and nicknamed “Black Beauty,” it weighs approximately 320 grams (11 ounces). Research teams from the University of New Mexico, the University of California at San Diego and the Carnegie Institution in Washington analyzed mineral and chemical composition, age, and water content.

NWA 7034 is made of cemented fragments of basalt, rock that forms from rapidly cooled lava. The fragments are primarily feldspar and pyroxene, most likely from volcanic activity.

“This Martian meteorite has everything in its composition that you’d want in order to further our understanding of the Red Planet,” said Carl Agee, leader of the analysis team and director and curator at the University of New Mexico’s Institute of Meteoritics in Albuquerque. “This unique meteorite tells us what volcanism was like on Mars 2 billion years ago. It also gives us a glimpse of ancient surface and environmental conditions on Mars that no other meteorite has ever offered.”

There are about one hundred Martian meteorites that have been collected on Earth. They were all likely blasted off the Red Planet by either an asteroid or comet impact, and then spent millions of years traveling through space before falling to Earth.

Researchers theorize the large amount of water contained in NWA 7034 may have originated from interaction of the rocks with water present in Mars’ crust. The meteorite also has a different mixture of oxygen isotopes than has been found in other Martian meteorites, which could have resulted from interaction with the Martian atmosphere.

Scientists say the age of NWA 7034 is important because it is much older than most other Martian meteorites.

“We now have insight into a piece of Mars’ history at a critical time in its evolution,” said Mitch Schulte, program scientist for the Mars Exploration Program at NASA Headquarters.

Most Martian meteorites are divided into three rock types, named after three meteorites; Shergotty, Nakhla, and Chassigny. These “SNC” meteorites currently number about 110. Their point of origin on Mars is not known and recent data from lander and orbiter missions suggest they are a mismatch for the Martian crust. Although NWA 7034 has similarities to the SNC meteorites, including the presence of macromolecular organic carbon, this new meteorite has many unique characteristics.

“The texture of the NWA meteorite is not like any of the SNC meteorites,” said co-author Andrew Steele, who led the carbon analysis at the Carnegie Institution’s Geophysical Laboratory. “This is an exciting measurement in Mars and planetary science. We now have more context than ever before to understanding where they may come from.”

Sources: NASA, Carnegie Institution for Science

This article was updated on 1/4/13.