This Alien Landscape is Actually a Microscopic View of an Atomic Clock

This looks like the landscape feature called penitentes that form in the icy cold on Pluto. But it's actually a glass surface that's part of an atomic clock. Image Credit: Safran/ESA

Navigation satellites couldn’t accomplish anything without extremely accurate clocks. But a regular clock won’t do. Only atomic clocks are accurate enough, and that’s because they tell time with electrons.

Those atomic clocks wear out over time, and that’s what the image shows.

Continue reading “This Alien Landscape is Actually a Microscopic View of an Atomic Clock”

ULA Atlas V Delivers Final GPS IIF Navigation Satellite to Orbit for USAF – Critical to Military/Civilian Users

United Launch Alliance (ULA) Atlas V rocket carrying the GPS IIF-12 mission lifted off at 8:38 a.m. EST on Feb. 5, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

United Launch Alliance (ULA) Atlas V rocket carrying the GPS IIF-12 mission lifted off at 8:38 a.m. EST on Feb. 5, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fla.  Credit: Ken Kremer/kenkremer.com
United Launch Alliance (ULA) Atlas V rocket carrying the GPS IIF-12 mission lifted off at 8:38 a.m. EST on Feb. 5, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION – Despite howling winds and unseasonably frigid temperatures in the ‘sunshine state’, United Launch Alliance’s workhorse Atlas V rocket successfully blasted off this morning, Friday, Feb 5, and delivered the final GPS satellite in the IIF series to orbit for the US Air Force.

The ULA Atlas V carried the Global Positioning System (GPS) IIF-12 navigation satellite to orbit as the booster beautifully pierced the Florida skies – thus completing the constellation of next generation GPS IIF satellites that are critical to both military and civilian users on a 24/7 basis. Continue reading “ULA Atlas V Delivers Final GPS IIF Navigation Satellite to Orbit for USAF – Critical to Military/Civilian Users”

Rocket ‘Anomaly’ Blamed For Putting European Navigation Satellites Into Wrong Orbits

The fifth and sixth Galileo navigation satellites launch Aug. 22, 2014 from French Guiana. Credit: European Space Agency

An independent investigation committee is looking at why two European navigation satellites are in the wrong orbits following their launch from French Guiana last week.

While the first part of the launch went well, officials said telemetry from the satellites showed that the satellites were not where they were supposed to be. The probe is ongoing, but officials believe it is related to a stage of the Soyuz rocket that hefted the satellites into space.

“According to the initial analyses, an anomaly is thought to have occurred during the flight phase involving the Fregat upper stage, causing the satellites to be injected into a noncompliant orbit,” wrote launch provider Arianespace in an update on Saturday (Aug. 23).

Artist's conception of the completed Galileo navigation satellite system. Credit: ESA-P. Carril
Artist’s conception of the completed Galileo navigation satellite system. Credit: ESA-P. Carril

The same day, the European Space Agency added that officials are looking into how the mission would be affected, if at all.

The Galileo satellites, the fifth and sixth of the constellation, are intended to serve as part of a cloud of navigation satellites that would be a European alternative to the United States GPS system. Officials are hoping to launch six to eight more satellites per year until 2017, when 24 satellites and six backups will be ready for full service.

The satellites were supposed to be in a circular orbit, inclined at 55 degrees to the Earth’s equator and have a maximum orbital radius (semi-major axis) of 29,900 km (18,579 miles). Telemetry now shows the satellites are in a non-circular orbit inclined at 49.8 degrees, with a semi-major axis of 26,200 km (16,280 miles).