Not an Alien Megastructure, a Cloud of Dust on a 700-Day Orbit

This illustration depicts a hypothetical uneven ring of dust orbiting KIC 8462852, also known as Boyajian's Star or Tabby's Star. Credit: NASA/JPL-Caltech

The mystery of KIC 8462852 (aka. Boyajian’s Star or Tabby’s Star) continues to excite and intrigue! Ever since it was first seen to be undergoing strange and sudden dips in brightness (back in October of 2015) astronomers have been speculating as to what could be causing this. Since that time, various explanations have been offered, including large asteroids, a large planet, a debris disc or even an alien megastructure.

Many studies have been produced that have sought to assign some other natural explanation to the star’s behavior. The latest comes from an international team of scientists – which included Tabetha Boyajian, the lead author on the original 2016 paper. According to this latest study, which was recently published in The Astrophysical Journal, the star’s long-term dimming patterns are likely the result of an uneven dust cloud moving around the star. Continue reading “Not an Alien Megastructure, a Cloud of Dust on a 700-Day Orbit”

Foom! ‘Superflares’ Erupt From Tiny Red Dwarf Star, Surprising Scientists

Artist's impression of a flare erupting from binary star sytem DG CVn. Credit: NASA's Goddard Space Flight Center/S. Wiessinger

Don’t get too close to this little star! In April, a red dwarf star sent out a series of explosions that peaked at 10,000 times as powerful as the largest solar flare ever recorded.

The tiny star packs a powerful punch because its spin is so quick: it rotates in less than a day, or 30 times faster than the Sun does. Astronomers believe that in the distant past, when the Sun was young, it also was a fast turner — and could have produced “superflares”, as NASA terms the explosions, of its own.

“We used to think major flaring episodes from red dwarfs lasted no more than a day, but Swift detected at least seven powerful eruptions over a period of about two weeks,” stated Stephen Drake, an astrophysicist at NASA’s Goddard Space Flight Center in Maryland. “This was a very complex event.”

The surprising activity came from a red dwarf star in a binary system that together is known as DG Canum Venaticorum (DG CVn). Located just 60 light-years away, the two red dwarfs are each about one-third the size and mass of the Sun. Astronomers can’t say for sure which one sent out the eruption because the stars were so close to each other, at about three times the distance of Earth’s average distance to the sun.

The first flare (which sent out a burst of X-rays) caused an alert in NASA’s Swift Space Telescope’s burst alert telescope on April 23. It’s believed to be caused by the same process that creates flares on our Sun — magnetic field lines twisting and then releasing a burst of energy that sends out radiation.

Three hours later came another flare — scientists have seen similar events on the Sun after one active region sets off flares in another — and then came “successively weaker blasts” in the next 11 days, NASA said. Normal X-ray emissions stabilized about 20 days after the first flare. Swift is now monitoring this star for further activity.

Drake presented his results at the August meeting of the American Astronomical Society’s high energy astrophysics division, which was highlighted in a recent release from NASA.

Source: NASA

GRB Lights Up Ancient Hidden Galaxy

This artist's illustration depicts a gamma-ray burst illuminating clouds of interstellar gas in its host galaxy. By analyzing a recent gamma-ray burst, astronomers were able to learn about the chemistry of a galaxy 12.7 billion light-years from Earth. They discovered it contains only one-tenth of the heavy elements (metals) found in our solar system. Credit: Gemini Observatory/AURA, artwork by Lynette Cook

Once upon a time, more than 12.7 billion years ago, a star was poised on the edge of extinction. It made its home in a galaxy too small, too faint and too far away to even be spotted by the Hubble Space Telescope. Not that it would matter, because this star was going to end its life before the Earth formed. As it blew itself apart, it expelled its materials in twin jets which ripped through space at close to the speed of light – yet the light of its death throes outshone its parent galaxy by a million times.

“This star lived at a very interesting time, the so-called dark ages just a billion years after the Big Bang,” says lead author Ryan Chornock of the Harvard-Smithsonian Center for Astrophysics (CfA).

“In a sense, we’re forensic scientists investigating the death of a star and the life of a galaxy in the earliest phases of cosmic time,” he adds.

When this unsung star expired, it created one of the scariest things in astronomy… a gamma-ray burst (GRB). However, it wasn’t just a normal, garden variety GRB – it was long one, lasting more than four minutes. After century upon century of travel, the light reached our little corner of the Universe and was detected by NASA’s Swift spacecraft on June 6th. Chornock and his team quickly organized follow-up observations by the MMT Telescope in Arizona and the Gemini North telescope in Hawaii.

“We were able to get right on target in a matter of hours,” Chornock says. “That speed was crucial in detecting and studying the afterglow.”

Time to kick back and have a smoke? In a sense. The “afterglow” of a GRB happens when the jets impact the surrounding gas in an almost tsunami-like effect. As it sweeps up the material, it begins to heat and glow. As this light traverses the parent galaxy, it impacts clouds of interstellar gas, illuminating their spectra. Through these chemical signatures, astronomers are able to ascertain what gases the distant galaxy may have contained. As we know, all chemical elements heavier than hydrogen, helium, and lithium are the product of stars. Researchers refer to this as “metal content” and it takes a certain amount of time to accumulate. In the scheme of creation, the elements necessary for life – carbon and oxygen – didn’t exist. What Chornock and his team discovered was the GRB galaxy was host to only about a tenth of the “metals” in our solar system. What does that mean? In the eyes of the astronomers, rocky planets might have been able to form in that far away galaxy, but chances are good that life could not.

“At the time this star died, the universe was still getting ready for life. It didn’t have life yet, but was building the required elements,” says Chornock.

At a redshift of 5.9, or a distance of 12.7 billion light-years, GRB 130606A is one of the most distant gamma-ray bursts ever found.

“In the future we will be able to find and exploit even more distant GRBs with the planned Giant Magellan Telescope,” says Edo Berger of the CfA, a co-author on the publication.

Original Story Source: Harvard Smithsonian Center for Astrophysics News Release.