Why Can’t We See the Center of the Milky Way?

NGC 1300, a spiral, barred galaxy viewed nearly face-on by the Hubble Space Telescope. Credit: NASA/ESA/Hubble

For millennia, human beings have stared up at the night sky and stood in awe of the Milky Way. Today, stargazers and amateur astronomers continue in this tradition, knowing that what they are witnessing is in fact a collection of hundreds of millions of stars and dust clouds, not to mention billions of other worlds.

But one has to wonder, if we can see the glowing band of the Milky Way, why can’t we see what lies towards the center of our galaxy? Assuming we are looking in the right direction, shouldn’t we able to see that big, bright bulge of stars with the naked eye? You know the one I mean, it’s in all the pictures!

Unfortunately, in answering this question, a number of reality checks have to be made. When it is dark enough, and conditions are clear, the dusty ring of the Milky Way can certainly be discerned in the night sky. However, we can still only see about 6,000 light years into the disk with the naked eye, and relying on the visible spectrum. Here’s a rundown on why that is.

Size and Structure:

First of all, the sheer size of our galaxy is enough to boggle the mind. NASA estimates that the Milky Way is between 100,000 – 120,000 light-years in diameter – though some information suggests it may be as much as 150,000 – 180,000 light-years across. Since one light year is about 9.5 x 1012km, this makes the diameter of the Milky Way galaxy approximately 9.5 x 1017 – 1.14 x 1018 km in diameter.

To put that in layman’s terms, that 950 quadrillion (590 quadrillion miles) to 1.14 quintillion km (7oo septendecillion miles). The Milky Way is also estimated to contain 100–400 billion stars, (although that could be as high as one trillion), and may have as many as 100 billion planets.

At the center, measuring approx. 10,000 light-years in diameter, is the tightly-packed group of stars known as the “bulge”. At the very center of this bulge is an intense radio source, named Sagittarius A*, which is likely to be a supermassive black hole that contains 4.1 million times the mass of our Sun.

We, in our humble Solar System, are roughly 28,000 light years away from it. In short, this region is simply too far for us to see with the naked eye. However, there is more to it than just that…

Radio image of the night sky. Credit: Max Planck Institute for Radio Astronomy, generated by Glyn Haslam.

Low Surface Brightness:

In addition to being a spiral barred galaxy, the Milky Way is what is known as a Low Surface Brightness (LSB) galaxy –  a classification that refers to galaxies where their surface brightness is, when viewed from Earth, at least one magnitude lower than the ambient night sky. Essentially, this means that the sky needs to be darker than about 20.2 magnitude per square arcsecond in order for the Milky Way to be seen.

This makes the Milky Way difficult to see from any location on Earth where light pollution is common – such as urban or suburban locations – or when stray light from the Moon is a factor. But even when conditions are optimal, there still only so much we can see with the naked eye, for reasons that have much to do with everything that lies between us and the galactic core.

Dust and Gas:

Though it may not look like it to the casual observer, the Milky Way is full of dust and gas. This matter is known as as the interstellar medium, a disc that makes up a whopping 10-15% of the luminous/visible matter in our galaxy and fills the long spaces in between the stars. The thickness of the dust deflects visible light (as is explained here), leaving only infrared light to pass through the dust.

"This dazzling infrared image from NASA's Spitzer Space Telescope shows hundreds of thousands of stars crowded into the swirling core of our spiral Milky Way galaxy. In visible-light pictures, this region cannot be seen at all because dust lying between Earth and the galactic center blocks our view. Credit: NASA/JPL-Caltech
This dazzling infrared image from NASA’s Spitzer Space Telescope showing hundreds of thousands of stars crowded into the swirling core of our spiral Milky Way galaxy. Credit: NASA/JPL-Caltech

This makes infrared telescopes like the Spitzer Space Telescope extremely valuable tools in mapping and studying the galaxy, since it can peer through the dust and haze to give us extraordinarily clear views of what is going on at the heart of the galaxy and in star-forming regions. However, when looking in the visual spectrum, light from Earth, and the interference effect of dust and gas limit how far we can see.

Limited Instrumentation:

Astronomers have been staring up at the stars for thousands of years. However, it was only in comparatively recent times that they even knew what they were looking at. For instance, in his book Meteorologica, Aristotle (384–322 BC) wrote that the Greek philosophers Anaxagoras (ca. 500–428 BCE) and Democritus (460–370 BCE) had proposed that the Milky Way might consist of distant stars.

However, Aristotle himself believed the Milky Way was be caused by “the ignition of the fiery exhalation of some stars which were large, numerous and close together” and that these ignitions takes place in the upper part of the atmosphere. Like many of Aristotle’s theories, this would remain canon for western scholars until the 16th and 17th centuries, at which time, modern astronomy would begin to take root.

Meanwhile, in the Islamic world, many medieval scholars took a different view. For example, Persian astronomer Abu Rayhan al-Biruni (973–1048) proposed that the Milky Way is “a collection of countless fragments of the nature of nebulous stars”. Ibn Qayyim Al-Jawziyya (1292–1350) of Damascus similarly proposed that the Milky Way is “a myriad of tiny stars packed together in the sphere of the fixed stars” and that these stars are larger than planets.

Persian astronomer Nasir al-Din al-Tusi (1201–1274) also claimed in his book Tadhkira that: “The Milky Way, i.e. the Galaxy, is made up of a very large number of small, tightly clustered stars, which, on account of their concentration and smallness, seem to be cloudy patches. Because of this, it was likened to milk in color.”

Despite these theoretical breakthroughs, it was not until 1610, when Galileo Galilei turned his telescope towards the heavens, that proof existed to back up these claims. With the help of telescopes, astronomers realized for the first time that there were many, many more stars in the sky than the ones we can see, and that all of the ones that we can see are a part of the Milky Way.

Over a century later, William Herschel created the first theoretical diagram of what the Milky Way (1785) looked like. In it, he described the shape of the Milky Way as a large, cloud-like collection of stars, and claimed the Solar System was close to the center. Though erroneous, this was the first attempt at hypothesizing what our cosmic backyard looked like.

It was not until the 20th century that astronomers were able to get an accurate picture of what our Galaxy actually looks like. This began with astronomer Harlow Shapely measuring the distributions and locations of globular star clusters. From this, he determined that the center of the Milky Way was 28,000 light years from Earth, and that the center was a bulge, rather than a flat area.

This annotated artist's conception illustrates our current understanding of the structure of the Milky Way galaxy. Image Credit: NASA
This annotated artist’s conception illustrates our current understanding of the structure of the Milky Way galaxy. Image Credit: NASA

In 1923, astronomer Edwin Hubble used the largest telescope of his day at the Mt. Wilson Observatory near Pasadena, Calif., to observe galaxies beyond our own. By observing what spiral galaxies look like throughout the universe, astronomers and scientists were able to get an idea of what our own looks like.

Since that time, the ability to observe our galaxy through multiple wavelengths (i.e. radio waves, infrared, x-rays, gamma-rays) and not just the visible spectrum has helped us to get an even better picture. In addition, the development of space telescopes – such as Hubble, Spitzer, WISE, and Kepler – have been instrumental in allowing us to make observations that are not subject to interference from our atmosphere or meteorological conditions.

But despite our best efforts, we are still limited by a combination of perspective, size, and visibility barriers. So far, all pictures that depict our galaxy are either artist’s renditions or pictures of other spiral galaxies. Until quite recently in our history, it was very difficult for scientists to gauge what the Milky Way looks like, mainly because we’re embedded inside it.

To get an actual view of the Milky Way Galaxy, several things would need to happen. First, we would need a camera that worked in space that had a wide field of view (aka. Hubble, Spitzer, etc). Then we’d need to fly that camera to a spot that’s roughly 100,000 light years above the Milky Way and point it back at Earth. With our current propulsion technology, that would take 2.2 billion years to accomplish.

Milky Way in infrared. Image credit: COBE
Milky Way in infrared. Image credit: COBE

Fortunately, as noted already, astronomers have a few additional wavelengths they can use to see into the galaxy, and these are making much more of the galaxy visible. In addition to seeing more stars and more star clusters, we’re able to see more of the center of our Galaxy as well, which includes the supermassive black hole that has been theorized as existing there.

For some time, astronomers have had name for the region of sky that is obscured by the Milky Way – the “Zone of Avoidance“. Back in the days when astronomers could only make visual observations, the Zone of Avoidance took up about 20% of the night sky. But by observing in other wavelengths, like infrared, x-ray, gamma rays, and especially radio waves, astronomers can see all but about 10% of the sky. What’s on the other side of that 10% is mostly a mystery.

In short, progress is being made. But until such time that we can send a ship beyond our Galaxy that can take snapshots and beam them back to us, all within the space of our own lifetimes, we’ll be dependent on what we can observe from the inside.

We have many interesting articles on the Milky Way here at Universe Today. For example, here’s What is the Milky Way? And here’s an article on why it’s called The Milky Way, how big it is, why it rotates, and what the closest galaxy is to it.

And here are 10 Facts About the Milky Way. And be sure to check out our Guide to Space section on the Milky Way.

And be to sure to check out Universe Today’s interview with Dr. Andrea Ghez, Professor of Astronomy at UCLA, talking about what is at the center of our Galaxy.

What Was Here Before the Solar System?

What Was Here Before the Solar System?

The Solar System is 4.5 billion years old, but the Universe is much older. What was here before our Solar System formed?

The Solar System is old. Like, dial-up-fax-machine-old. 4.6 billion years to be specific. The Solar System has nothing on the Universe. It’s been around for 13.8 billion years, give or take a few hundred million. That means the Universe is three times older than the Solar System.

Astronomers think the Milky Way, is about 13.2 billion years old; almost as old as the Universe itself. It formed when smaller dwarf galaxies merged together to create the grand spiral we know today. It turns out the Milky Way has about 8.6 billion years of unaccounted time. Billions and billions of years to get up to all kinds of mischief before the Solar System showed up to keep an eye on things.

Our Galaxy takes 220 million years to rotate, so it’s done this about 60 times in total. As it turns, it swirls and mixes material together like a giant space blender. Clouds of gas and dust come together into vast star forming regions, massive stars have gone supernova, and then the clusters themselves have been torn up again, churning the stars into the Milky Way. This happens in the galaxy’s spiral arms, where the areas of higher density lead to regions of star formation.

So let’s go back, more than 4.6 billion years, before there was an Earth, a Sun, or even a Solar System. Our entire region was gas and dust, probably within one of the spiral arms. Want to know what it looked like? Some of your favorite pictures from the Hubble Space Telescope should help.

Here’s the Orion, Eagle, and the Tarantula Nebulae. These are star forming regions. They’re clouds of hydrogen left over from Big Bang, with dust expended by aging stars, and seeded with heavier elements formed by supernovae.

Astrophoto: The Orion Nebula by Vasco Soeiro
The Orion Nebula. Image Credit: Vasco Soeiro

After a few million years, regions of higher density began forming into stars, both large and small. Let’s take a look at a star-forming nebula again. See the dark knots? Those are newly forming stars surrounded by gas and dust in the stellar nursery.

You’re seeing many many stars, some are enormous monsters, others are more like our Sun, and some smaller red dwarfs. Most will eventually have planets surrounding them – and maybe, eventually life? If this was the environment, where are all those other stars?

Why do I feel so alone? Where are all our brothers and sisters? Where’s all the other stuff that’s in that picture? Where’s all my stuff?

TRAPPIST First Light Image of the Tarantula Nebula.  Credit:  ESO
TRAPPIST First Light Image of the Tarantula Nebula. Credit: ESO

Apparently nature hates a messy room and a cozy stellar nest. The nebula that made the Sun was either absorbed into the stars, or blown away by the powerful stellar winds from the largest stars. Eventually they cleared out the nebula, like a fans blowing out a smoky room.

At the earliest point, our solar nebula looked like the Eagle Nebula, after millions of years, it was more like the Pleiades Star Cluster, with bright stars surrounded by hazy nebulosity. It was the gravitational forces of the Milky Way which tore the members of our solar nursery into a structure like the Hyades Cluster. Finally, gravitational interactions tore our cluster apart, so our sibling stars were lost forever in the churning arms of the Milky Way.

We’ll never know exactly what was here before the Solar System; that evidence has long been blown away into space. But we can see other places in the Milky Way that give us a rough idea of what it might have looked like at various stages in its evolution.

What should we call our original star forming nebula? Give our own nebula a name in the comments below.

Two Stars On A Death Spiral Set To Detonate As A Supernova

This artist’s impression shows the central part of the planetary nebula Henize 2-428. The core of this unique object consists of two white dwarf stars, each with a mass a little less than that of the Sun. They are expected to slowly draw closer to each other and merge in around 700 million years. This event will create a dazzling supernova of Type Ia and destroy both stars. Credit: ESO/L. Calçada

Two white dwarfs circle around one other, locked in a fatal tango. With an intimate orbit and a hefty combined mass, the pair is ultimately destined to collide, merge, and erupt in a titanic explosion: a Type Ia supernova.

Or so goes the theory behind the infamous “standard candles” of cosmology.

Now, in a paper published in today’s issue of Nature, a team of astronomers have announced observational support for such an arrangement – two massive white dwarf stars that appear to be on track for a very explosive demise.

The astronomers were originally studying variations in planetary nebulae, the glowing clouds of gas that red giant stars throw off as they fizzle into white dwarfs. One of their targets was the planetary nebula Henize 2-428, an oddly lopsided specimen that, the team believed, owed its shape to the existence of two central stars, rather than one. After observing the nebula with the ESO’s Very Large Telescope, the astronomers concluded that they were correct – Henize 2-428 did, in fact, have a binary star system at its heart.

This image of the unusual planetary nebula was obtained using ESO’s Very Large Telescope at the Paranal Observatory in Chile. In the heart of this colourful nebula lies a unique object consisting of two white dwarf stars, each with a mass a little less than that of the Sun. These stars are expected to slowly draw closer to each other and merge in around 700 million years. This event will create a dazzling supernova of Type Ia and destroy both stars. Credit: ESO
This image of the unusual planetary nebula was obtained using ESO’s Very Large Telescope at the Paranal Observatory in Chile. In the heart of this colourful nebula lies a unique object consisting of two white dwarf stars, each with a mass a little less than that of the Sun. These stars are expected to slowly draw closer to each other and merge in around 700 million years. This event will create a dazzling supernova of Type Ia and destroy both stars. Credit: ESO

“Further observations made with telescopes in the Canary Islands allowed us to determine the orbit of the two stars and deduce both the masses of the two stars and their separation,” said Romano Corradi, a member of the team.

And that is where things get juicy.

In fact, the two stars are whipping around each other once every 4.2 hours, implying a narrow separation that is shrinking with each orbit. Moreover, the system has a combined heft of 1.76 solar masses – larger, by any count, than the restrictive Chandrasekhar limit, the maximum ~1.4 solar masses that a white dwarf can withstand before it detonates. Based on the team’s calculations, Henize 2-428 is likely to be the site of a type Ia supernova within the next 700 million years.

“Until now, the formation of supernovae Type Ia by the merging of two white dwarfs was purely theoretical,” explained David Jones, another of the paper’s coauthors. “The pair of stars in Henize 2-428 is the real thing!”

Check out this simulation, courtesy of the ESO, for a closer look at the fate of the dynamic duo:

 

Astronomers should be able to use the stars of Henize 2-428 to test and refine their models of type Ia supernovae – essential tools that, as lead author Miguel Santander-García emphasized, “are widely used to measure astronomical distances and were key to the discovery that the expansion of the Universe is accelerating due to dark energy.” This system may also enhance scientists’ understanding of the precursors of other irregular planetary nebulae and supernova remnants.

The team’s work was published in the February 9 issue of Nature. A copy of the paper is available here.

What Is This Empty Hole In Space?

The dark nebula LDN 483 imaged by ESO's La Silla Observatory in Chile (ESO)

What may appear at first glance to be an eerie, empty void in an otherwise star-filled scene is really a cloud of cold, dark dust and molecular gas, so dense and opaque that it obscures the distant stars that lie beyond it from our point of view.

Similar to the more well-known Barnard 68, “dark nebula” LDN 483 is seen above in an image taken by the MPG/ESO 2.2-meter telescope’s Wide Field Imager at the La Silla Observatory in Chile.

While it might seem like a cosmic no-man’s-land, no stars were harmed in the making of this image – on the contrary, dark nebulae like LDN 483 are veritable maternity wards for stars. As their cold gas and dust contracts and collapses new stars form inside them, remaining cool until they build up enough density and gravity to ignite fusion within their cores. Then, shining brightly, the young stars will gradually blast away the remaining material with their outpouring wind and radiation to reveal themselves to the galaxy.

The process may take several million years, but that’s just a brief flash in the age of the Universe. Until then, gestating stars within LDN 483 and many other clouds like it remain dim and hidden but keep growing strong.

Wide-field view of the LDN 483 region. (Credit: ESO and Digitized Sky Survey 2)
Wide-field view of the LDN 483 region. (Credit: ESO and Digitized Sky Survey 2)

Located fairly nearby, LDN 483 is about 700 light-years away from Earth in the constellation Serpens.

Source: ESO

Weekly Space Hangout – Jan 9, 2015: Andy Weir of “The Martian”

Host: Fraser Cain (@fcain)
Special Guest: Andy Weir , author of “The Martian”
Andy was first hired as a programmer for a national laboratory at age fifteen and has been working as a software engineer ever since. He is also a lifelong space nerd and a devoted hobbyist of subjects like relativistic physics, orbital mechanics, and the history of manned spaceflight. “The Martian” is his first novel.

Guests:
Morgan Rehnberg (cosmicchatter.org / @cosmic_chatter)
Ramin Skibba (@raminskibba)
Brian Koberlein (@briankoberlein)
Dave Dickinson (@astroguyz / www.astroguyz.com)
Nicole Gugliucci (cosmoquest.org / @noisyastronomer)
Continue reading “Weekly Space Hangout – Jan 9, 2015: Andy Weir of “The Martian””

Famous Hubble Star Explosion Is Expanding, New Animation Reveals

Eta Carinae from Hubble's STIS instrument. Credit: NASA, ESA, and the Hubble SM4 ERO Team

Wow! One of the most famous star explosions captured by the Hubble Space Telescope — several times — shows clear evidence of expansion in this new animation. You can see here the Homunculus Nebula getting bigger and bigger between 1995 and 2008, when Hubble took pictures of the Eta Carinae star system. More details from one of the animation authors below.

“I had the idea to check the Hubble image of Eta Carinae because I know this star rather well,” wrote Philippe Henarejos, one of the authors of the animation, in an e-mail to Universe Today. Henarejos has written several times about the star for the magazine he edits, Ciel et espace (Sky and Space) and also published a French-language book on star histories.

“Telling this story, I realized that astronomers knew for a long time that the Homunculus Nebula was expanding. Also, I knew that the HST had taken many photos of this object since 1995. So I thought that thanks to the very high resolution of the HST images, it could be possible to see the expansion.”

Eta Carinae from Hubble's STIS instrument. Credit: NASA, ESA, and the Hubble SM4 ERO Team
Eta Carinae from Hubble’s STIS instrument. Credit: NASA, ESA, and the Hubble SM4 ERO Team

Along with colleague Jean-Luc Dauvergne, Henarejos tracked down two images in the archives and searched for a fixed object that wouldn’t be moving as the expansion occurred, which they decided would be two stars close to the border of the field of view. Then Dauvergne found a third image that clearly showed the expansion happening.

The two gentlemen then verified their findings with astronomer John Martin from the University of Illinois, who maintains a page on Eta Carinae. “He told me that the expansion is real,” Henarejos said.

And the animation is already getting attention. After being published in the new magazine First Light, it was featured today on the Astronomy Picture of the Day website.

Eta Carinae mysteriously brightened about 170 years ago, becoming the second-most luminous object in Earth’s night sky. Then it faded 150 years ago. Astronomers are still examining the system to see what might have caused this.

This Dark Nebula Looks Like it is Writhing in Agony

LBN 438 is a dark nebula and can be found in the constellation Lacerta. Credit and copyright: Adam Block/Mount Lemmon SkyCenter/University of Arizona.

We’ve got at least one scary night ahead with Halloween falling on Friday. Adam Block, manager at the Mount Lemmon SkyCenter at the University of Arizona sent us this image of the nebula LBN 438, explaining that this dark cloud of dust glows eerily both from scattered starlight and extended red emission due to the radiation of a nearby star.

“My mind alternates between something dancing in ecstasy or writhing in torture,” Adam said. “Either way, very spooky…”

Adam just happens to have access to a 32-inch Schulman Telescope (RCOS) at Mt Lemmon, and used a SBIG STX16803 CCD Camera to get this scary shot. Find out more about this image here.

Video: Warp Into A Star Nursery 3,000 Light Years Away

Zoom! This video brings you up close to a region where a bunch of stars are being born. This new video from the European Southern Observatory shows a so-called an HII region made up of hydrogen gas, which is a common feature of nurseries. Another famous example is the Eagle Nebula’s Pillars of Creation.

Continue reading “Video: Warp Into A Star Nursery 3,000 Light Years Away”

Carnival of Space #357

Carnival of Space. Image by Jason Major.
Carnival of Space. Image by Jason Major.

Welcome, come in to the 357th Carnival of Space! The carnival is a community of space science and astronomy writers and bloggers, who submit their best work each week for your benefit. I’m Susie Murph, part of the team at Universe Today and now, on to this week’s stories!

We’re going to start off with a double blast from the past, courtesy of CosmoQuest! This week, they’re featuring Stuart Robbins’s blog post from January 13, 2012, titled “Perspective on the Apollo 15 Landing Site.” He explores the region of the Moon that is the current home of the MoonMappers images that YOU are still mapping and exploring today – the Apollo 15 landing site area. It’s a neat place and we can study a lot of things there. Due to a quirk of optics and angles, you can even imagine you’re flying towards it.

Next, we stay with Cosmoquest’s Moon Mappers as they highlight the interesting discovery that the groundbreaking Soviet Lunakhod 2 lunar rover traveled farther than earlier estimated on it’s mission in 1972. Visit MoonMappers at Cosmoquest for more great stories!

Moving through history, we travel over to io9’s Space blog for a history of the American Space Shuttle disasters is a grim reminder of the danger of space travel. Just released is Major Malfunction, a documentary on the two Shuttle catastrophes. Major malfunction is an understatement for the destruction of Space Shuttle Challenger moments after launch in 1986, and the loss of Space Shuttle Columbia during re-entry in 2003.

Next at io9, we visit Mars to view the magnificent Draa, which are ancient landforms created from waves of sand. Check out the article and it’s images here.

We also have another article from io9, which new astronaut Reid Wiseman recounts his first adventurous days in space.

Now we’ll jump over for some gorgeous views from the Chandra X-Ray Observatory! One of their new images is a glorious view of the Whirlpool spiral galaxy which radiates with fantastic points of x-ray light. These image is breath-taking!

Want more gorgeous images? Visit Brownspaceman.com to see his discussion of the Tulip Nebula, which is a composite image which also maps the emissions from this incredible nebula.

Next, we head over to the Meridani Journalfor coverage of a major find in the search for exoplanets. A new world which is more than twice as large as Earth and about 17 times heavier has been discovered, a sort of “mega-Earth” as some have referred to it.

The NextBigFuture Blog lives up to it’s name by bringing us two interesting stories from Elon Musk and his company SpaceX. First, he points out that the key is reusability. Musk said the crewed Dragon is designed to land softly back on Earth and be rapidly turned around for another flight — possibly on the same day. Spacex is aiming for 10 flights without any significant refurbishment for the Dragon v2. The thing that will have to be refurbished is the main heat shield. Further improved heat shield materials [later versions of PICA-X] would mean Spacex could aim for 100 reusable flights.

We then head over to the Urban Astronomer, where recent observations of a very near pair of brown dwarf objects has led to something new: We’re watching the weather on stars themselves!

Finally, we return to Universe Today for some interesting potential missions. First, the B612 Foundation’s privately-funded Sentinel mission, once launched and placed in orbit around the Sun in 2018, will hunt for near-Earth asteroids down to about 140 meters in size using the most advanced infrared imaging technology, without government red tape to hamper the mission. Next, the NASA Innovative Advanced Concepts office announced a dozen far-flung drawing-board proposals that have received $100,000 in Phase 1 funding for the next 9-12 months, one of which is a balloon for exploring Titan. We’re looking forward to hearing about these projects and many others in the coming years.

That’s it for this week’s Carnival! See you all next time!

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.

Stunning 3D Tours of Two Well-Known Nebulae

Two videos recently released by the Hubble team take us on a tour of two famous and intriguing cosmic objects: the stellar wind-blown “celestial snow angel” Sharpless 2-106 and the uncannily equine Horsehead Nebula, imaged in infrared wavelengths by the HST.

Using Hubble imagery complemented with data from the Subaru Infrared Telescope and ESO’s Visible and Infrared Survey Telescope for Astronomy — VISTA, for short — the videos show us an approximation of the three-dimensional structures of these objects relative to the stars surrounding them, providing a perspective otherwise impossible from our viewpoint on Earth.

The stellar nursery Sharpless 2-106 is above; hop on the Horsehead Nebula tour below:
Continue reading “Stunning 3D Tours of Two Well-Known Nebulae”