Chinese Astronomers Recorded Earliest Account of Aurora

How dating an ancient text revealed one of the oldest observations of aurora known.

It’s one of the greatest sky spectacles you can witness. Along with a total solar eclipse and a major meteor storm, I’d put a fine aurora display up there as one of the the most amazing things you can see in the night sky. And we’re not talking about the dull green glow that folks in the ‘lower 48’ see to the north and dismiss, but the glorious silent streamers of auroral curtains that can light up the entire sky.

Now, a recent study, entitled A Candidate Auroral Report in the Bamboo Annals Indicating a Possible Extreme Space Weather Event in the 10th Century BCE may have pinpointed one of the earliest accounts on ancient aurorae. In the study, University of Pennsylvania and Nagoya University researchers culled through the legendary chronicle known as the Bamboo Annals (also sometimes referred to as Zhushu Jinian) penned around the 4th century BCE. Chinese texts are some of the best documented sources of sky phenomena stretching back over the millennia, to include accounts of naked eye sunspots, supernovae and meteor outbursts.

Continue reading “Chinese Astronomers Recorded Earliest Account of Aurora”

An 1874 Citizen Science Project Studying the Aurora Borealis Helped Inspire Time Zones

For millennia, humans have gazed at the northern lights with wonder, pondering their nature and source. Even today, these once mysterious phenomena still evoke awe, though we understand them a little better now. Still, most of our knowledge about the northern lights has come recently, in the last century or two. Astronomers and meteorologists of the 1800s worked for years to understand the aurora, wondering if they were a feature of Earth’s atmospheric weather, of outer space, or, perhaps, something that straddled the boundary in-between. This centuries-old attempt to understand the northern lights was an immense, international-scale project, and, through fortunate happenstance, it even helped inspire one of the underlying foundations of modern society – time zones.

Continue reading “An 1874 Citizen Science Project Studying the Aurora Borealis Helped Inspire Time Zones”

That New Kind of Aurora Called “Steve”? Turns Out, it Isn’t an Aurora at All

Alberta Aurora Chasers capture STEVE, the new-to-science upper atmospheric phenomenon, on the evening of April 10th, 2018 in Prince George, British Columbia, Canada. Credit: Ryan Sault

Since time immemorial, people living in the Arctic Circle or the southern tip of Chile have looked up at the night sky and been dazzled by the sight of the auroras. Known as the Aurora Borealis in the north and Aurora Australis in the south (the “Northern Lights” and “Southern Lights”, respectively) these dazzling displays are the result of interactions in the ionosphere between charged solar particles and the Earth’s magnetic field.

However, in recent decades, amateur photographers began capturing photos of what appeared to be a new type of aurora – known as STEVE. In 2016, it was brought to the attention of scientists, who began trying to explain what accounted for the strange ribbons of purple and white light in the night sky. According to a new study, STEVE is not an aurora at all, but an entirely new celestial phenomenon.

The study recently appeared in the Geophysical Research Letters under the title “On the Origin of STEVE: Particle Precipitation or Ionospheric Skyglow?“. The study was conducted by a team of researchers from the Department of Physics and Astronomy from the University of Calgary, which was led by Beatriz Gallardo-Lacourt (a postdoctoral associate), and included Yukitoshi Nishimura – an assistant researcher of the Department of Atmospheric and Oceanic Sciences at the University of California.

STEVE, as imaged by Dave Markel in the skies above northern Canada. Copyright: davemarkelphoto

STEVE first became known to scientists thanks to the efforts of the Alberta Aurora Chasers (AAC), who occasionally noticed these bright, thin streams of white and purple light running from east to west in the night sky when photographing the aurora. Unlike auroras, which are visible whenever viewing conditions are right, STEVE was only visible a few times a year and could only be seen at high latitudes.

Initially, the photographers thought the light ribbons were the result of excited protons, but these fall outside the range of wavelengths that normal cameras can see and require special equipment to image. The AAC eventually named the light ribbons “Steve” – a reference to the 2006 film Over the Hedge. By 2016, Steve was brought to the attention of scientists, who turned the name into a backronym for Strong Thermal Emission Velocity Enhancement.

For their study, the research team analyzed a STEVE event that took place on March 28th, 2008, to see if it was produced in a similar fashion to an aurora. To this end, they considered previous research that was conducted using satellites and ground-based observatories, which included the first study on STEVE (published in March of 2018) conducted by a team of NASA-led scientists (of which Gallardo-Lacourt was a co-author).

This study indicated the presence of a stream of fast-moving ions and super-hot electrons passing through the ionosphere where STEVE was observed. While the research team suspected the two were connected, they could not conclusively state that the ions and electrons were responsible for producing it. Building on this, Gallardo-Lacourt and her colleagues analyzed the STEVE event that took place in March of 2008.

Rays of aurora borealis reach 60 miles and higher over the Pacific Northwest on Jan. 20, 2016 in this photo taken by astronauts Scott Kelly and Tim Peake from the International Space Station. Credit: NASA

They began by using images from ground-based cameras that record auroras over North America, which they then combined with data from the National Oceanic and Atmospheric Administration‘s (NOAA) Polar Orbiting Environmental Satellite 17 (POES-17). This satellite, which can measure the precipitation of charged particles into the ionosphere, was passing directly over the ground-based cameras during the STEVE event.

What they found was that the POES-17 satellite detected no charged particles raining down on the ionosphere during the event. This means that STEVE is not likely to be caused by the same mechanism as an aurora, and is therefore an entirely new type of optical phenomenon – which the team refer to as “skyglow”. As Gallardo-Lacourt explained in an AGU press release:

“Our main conclusion is that STEVE is not an aurora. So right now, we know very little about it. And that’s the cool thing, because this has been known by photographers for decades. But for the scientists, it’s completely unknown.”

Looking ahead, Galladro-Lacourt and her colleagues seek to test the conclusions of the NASA-led study. In short, they want to find out whether the streams of fast ions and hot electrons that were detected in the ionosphere are responsible for STEVE, or if the light is being produced higher up in the atmosphere. One thing is for certain though; for aurora chasers, evening sky-watching has become more interesting!

Further Reading: AGU

Hubble Sees Intense Auroras on Uranus

Auroras on Uranus Credit: NASA/ESA
Auroras on Uranus Credit: NASA/ESA

This is a composite image of Uranus by Voyager 2 and two different observations made by Hubble — one for the ring and one for the auroras. These auroras occurred in the planet’s southern latitudes near the planet’s south magnetic pole. Like Jupiter and Saturn, hydrogen atoms excited by blasts of the solar wind are the cause for the glowing white patches seen in both photos. Credit: NASA/ESA

Earth doesn’t have a corner on auroras. Venus, Mars, Jupiter, Saturn, Uranus and Neptune have their own distinctive versions. Jupiter’s are massive and powerful; Martian auroras patchy and weak.

Auroras are caused by streams of charged particles like electrons that originate with solar winds and in the case of Jupiter, volcanic gases spewed by the moon Io. Whether solar particles or volcanic sulfur, the material gets caught in powerful magnetic fields surrounding a planet and channeled into the upper atmosphere. There, the particles interact with atmospheric gases such as oxygen or nitrogen and spectacular bursts of light result. With Jupiter, Saturn and Uranus excited hydrogen is responsible for the show.

These composite images show Uranian auroras, which scientists caught glimpses of through the Hubble in 2011. In the left image, you can clearly see how the aurora stands high above the planet’s denser atmosphere. These photos combine Hubble pictures made in UV and visible light by Hubble with photos of Uranus’ disk from the Voyager 2 and a third image of the rings from the Gemini Observatory in Hawaii and Chile. The auroras are located close to the planet’s north magnetic pole, making these northern lights.
Credit: NASA, ESA, and L. Lamy (Observatory of Paris, CNRS, CNES)

Auroras on Earth, Jupiter and Saturn have been well-studied but not so on the ice-giant planet Uranus. In 2011, the Hubble Space Telescope took the first-ever image of the auroras on Uranus. Then in 2012 and 2014 a team from the Paris Observatory took a second look at the auroras in ultraviolet light using the Space Telescope Imaging Spectrograph (STIS) installed on Hubble.

From left: Auroras on Earth (southern auroral oval is seen over Antarctica), Jupiter and Saturn. In each case, the rings of permanent aurora are centered on their planets’ magnetic poles which aren’t too far from the geographic poles, unlike topsy-turvy Uranus. Credit: NASA

Two powerful bursts of solar wind traveling from the sun to Uranus stoked the most intense auroras ever observed on the planet in those years. By watching the auroras over time, the team discovered that these powerful shimmering regions rotate with the planet. They also re-discovered Uranus’ long-lost magnetic poles, which were lost shortly after their discovery by Voyager 2 in 1986 due to uncertainties in measurements and the fact that the planet’s surface is practically featureless. Imagine trying to find the north and south poles of a cue ball. Yeah, something like that.

In both photos, the auroras look like glowing dots or patchy spots. Because Uranus’ magnetic field is inclined 59° to its spin axis (remember, this is the planet that rotates on its side!) , the auroral spots appear far from the planet’s north and south geographic poles. They almost look random but of course they’re not. In 2011, the spots lie close to the planet’s north magnetic pole, and in 2012 and 2014, near the south magnetic pole — just like auroras on Earth.

An auroral display can last for hours here on the home planet, but in the case of the 2011 Uranian lights, they pulsed for just minutes before fading away.

Want to know more? Read the team’s findings in detail here.

What Was the Carrington Event?

What Was The Carrington Event?
What Was The Carrington Event?

Isn’t modern society great? With all this technology surrounding us in all directions. It’s like a cocoon of sweet, fluffy silicon. There are chips in my fitness tracker, my bluetooth headset, mobile phone, car keys and that’s just on my body.

At all times in the Cain household, there dozens of internet devices connected to my wifi router. I’m not sure how we got to the point, but there’s one thing I know for sure, more is better. If I could use two smartphones at the same time, I totally would.

And I’m sure you agree, that without all this technology, life would be a pale shadow of its current glory. Without these devices, we’d have to actually interact with each other. Maybe enjoy the beauty of nature, or something boring like that.

It turns out, that terrible burning orb in the sky, the Sun, is fully willing and capable of bricking our precious technology. It’s done so in the past, and it’s likely to take a swipe at us in the future.

I’m talking about solar storms, of course, tremendous blasts of particles and radiation from the Sun which can interact with the Earth’s magnetosphere and overwhelm anything with a wire.

Credit: NASA

In fact, we got a sneak preview of this back in 1859, when a massive solar storm engulfed the Earth and ruined our old timey technology. It was known as the Carrington Event.

Follow your imagination back to Thursday, September 1st, 1859. This was squarely in the middle of the Victorian age.

And not the awesome, fictional Steampunk Victorian age where spectacled gentleman and ladies of adventure plied the skies in their steam-powered brass dirigibles.

No, it was the regular crappy Victorian age of cholera and child labor. Technology was making huge leaps and bounds, however, and the first telegraph lines and electrical grids were getting laid down.

Imagine a really primitive version of today’s electrical grid and internet.

On that fateful morning, the British astronomer Richard Carrington turned his solar telescope to the Sun, and was amazed at the huge sunspot complex staring back at him. So impressed that he drew this picture of it.

Richard Carrington’s sketch of the sunspots seen just before the 1859 Carrington event.

While he was observing the sunspot, Carrington noticed it flash brightly, right in his telescope, becoming a large kidney-shaped bright white flare.

Carrington realized he was seeing unprecedented activity on the surface of the Sun. Within a minute, the activity died down and faded away.

And then about 5 minutes later. Aurora activity erupted across the entire planet. We’re not talking about those rare Northern Lights enjoyed by the Alaskans, Canadians and Northern Europeans in the audience. We’re talking about everyone, everywhere on Earth. Even in the tropics.

In fact, the brilliant auroras were so bright you could read a book to them.

The beautiful night time auroras was just one effect from the monster solar flare. The other impact was that telegraph lines and electrical grids were overwhelmed by the electricity pushed through their wires. Operators got electrical shocks from their telegraph machines, and the telegraph paper lit on fire.

What happened? The most powerful solar flare ever observed is what happened.

In this image, the Solar Dynamics Observatory (SDO) captured an X1.2 class solar flare, peaking on May 15, 2013. Credit: NASA/SDO

A solar flare occurs because the Sun’s magnetic field lines can get tangled up in the solar atmosphere. In a moment, the magnetic fields reorganize themselves, and a huge wave of particles and radiation is released.

Flares happen in three stages. First, you get the precursor stage, with a blast of soft X-ray radiation. This is followed by the impulsive stage, where protons and electrons are accelerated off the surface of the Sun. And finally, the decay stage, with another burp of X-rays as the flare dies down.

These stages can happen in just a few seconds or drag out over an hour.

Remember those particles hurled off into space? They take several hours or a few days to reach Earth and interact with our planet’s protective magnetosphere, and then we get to see beautiful auroras in the sky.

This geomagnetic storm causes the Earth’s magnetosphere to jiggle around, which drives charges through wires back and forth, burning out circuits, killing satellites, overloading electrical grids.

Back in 1859, this wasn’t a huge deal, when our quaint technology hadn’t progressed beyond the occasional telegraph tower.

Today, our entire civilization depends on wires. There are wires in the hundreds of satellites flying overhead that we depend on for communications and navigation. Our homes and businesses are connected by an enormous electrical grid. Airplanes, cars, smartphones, this camera I’m using.

Credit: Wikimedia Commons.

Everything is electronic, or controlled by electronics.

Think it can’t happen? We got a sneak preview back in March, 1989 when a much smaller geomagnetic storm crashed into the Earth. People as far south as Florida and Cuba could see auroras in the sky, while North America’s entire interconnected electrical grid groaned under the strain.

The Canadian province of Quebec’s electrical grid wasn’t able to handle the load and went entirely offline. For 12 hours, in the freezing Quebec winter, almost the entire province was without power. I’m telling you, that place gets cold, so this was really bad timing.

Satellites went offline, including NASA’s TDRS-1 communication satellite, which suffered 250 separate glitches during the storm.

And on July 23, 2012, a Carrington-class solar superstorm blasted off the Sun, and off into space. Fortunately, it missed the Earth, and we were spared the mayhem.

If a solar storm of that magnitude did strike the Earth, the cleanup might cost $2 trillion, according to a study by the National Academy of Sciences.

The July 23, 2012 CME would have caused a Carrington-like event had it hit Earth. Thankfully for us and our technology, it missed. Credit: NASA’s Goddard Space Flight Center

It’s been 160 years since the Carrington Event, and according to ice core samples, this was the most powerful solar flare over the last 500 years or so. Solar astronomers estimate solar storms like this happen twice a millennium, which means we’re not likely to experience another one in our lifetimes.

But if we do, it’ll cause worldwide destruction of technology and anyone reliant on it. You might want to have a contingency plan with some topic starters when you can’t access the internet for a few days. Locate nearby interesting nature spots to explore and enjoy while you wait for our technological civilization to be rebuilt.

Have you ever seen an aurora in your lifetime? Give me the details of your experience in the comments.

How Can You see the Northern Lights?

Aurora borealis in Fairbanks, AK. on Monday night March 16. Credit: John Chumack

The Northern Lights have fascinated human beings for millennia. In fact, their existence has informed the mythology of many cultures, including the Inuit, Northern Cree, and ancient Norse. They were also a source of intense fascination for the ancient Greeks and Romans, and were seen as a sign from God by medieval Europeans.

Thanks to the birth of modern astronomy, we now know what causes both the Aurora Borealis and its southern sibling – Aurora Australis. Nevertheless, they remain the subject of intense fascination, scientific research, and are a major tourist draw. For those who live north of 60° latitude, this fantastic light show is also a regular occurrence.

Causes:

Aurora Borealis (and Australis) is caused by interactions between energetic particles from the Sun and the Earth’s magnetic field. The invisible field lines of Earth’s magnetoshere travel from the Earth’s northern magnetic pole to its southern magnetic pole. When charged particles reach the magnetic field, they are deflected, creating a “bow shock” (so-named because of its apparent shape) around Earth.

However, Earth’s magnetic field is weaker at the poles, and some particles are therefore able to enter the Earth’s atmosphere and collide with gas particles in these regions. These collisions emit light that we perceive as wavy and dancing, and are generally a pale, yellowish-green in color.

The variations in color are due to the type of gas particles that are colliding. The common yellowish-green is produced by oxygen molecules located about 100 km (60 miles) above the Earth, whereas high-altitude oxygen – at heights of up to 320 km (200 miles) – produce all-red auroras. Meanwhile, interactions between charged particles and nitrogen will produces blue or purplish-red auroras.

Variability:

The visibility of the northern (and southern) lights depends on a lot of factors, much like any other type of meteorological activity. Though they are generally visible in the far northern and southern regions of the globe, there have been instances in the past where the lights were visible as close to the equator as Mexico.

In places like Alaska, Norther Canada, Norway and Siberia, the northern lights are often seen every night of the week in the winter. Though they occur year-round, they are only visible when it is rather dark out. Hence why they are more discernible during the months where the nights are longer.

The magnetic field and electric currents in and around Earth generate complex forces that have immeasurable impact on every day life. The field can be thought of as a huge bubble, protecting us from cosmic radiation and charged particles that bombard Earth in solar winds. It’s shaped by winds of particles blowing from the sun called the solar wind, the reason it’s flattened on the “sun-side” and swept out into a long tail on the opposite side of the Earth. Credit: ESA/ATG medialab
The magnetic field and electric currents in and around Earth generate complex forces, and also lead to the phenomena known as aurorae. Credit: ESA/ATG medialab

Because they depend on the solar wind, auroras are more plentiful during peak periods of activity in the Solar Cycle. This cycle takes places every 11 years, and is marked by the increase and decrease of sunspots on the sun’s surface. The greatest number of sunspots in any given solar cycle is designated as a “Solar Maximum“, whereas the lowest number is a “Solar Minimum.”

A Solar Maximum also accords with bright regions appearing in the Sun’s corona, which are rooted in the lower sunspots. Scientists track these active regions since they are often the origin of eruptions on the Sun, such as solar flares or coronal mass ejections.

The most recent solar minimum occurred in 2008. As of January 2010, the Sun’s surface began to increase in activity, which began with the release of a lower-intensity M-class flare. The Sun continued to get more active, culminating in a Solar Maximum by the summer of 2013.

Locations for Viewing:

The ideal places to view the Northern Lights are naturally located in geographical regions north of 60° latitude.  These include northern Canada, Greenland, Iceland, Scandinavia, Alaska, and Northern Russia. Many organizations maintain websites dedicated to tracking optimal viewing conditions.

The camera recorded pale purple and red but the primary color visible to the eye was green. Credit: Bob Kin
An image captured of the northern lights, which appear pale purple and red, though the primary color visible to the eye was green. Credit: Bob Kin

For instance, the Geophysical Institute of the University of Alaska Fairbanks maintains the Aurora Forecast. This site is regularly updated to let residents know when auroral activity is high, and how far south it will extend. Typically, residents who live in central or northern Alaska (from Fairbanks to Barrow) have a better chance than those living in the south (Anchorage to Juneau).

In Northern Canada, auroras are often spotted from the Yukon, the Northwest Territories, Nunavut, and Northern Quebec. However, they are sometimes seen from locations like Dawson Creek, BC; Fort McMurry, Alberta; northern Saskatchewan and the town of Moose Factory by James Bay, Ontario. For information, check out Canadian Geographic Magazine’s “Northern Lights Across Canada“.

The National Oceanic and Atmospheric Agency also provides 30 minute forecasts on auroras through their Space Weather Prediction Center. And then there’s Aurora Alert, an Android App that allows you to get regular updates on when and where an aurora will be visible in your region.

Understanding the scientific cause of auroras has not made them any less awe-inspiring or wondrous. Every year, countless people venture to locations where they can be seen. And for those serving aboard the ISS, they got the best seat in the house!

Speaking of which, be sure to check out this stunning NASA video which shows the Northern Lights being viewed from the ISS:

We have written many interesting articles about Auroras here at Universe Today. Here’s The Northern and Southern Lights – What is an Aurora?, What is the Aurora Borealis?, What is the Aurora Australis?, What Causes the Northern Lights?, How Does the Aurora Borealis Form?, and Watch Fast and Furious All-sky Aurora Filmed in Real Time.

For more information, visit the THEMIS website – a NASA mission that is currently studying space weather in great detail. The Space Weather Center has information on the solar wind and how it causes aurorae.

Astronomy Cast also has episodes on the subject, like Episode 42: Magnetism Everywhere.

Sources:

Northern Lights by Drone? You Won’t Believe Your Eyes

Credit: Oli Haukur, Ozzo Photography


Northern lights over Iceland filmed by Icelandic photographer Oli Haukur using a drone. Don’t forget to expand the screen.

I knew the era of real-time northern lights video was upon us. I just didn’t think drones would get into the act this soon. What was I thinking? They’re perfect for the job! If watching the aurora ever made you feel like you could fly, well now you can in Oli Haukur’s moving, real-time footage of an amazing aurora display filmed by drone.

Oli Haukur operates the drone and camera during a test run. Credit: Oli Hauku / OZZO Photography
Oli Haukur operates the drone and camera during a test run. Credit: Oli Hauku / OZZO Photography

Haukur hooked up a Sony a7S II digital camera and ultra-wide Sigma 20mm f/1.4 lens onto his DJI Matrice 600 hexacopter. The light from the gibbous moon illuminates the rugged shoreline and crashing waves of the Reykjanes Peninsula (The Steamy Peninsula) as while green curtains of aurora flicker above.

The Sony camera is shown attached to the drone. To capture the aurora, Haukur used a fast lens, high ISO and set the frame rate to 25 frames per second (fps) or 1/25th of a second per frame. Credit: Oli Haukur / OZZO Photography
The Sony camera is shown attached to the drone. To capture the aurora, Haukur used a fast lens, high ISO and set the frame rate to 25 frames per second (fps) or 1/25th of a second per frame. Credit: Oli Haukur / OZZO Photography

When the camera ascends over a sea stack, you can see gulls take off below, surprised by the mechanical bird buzzing just above their heads. Breathtaking. You might notice at the same time a flash of light — this is from the lighthouse beacon seen earlier in the video.

To capture his the footage, Haukur used a “fast” lens (one that needs only a small amount of light to make a picture) and an ISO of 25,600. The camera is capable of ISO 400,000, but the lower ISO provided greater resolution and color quality.

Moonlight provided all the light needed to bring out the landscape.

The drone used to make the night flight. Credit: Oli Haukur
The drone used to make the night flight and aurora recording is seen up close on takeoff. Haukur, of Rejkyavik, Iceland, works as a freelance photographer and filmmaker as well as providing professional drone services in that country. Credit: Oli Haukur / OZZO Photography

Remember when ISO 1600 or 3200 was as far you dared to go before the image turned to a grainy mush? Last year Canon released a camera that can literally see in the dark with a top ISO over 4,000,000! There’s no question we’ll be seeing more live aurora and drone aurora video in the coming months. Haukur plans additional shoots this winter and early next spring. Living in Iceland, which lies almost directly beneath the permanent auroral oval, you can schedule these sort of things!

Am I allowed one tiny criticism? I want more — a minute and a half is barely enough! Haukur shot plenty but released only a taste to social media to prove it could be done and share the joy. Let’s hope he compiles the rest and makes it available for us to lose our selves in soon.

Give Mom the Aurora Tonight / Mercury Transit Update

A coronal aurora twists overhead in this photo taken early on May 8 from near Duluth, Minn. Credit: Bob King

Skywatchers across the northern tier of states, the Midwest and southern Canada were treated to a spectacular display of the aurora borealis last night. More may be on tap for tonight. Credit: Bob King
Skywatchers across the northern tier of states, the Midwest and southern Canada were treated to a spectacular display of the aurora borealis last night. More may be on tap for tonight — in honor of Mother’s Day of course! Credit: Bob King

Simple choices can sometimes lead to dramatic turns of events in our lives. Before turning in for the night last night, I opened the front door for one last look at the night sky. A brighter-than-normal auroral arc arched over the northern horizon. Although no geomagnetic activity had been forecast, there was something about that arc that hinted of possibility.

It was 11:30 at the time, and it would have been easy to go to bed, but I figured one quick drive north for a better look couldn’t hurt. Ten minutes later the sky exploded. The arc subdivided into individual pillars of light that stretched by degrees until they reached the zenith and beyond. Rhythmic ripples of light – much like the regular beat of waves on a beach — pulsed upward through the display. You can’t see a chill going up your spine, but if you could, this is what it would look like.

A coronal aurora twists overhead in this photo taken early on May 8 from near Duluth, Minn. Credit: Bob King
A coronal aurora twists overhead in this photo taken around 12:15 a.m. on May 8 from near Duluth, Minn. What this photo and the others don’t show is how fast parts of the display flashed and flickered. Shapes would form, disappear and reform in seconds. Credit: Bob King

Auroras can be caused by huge eruptions of subatomic particles from the Sun’s corona called CMEs or coronal mass ejections, but they can also be sparked by holes in the solar magnetic canopy. Coronal holes show up as blank regions in photos of the Sun taken in far ultraviolet and X-ray light. Bright magnetic loops restrain the constant leakage of electrons and protons from the Sun called the solar wind. But holes allow these particles to fly away into space at high speed. Last night’s aurora traces its origin back to one of these holes.

Visualization of the solar wind encountering Earth's magnetic "defenses" known as the magnetosphere. Clouds of southward-pointing plasma are able to peel back layers of the Sun-facing bubble and stack them into layers on the planet's nightside (center, right). The layers can be squeezed tightly enough to reconnect and deliver solar electrons (yellow sparkles) directly into the upper atmosphere to create the aurora. Credit: JPL
Both a bar magnet (left) and Earth are surrounded by magnetic fields with north and south poles. Earth’s field is shaped by charged particles – electrons and protons – flowing from the sun called the solar wind. Credit: Andy Washnik (left) and NASA

The subatomic particles in the gusty wind come bundled with their own magnetic field with a plus or positive pole and a minus or negative pole. Recall that an ordinary bar magnet also  has a “+” and “-” pole, and that like poles repel and opposite poles attract. Earth likewise has magnetic poles which anchor a large bubble of magnetism around the planet called the magnetosphere.

Visualization of the solar wind encountering Earth's magnetic "defenses" known as the magnetosphere. Clouds of southward-pointing plasma are able to peel back layers of the Sun-facing bubble and stack them into layers on the planet's nightside (center, right). The layers can be squeezed tightly enough to reconnect and deliver solar electrons (yellow sparkles) directly into the upper atmosphere to create the aurora. Credit: JPL
Visualization of the solar wind encountering Earth’s magnetic “defenses” known as the magnetosphere. Clouds of southward-pointing plasma are able to peel back layers of the Sun-facing bubble and stack them into layers on the planet’s nightside (center, right). The layers can be squeezed tightly enough to reconnect and deliver solar electrons (yellow sparkles) directly into the upper atmosphere to create the aurora. Credit: JPL

Field lines in the magnetosphere — those invisible lines of magnetic force around every magnet — point toward the north pole. When the field lines in the solar wind also point north, there’s little interaction between the two, almost like two magnets repelling one another. But if the cloud’s lines of magnetic force point south, they can link directly into Earth’s magnetic field like two magnets snapping together. Particles, primarily electrons, stream willy-nilly at high speed down Earth’s magnetic field lines like a zillion firefighters zipping down fire poles.  They crash directly into molecules and atoms of oxygen and nitrogen around 60-100 miles overhead, which absorb the energy and then release it moments later in bursts of green and red light.

View of the eastern sky during the peak of this morning's aurora. Credit: Bob King
View of the eastern sky during the peak of this morning’s aurora. Credit: Bob King

So do great forces act on the tiniest of things to produce a vibrant display of northern lights. Last night’s show began at nightfall and lasted into dawn. Good news! The latest forecast calls for another round of aurora tonight from about 7 p.m. to 1 a.m. CDT (0-6 hours UT). Only minor G1 storming (K index =5) is expected, but that was last night’s expectation, too. Like the weather, the aurora can be tricky to pin down. Instead of a G1, we got a G3 or strong storm. No one’s complaining.

So if you’re looking for that perfect last minute Mother’s Day gift, take your mom to a place with a good view of the northern sky and start looking at the end of dusk for activity. Displays often begin with a low, “quiet” arc and amp up from there.

The camera recorded pale purple and red but the primary color visible to the eye was green. Credit: Bob Kin
The camera recorded pale purple, red and green, but the primary color visible to the eye was green. Cameras capture far more color than what the naked eye sees because even faint colors increase in intensity during a time exposure. Details: ISO 800, f/2.8, 13 seconds. Credit: Bob King

Aurora or not, tomorrow features a big event many of us have anticipated for years — the transit of Mercury. You’ll find everything you’ll need to know in this earlier story, but to recap, Mercury will cross directly in front of the Sun during the late morning-early evening for European observers and from around sunrise (or before) through late morning-early afternoon for skywatchers in the Americas. Because the planet is tiny and the Sun deadly bright, you’ll need a small telescope capped with a safe solar filter to watch the event. Remember, never look directly at the Sun at any time.

Nov. 15, 1999 transit of Mercury photographed in UV light by the TRACE satellite. Credit: NASA
Nov. 15, 1999 transit of Mercury photographed in UV light by the TRACE satellite. Credit: NASA

If you’re greeted with cloudy skies or live where the transit can’t be seen, be sure to check out astronomer Gianluca Masi’s live stream of the event. He’ll hook you up starting at 11:00 UT (6 a.m. CDT) tomorrow.

The table below includes the times across the major time zones in the continental U.S. for Monday May 9:

Time Zone Eastern (EDT) Central (CDT) Mountain (MDT) Pacific (PDT)
Transit start 7:12 a.m. 6:12 a.m. 5:12 a.m. Not visible
Mid-transit 10:57 a.m. 9:57 a.m. 8:57 a.m. 7:57 a.m.
Transit end 2:42 p.m. 1:42 p.m. 12:42 p.m. 11:42 a.m.

Watch the Aurora Shimmer and Dance in Real Time

I for one have never witnessed the northern lights in person, and like many people I experience them vicariously through the photography and videos of more well-traveled (or more polar-bound) individuals. Typically these are either single-shot photos or time-lapses made up of many somewhat long-exposure images. As beautiful as these are, they don’t accurately capture the true motion of this upper atmospheric phenomenon. But here we get a look at the aurora as it looks in real time, captured on camera by Jon Kerr from northern Finland. Check it out above or watch in full screen HD on YouTube.

The video was shot with a full-frame mirrorless Sony a7S. See more of Jon’s aurora videos on YouTube here.

Video credit: Jon Kerr. HT SunViewer on Twitter.

What Causes the Northern Lights?

What Causes the Northern Lights?

Have you ever seen the beautiful auroral displays in the high latitudes? These are the Northern and Southern Lights. But what dark physics wizardry is going on to make this happen?

If you live in the high latitudes, like Alaska, or New Zealand, you’ve probably had a chance to see an aurora. Here in Canada, we call them the Northern Lights or the Aurora Borealis, but the lucky folks in the far southern latitudes see them too. On a good night, you can see flickering sheets of light that dance across the night sky, producing an amazing display of colors. You can see green, red and even yellow and purple ghostly displays.

So what causes the Northern Lights? They’re produced as our planet moves through the chemtrails emanating from the womp-rat sized exhaust ports of Planet X. Originating in the Bush-Cheney administration during a failed co-invasion attempt of the lizard people from the hollow part of the flat earth and aliens from John Carpenter’s THE THING. They cause diabetes, gluten sensitivity, itchy bun noodles and homeopathy and herald the coming of the Grand Nagus of MMA-UFC-ENTJ-LOL-WTF-BBQ. That is, if you believe everything you read on the internet.

Auroras are in fact caused by interactions between energetic particles from the Sun and the Earth’s magnetic field. The Earth is filled with liquid metal, and it rotates inside turning our planet into a giant magnet. Invisible magnetic field lines travel from the Earth’s northern magnetic pole to its southern magnetic pole. This is why compasses point north, they’re following the field lines produced by this giant metallic spinning goo core. Or as I like to call it “The Planetary Shield Generator”, which should not be confused with the giant whirling metallic debris field orbiting the Earth which is our “Alien Invasion Shield”. Which you can learn about in another episode.

So why would we need a Planetary Shield, you might ask? It is because we are perpetually under assault by our great enemy, the Sun. Our Sun is constantly releasing a flurry of energetic particles right at us. These particles are electrically charged and driven to Earth by the Solar Wind. When they encounter the Earth’s magnetic field, they’re forced into a spiral along the magnetic field lines. Eventually they collide with an oxygen or nitrogen atom in the Earth’s atmosphere and release photons of light.

An intense aurora on September 12, 2014 in central Maine. Credit: Mike Taylor
An intense aurora on September 12, 2014 in central Maine. Credit: Mike Taylor

So, thanks to the spinning magnet goo core, our planetary shield converts these particles into beautiful night time displays. Although there can be auroras almost any night in the highest latitudes, we see the most brilliant auroral displays after large flares on the Sun. The most powerful flares blast a hail of particles that’s so intense, auroral displays can be seen at mid and even low-latitudes. It sounds dangerous, but we’re perfectly safe here, beneath our protective atmosphere and magnetic field.

You might be amazed to know that auroral displays can even make sounds. People have reported crackling noises coming from the sky during an aurora. Even though the auroras themselves are at very high altitudes, the particle interactions can happen just a few hundred meters above the ground. People have reported hearing claps and crackles during an aurora, and this has been verified by microphones placed by scientists. If you could get high up into the atmosphere, I’m sure the sounds would be amazing.

The interactions between the Sun and our planet are just another gift we get from the night sky. If you’ve never seen an aurora with your own eyes, you really need to add them to your bucket list. Organize a trip to northern Europe or Alaska and get a chance to see this amazing display of nature.

Have you ever been lucky enough to see the Northern Lights? Tell us a story in the comments below.