Watch a Simulation of a Galaxy, From the Big Bang Until the Present Day

Credit: RAS

Since the mid-20th century, scientists have had a pretty good idea of how the Universe came to be. Cosmic expansion and the discovery of the Cosmic Microwave Background (CMB) lent credibility to the Big Bang Theory, and the accelerating rate of expansion led to theories about Dark Energy. Still, there is much about the early Universe that scientists still don’t know, which requires that they rely on simulations on cosmic evolution.

This has traditionally posed a bit of a problem since the limitations of computing meant that simulation could either be large scale or detailed, but not both. However, a team of scientists from Germany and the United States recently completed the most detailed large-scale simulation to date. Known as TNG50, this state-of-the-art simulation will allow researchers to study how the cosmos evolved in both detail and a large scale.

Continue reading “Watch a Simulation of a Galaxy, From the Big Bang Until the Present Day”

The First Stars Formed Very Quickly

Credit: Max Planck Institute for Astronomy

Ever since astronomers realized that the Universe is in a constant state of expansion and that a massive explosion likely started it all 13.8 billion years ago (the Big Bang), there have been unresolved questions about when and how the first stars formed. Based on data gathered by NASA’s Wilkinson Microwave Anisotropy Probe (WMAP) and similar missions, this is believed to have happened about 100 million years after the Big Bang.

Much of the details of how this complex process worked have remained a mystery. However, new evidence gathered by a team led by researchers from the Max Planck Institute for Astronomy indicates that the first stars must have formed rather quickly. Using data from the Magellan Telescopes at Las Campanas Observatory, the team observed a cloud of gas where star formation was taking place just 850 million years after the Big Bang.

Continue reading “The First Stars Formed Very Quickly”

Stunning First Ever Photograph of a Newly Forming Planet

This spectacular image from the SPHERE instrument on ESO's Very Large Telescope is the first clear image of a planet caught in the very act of formation around the dwarf star PDS 70. Credit: ESO/A. Müller et al.

For decades, the most widely-accepted view of how our Solar System formed has been the Nebular Hypothesis. According to this theory, the Sun, the planets, and all other objects in the Solar System formed from nebulous material billions of years ago. This dust experienced a gravitational collapse at the center, forming our Sun, while the rest of the material formed a circumstellar debris ring that coalesced to form the planets.

Thanks to the development of modern telescopes, astronomers have been able to probe other star systems to test this hypothesis. Unfortunately, in most cases, astronomers have only been able to observe debris rings around stars with hints of planets in formation. It was only recently that a team of European astronomers were able to capture an image of a newborn planet, thus demonstrating that debris rings are indeed the birthplace of planets.

The team’s research appeared in two papers that were recently published in Astronomy & Astrophysics, titled “Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70” and “Orbital and atmospheric characterization of the planet within the gap of the PDS 70 transition disk.” The team behind both studies included member from the Max Planck Institute for Astronomy (MPIA) as well as multiple observatories and universities.

Near infrared image of the PDS70 disk obtained with the SPHERE instrument. Credit: ESO/A. Müller, MPIA

For the sake of their studies, the teams selected PDS 70b, a planet that was discovered at a distance of 22 Astronomical Units (AUs) from its host star and which was believed to be a newly-formed body. In the first study – which was led by Miriam Keppler of the Max Planck Institute for Astronomy – the team indicated how they studied the protoplanetary disk around the star PDS 70.

PDS 70 is a low-mass T Tauri star located in the constellation Centaurus, approximately 370 light-years from Earth. This study was performed using archival images in the near-infrared band taken by the Spectro-Polarimetric High-contrast Exoplanet REsearch instrument (SPHERE) instrument on the ESO’s Very Large Telescope (VLT) and the Near-Infrared Coronagraphic Imager on the Gemini South Telescope.

Using these instruments, the team made the first robust detection of a young planet (PDS 70b) orbiting within a gap in its star’s protoplanetary disc and located roughly three billion km (1.86 billion mi) from its central star – roughly the same distance between Uranus and the Sun. In the second study, led by Andre Muller (also from the MPIA) the team describes how they used the SPHERE instrument to measure the brightness of the planet at different wavelengths.

From this, they were able to determine that PDS 70b is a gas giant that has about nine Jupiter masses and a surface temperature of about 1000 °C (1832 °F), making it a particularly “Hot Super-Jupiter”. The planet must be younger than its host star, and is probably still growing. The data also indicated that the planet is surrounded by clouds that alter the radiation emitted by the planetary core and its atmosphere.

Thanks to the advanced instruments used, the team was also able to acquire an image of the planet and its system. As you can see from the image (posted at top) and the video below, the planet is visible as a bright point to the right of the blackened center of the image. This dark region is due to a corongraph, which blocks the light from the star so the team could detect the much-fainter companion.

As Miriam Keppler, a postdoctoral student at the MPIA, explained in a recent ESO press statement:

“These discs around young stars are the birthplaces of planets, but so far only a handful of observations have detected hints of baby planets in them. The problem is that until now, most of these planet candidates could just have been features in the disc.”

In addition to spotting the young planet, the research teams also noted that it has sculpted the protoplanetary disc orbiting the star. Essentially, the planet’s orbit has traced a giant hole in the center of the disc after accumulating material from it. This means that PDS 70 b is still located in the vicinity of its birth place, is likely to still be accumulating material and will continue to grow and change.

For decades, astronomers have been aware of these gaps in the protoplanetary disc and speculated that they were produced by a planet. Now, they finally have the evidence to support this theory. As André Müller explained:

Keppler’s results give us a new window onto the complex and poorly-understood early stages of planetary evolution. We needed to observe a planet in a young star’s disc to really understand the processes behind planet formation.

These studies will be a boon to astronomers, especially when it comes to theoretical models of planet formation and evolution. By determining the planet’s atmospheric and physical properties, the astronomers have been able to test key aspects of the Nebular Hypothesis. The discovery of this young, dust-shrouded planet would not have been were if not for the capabilities of ESO’s SPHERE instrument.

This instrument studies exoplanets and discs around nearby stars using a technique known as high-contrast imaging, but also relies on advanced strategies and data processing techniques. In addition to blocking the light from a star with a coronagraph, SPHERE is able to filter out the signals of faint planetary companions around bright young stars at multiple wavelengths and epochs.

As Prof. Thomas Henning – the director at MPIA, the German co-investigator of the SPHERE instrument, and a senior author on the two studies – stated in a recent MPIA press release:

“After ten years of developing new powerful astronomical instruments such as SPHERE, this discovery shows us that we are finally able to find and study planets at the time of their formation. That is the fulfillment of a long-cherished dream.”

Future observations of this system will also allow astronomers to test other aspects of planet formation models and to learn about the early history of planetary systems. This data will also go a long way towards determining how our own Solar System formed and evolved during its early history.

Further Reading: ESO, MPIA, Astronomy & Astrophysics, Astronomy & Astrophysics (2)

Behind the Scenes: The “Making Of” the First Brown Dwarf Surface Map

Two views of the first brown dwarf map
Two views of the brown dwarf map for Luhman 16B. Image credit: ESO/I. Crossfield

By now, you will probably have heard that astronomers have produced the first global weather map for a brown dwarf. (If you haven’t, you can find the story here.) May be you’ve even built the cube model or the origami balloon model of the surface of the brown dwarf Luhman 16B the researchers provided (here).

Since one of my hats is that of public information officer at the Max Planck Institute for Astronomy, where most of the map-making took place, I was involved in writing a press release about the result. But one aspect that I found particularly interesting didn’t get much coverage there. It’s that this particular bit of research is a good example of how fast-paced astronomy can be these days, and, more generally, it shows how astronomical research works. So here’s a behind-the-scenes look – a making-of, if you will – for the first brown dwarf surface map (see image on the right).

As in other sciences, if you want to be a successful astronomer, you need to do something new, and go beyond what’s been done before. That, after all, is what publishable new results are all about. Sometimes, such progress is driven by larger telescopes and more sensitive instruments becoming available. Sometimes, it’s about effort and patience, such as surveying a large number of objects and drawing conclusion from the data you’ve won.

Ingenuity plays a significant role. Think of the telescopes, instruments and analytical methods developed by astronomers as the tools in a constantly growing tool box. One way of obtaining new results is to combine these tools in new ways, or to apply them to new objects.

That’s why our opening scene is nothing special in astronomy: It shows Ian Crossfield, a post-doctoral researcher at the Max Planck Institute for Astronomy, and a number of colleagues (including institute director Thomas Henning) in early March 2013, discussing the possibility of applying one particular method of mapping stellar surfaces to a class of objects that had never been mapped in this way before.

The method is called Doppler imaging. It makes use of the fact that light from a rotating star is slightly shifted in frequency as the star rotates. As different parts of the stellar surfaces go by, whisked around by the star’s rotation, the frequency shifts vary slightly different depending on where the light-emitting region is located on the star. From these systematic variations, an approximate map of the stellar surface can be reconstructed, showing darker and brighter areas. Stars are much too distant for even the largest current telescopes to discern surface details, but in this way, a surface map can be reconstructed indirectly.

The method itself isn’t new. The basic concept was invented in the late 1950s, and the 1980s saw several applications to bright, slowly rotating stars, with astronomers using Doppler imaging to map those stars’ spots (dark patches on a stellar surface; the stellar analogue to Sun spots).

Crossfield and his colleagues were wondering: Could this method be applied to a brown dwarf – an intermediary between planet and star, more massive than a planet, but with insufficient mass for nuclear fusion to ignite in the object’s core, turning it into a star? Sadly, some quick calculations, taking into account what current telescopes and instruments can and cannot do as well as the properties of known brown dwarfs, showed that it wouldn’t work.

The available targets were too faint, and Doppler imaging needs lots of light: for one because you need to split the available light into the myriad colors of a spectrum, and also because you need to take many different rather short measurements – after all, you need to monitor how the subtle frequency shifts caused by the Doppler effect change over time.

So far, so ordinary. Most discussions of how to make observations of a completely new type probably come to the conclusion that it cannot be done – or cannot be done yet. But in this case, another driver of astronomical progress made an appearance: The discovery of new objects.

Artist's impression of the WISE satellite
Kevin Luhman discovered the brown dwarf pair in data from NASA’s Wide-field Infrared Survey Explorer (WISE; artist’s impression). Image: NASA/JPL-Caltech

On March 11, Kevin Luhman, an astronomer at Penn State University, announced a momentous discovery: Using data from NASA’s Wide-field Infrared Survey Explorer (WISE), he had identified a system of two brown dwarfs orbiting each other. Remarkably, this system was at a distance of a mere 6.5 light-years from Earth. Only the Alpha Centauri star system and Barnard’s star are closer to Earth than that. In fact, Barnard’s star was the last time an object was discovered to be that close to our Solar system – and that discovery was made in 1916.

Modern astronomers are not known for coming up with snappy names, and the new object, which was designated WISE J104915.57-531906.1, was no exception. To be fair, this is not meant to be a real name; it’s a combination of the discovery instrument WISE with the system’s coordinates in the sky. Later, the alternative designation “Luhman 16AB” for the system was proposed, as this was the 16th binary system discovered by Kevin Luhman, with A and B denoting the binary system’s two components.

These days, the Internet gives the astronomical community immediate access to new discoveries as soon as they are announced. Many, probably most astronomers begin their working day by browsing recent submissions to astro-ph, the astrophysical section of the arXiv, an international repository of scientific papers. With a few exceptions – some journals insist on exclusive publication rights for at least a while –, this is where, in most cases, astronomers will get their first glimpse of their colleagues’ latest research papers.

Luhman posted his paper “Discovery of a Binary Brown Dwarf at 2 Parsecs from the Sun” on astro-ph on March 11. For Crossfield and his colleagues at MPIA, this was a game-changer. Suddenly, here was a brown dwarf for which Doppler imaging could conceivably work, and yield the first ever surface map of a brown dwarf.

However, it would still take the light-gathering power of one of the largest telescopes in the world to make this happen, and observation time on such telescopes is in high demand. Crossfield and his colleagues decided they needed to apply one more test before they would apply. Any object suitable for Doppler imaging will flicker ever so slightly, growing slightly brighter and darker in turn as brighter or darker surface areas rotate into view. Did Luhman 16A or 16B flicker – in astronomer-speak: did one of them, or perhaps both, show high variability?

Astronomy comes with its own time scales. Communication via the Internet is fast. But if you have a new idea, then ordinarily, you can’t just wait for night to fall and point your telescope accordingly. You need to get an observation proposal accepted, and this process takes time – typically between half a year and a year between your proposal and the actual observations. Also, applying is anything but a formality. Large facilities, like the European Southern Observatory’s Very Large Telescopes, or space telescopes like the Hubble, typically receive applications for more than 5 times the amount of observing time that is actually available.

But there’s a short-cut – a way for particularly promising or time-critical observing projects to be completed much faster. It’s known as “Director’s Discretionary Time”, as the observatory director – or a deputy – are entitled to distribute this chunk of observing time at their discretion.

Image of the MPG/ESO 2.2 m telescope at ESO's La Silla observatory
To monitor Luhman 16A and B’s brightness flucutations, Beth Biller used the MPG/ESO 2.2. meter telescope at ESO’s La Silla Observatory. Image credit: ESO/José Francisco Salgado (josefrancisco.org)

On April 2, Beth Biller, another MPIA post-doc (she is now at the University of Edinburgh), applied for Director’s Discretionary Time on the MPG/ESO 2.2 m telescope at ESO’s La Silla observatory in Chile. The proposal was approved the same day.

Biller’s proposal was to study Luhman 16A and 16B with an instrument called GROND. The instrument had been developed to study the afterglows of powerful, distant explosions known as gamma ray bursts. With ordinary astronomical objects, astronomers can take their time. These objects will not change much over the few hours an astronomer makes observations, first using one filter to capture one range of wavelengths (think “light of one color”), then another filter for another wavelength range. (Astronomical images usually capture one range of wavelengths – one color – at a time. If you look at a color image, it’s usually the result of a series of observations, one color filter at a time.)

Gamma ray bursts and other transient phenomena are different. Their properties can change on a time scale of minutes, leaving no time for consecutive observations. That is why GROND allows for simultaneous observations of seven different colors.

Biller had proposed to use GROND’s unique capability for recording brightness variations for Luhman 16A and 16B in seven different colors simultaneously – a kind of measurement that had never been done before at this scale. The most simultaneous information researchers had gotten from a brown dwarf had been at two different wavelengths (work by Esther Buenzli, then at the University of Arizona’s Steward Observatory, and colleagues). Biller was going for seven. As slightly different wavelength regimes contain information about gas at slightly different colors, such measurements promised insight into the layer structure of these brown dwarfs – with different temperatures corresponding to different atmospheric layers at different heights.

For Crossfield and his colleagues – Biller among them –, such a measurement of brightness variations should also show whether or not one of the brown dwarfs was a good candidate for Doppler imaging.

Image of the TRAPPIST telescope in its dome.
The robotic telescope TRAPPIST, also at ESO’s La Silla observatory, was the first to find brightness fluctuations of the brown dwarf Luhman 16B.

As it turned out, they didn’t even have to wait that long. A group of astronomers around Michaël Gillon had pointed the small robotic telescope TRAPPIST, designed for detecting exoplanets by the brightness variations they cause when passing between their host star and an observer on Earth, to Luhman 16AB. The same day that Biller had applied for observing time, and her application been approved, the TRAPPIST group published a paper “Fast-evolving weather for the coolest of our two new substellar neighbours”, charting brightness variations for Luhman 16B.

This news caught Crossfield thousands of miles from home. Some astronomical observations do not require astronomers to leave their cozy offices – the proposal is sent to staff astronomers at one of the large telescopes, who make the observations once the conditions are right and send the data back via Internet. But other types of observations do require astronomers to travel to whatever telescope is being used – to Chile, say, to or to Hawaii.

When the brightness variations for Luhman 16B were announced, Crossfield was observing in Hawaii. He and his colleagues realized right away that, given the new results, Luhman 16B had moved from being a possible candidate for the Doppler imaging technique to being a promising one. On the flight from Hawaii back to Frankfurt, Crossfield quickly wrote an urgent observing proposal for Director’s Discretionary Time on CRIRES, a spectrograph installed on one of the 8 meter Very Large Telescopes (VLT) at ESO’s Paranal observatory in Chile, submitting his application on April 5. Five days later, the proposal was accepted.

View of the 8 meter telescope Antu
Antu, the first of the four 8 meter Unit Telescopes (UTs) of the Very Large Telescope (VLT) shortly after installation in 2000. Image: ESO

On May 5, the giant 8 meter mirror of Antu, one of the four Unit Telescopes of the Very Large Telescope, turned towards the Southern constellation Vela (the “Sail of the Ship”). The light it collected was funneled into CRIRES, a high-resolution infrared spectrograph that is cooled down to about -200 degrees Celsius (-330 Fahrenheit) for better sensitivity.

Three and two weeks earlier, respectively, Biller’s observations had yielded rich data about the variability of both the brown dwarfs in the intended seven different wavelength bands.

At this point, no more than two months had passed between the original idea and the observations. But paraphrasing Edison’s famous quip, observational astronomy is 1% observation and 99% evaluation, as the raw data are analyzed, corrected, compared with models and inferences made about the properties of the observed objects.

For Beth Biller’s multi-wavelength monitoring of brightness variations, this took about five months. In early September, Biller and 17 coauthors, Crossfield and numerous other MPIA colleagues among them, submitted their article to the Astrophysical Journal Letters (ApJL) after some revisions, it was accepted on October 17. From October 18 onward, the results were accessible online at astro-ph, and a month later they were published on the ApJL website.

In late September, Crossfield and his colleagues had finished their Doppler imaging analysis of the CRIRES data. Results of such an analysis are never 100% certain, but the astronomers had found the most probable structure of the surface of Luhman 16B: a pattern of brighter and darker spots; clouds made of iron and other minerals drifting on hydrogen gas.

As is usual in the field, the text they submitted to the journal Nature was sent out to a referee – a scientist, who remains anonymous,  and who gives recommendations to the journal’s editors whether or not a particular article should be published. Most of the time, even for an article the referee thinks should be published, he or she has some recommendations for improvement. After some revisions, Nature accepted the Crossfield et al. article in late December 2013.

With Nature, you are only allowed to publish the final, revised version on astro-ph or similar servers no less than 6 month after the publication in the journal. So while a number of colleagues will have heard about the brown dwarf map on January 9 at a session at the 223rd Meeting of the American Astronomical Society, in Washington, D.C., for the wider astronomical community, the online publication, on January 29, 2014, will have been the first glimpse of this new result. And you can bet that, seeing the brown dwarf map, a number of them will have started thinking about what else one could do. Stay tuned for the next generation of results.

And there you have it: 10 months of astronomical research, from idea to publication, resulting in the first surface map of a brown dwarf (Crossfield et al.) and the first seven-wavelength-bands-study of brightness variations of two brown dwarfs (Biller et al.). Taken together, the studies provide fascinating image of complex weather patterns on an object somewhere between a planet and a star the beginning of a new era for brown dwarf study, and an important step towards another goal: detailed surface maps of giant gas planets around other stars.

On a more personal note, this was my first ever press release to be picked up by the Weather Channel.

Astronomers Discover Ancient Planetary System

Artist’s impression of HIP 11952 and its two Jupiter-like planets. Image credit: Timotheos Samartzidis

[/caption]

From a press release from the Max Planck Institute for Astronomy:

A group of European astronomers has discovered an ancient planetary system that is likely to be a survivor from one of the earliest cosmic eras, 13 billion years ago. The system consists of the star HIP 11952 and two planets, which have orbital periods of 290 and 7 days, respectively. Whereas planets usually form within clouds that include heavier chemical elements, the star HIP 11952 contains very little other than hydrogen and helium. The system promises to shed light on planet formation in the early universe – under conditions quite different from those of later planetary systems, such as our own.

It is widely accepted that planets are formed in disks of gas and dust that swirl around young stars. But look into the details, and many open questions remain – including the question of what it actually takes to make a planet. With a sample of, by now, more than 750 confirmed planets orbiting stars other than the Sun, astronomers have some idea of the diversity among planetary systems. But also, certain trends have emerged: Statistically, a star that contains more “metals” – in astronomical parlance, the term includes all chemical elements other than hydrogen and helium – is more likely to have planets.

This suggests a key question: Originally, the universe contained almost no chemical elements other than hydrogen and helium. Almost all heavier elements have been produced, over time inside stars, and then flung into space as massive stars end their lives in giant explosions (supernovae). So what about planet formation under conditions like those of the very early universe, say: 13 billion years ago? If metal-rich stars are more likely to form planets, are there, conversely, stars with a metal content so low that they cannot form planets at all? And if the answer is yes, then when, throughout cosmic history, should we expect the very first planets to form?

Now a group of astronomers, including researchers from the Max-Planck-Institute for Astronomy in Heidelberg, Germany, has discovered a planetary system that could help provide answers to those questions. As part of a survey targeting especially metal-poor stars, they identified two giant planets around a star known by its catalogue number as HIP 11952, a star in the constellation Cetus (“the whale” or “the sea monster”) at a distance of about 375 light-years from Earth. By themselves, these planets, HIP 11952b and HIP 11952c, are not unusual. What is unusual is the fact that they orbit such an extremely metal-poor and, in particular, such a very old star!

For classical models of planet formation, which favor metal-rich stars when it comes to forming planets, planets around such a star should be extremely rare. Veronica Roccatagliata (University Observatory Munich), the principal investigator of the planet survey around metal-poor stars that led to the discovery, explains: “In 2010 we found the first example of such a metal-poor system, HIP 13044. Back then, we thought it might be a unique case; now, it seems as if there might be more planets around metal-poor stars than expected.”

HIP 13044 became famous as the “exoplanet from another galaxy” – the star is very likely part of a so-called stellar stream, the remnant of another galaxy swallowed by our own billions of years ago.

Compared to other exoplanetary systems, HIP 11952 is not only one that is extremely metal-poor, but, at an estimated age of 12.8 billion years, also one of the oldest systems known so far. “This is an archaeological find in our own backyard,” adds Johny Setiawan of the Max Planck Institute for Astronomy, who led the study of HIP 11952: “These planets probably formed when our Galaxy itself was still a baby.”

“We would like to discover and study more planetary systems of this kind. That would allow us to refine our theories of planet formation. The discovery of the planets of HIP 11952 shows that planets have been forming throughout the life of our Universe”, adds Anna Pasquali from the Center for Astronomy at Heidelberg University (ZAH), a co-author of the paper.

NASA Unveils Thrilling First Full Frame Images of Vesta from Dawn

Dawn snaps First Full-Frame Image of Asteroid Vesta. NASA's Dawn spacecraft obtained this image of the giant asteroid Vesta with its framing camera on July 24, 2011. It was taken from a distance of about 3,200 miles (5,200 kilometers). Dawn entered orbit around Vesta on July 15, and will spend a year orbiting the body. After that, the next stop on its itinerary will be an encounter with the dwarf planet Ceres. The Dawn mission to Vesta and Ceres is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif. The framing cameras have been developed and built under the leadership of the Max Planck Institute for Solar System Research, Katlenburg-Lindau, Germany, with significant contributions by the German Aerospace Center (DLR) Institute of Planetary Research, Berlin, and in coordination with the Institute of Computer and Communication Network Engineering, Braunschweig, Germany. The framing camera project is funded by NASA, the Max Planck Society and DLR. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

[/caption]

NASA has just released the first full frame images of Vesta– and they are thrilling! The new images unveil Vesta as a real world with extraordinarily varied surface details and in crispy clear high resolution for the first time in human history.

Vesta appears totally alien and completely unique. “It is one of the last major uncharted worlds in our solar system,” says Dr. Marc Rayman, Dawn’s chief engineer and mission manager at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “Now that we are in orbit we can see that it’s a unique and fascinating place.”

“We have been calling Vesta the smallest terrestrial planet,” said Chris Russell, Dawn’s principal investigator at the UCLA. “The latest imagery provides much justification for our expectations. They show that a variety of processes were once at work on the surface of Vesta and provide extensive evidence for Vesta’s planetary aspirations.”

Dawn launch on September 27, 2007 by a Delta II Heavy rocket from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer

The newly published image (shown above) was taken at a distance of 3,200 miles (5,200 kilometers) by Dawn’s framing camera as the probe continues spiraling down to her initial science survey orbit of some 1,700 miles (2,700 km) altitude. The new images show the entire globe all the way since the giant asteroid turns on its axis once every five hours and 20 minutes.

Vesta and its new moon – Dawn – are approximately 114 million miles (184 million kilometers) distant away from Earth.

“The new observations of Vesta are an inspirational reminder of the wonders unveiled through ongoing exploration of our solar system,” said Jim Green, planetary division director at NASA Headquarters in Washington.

The Dark Side of Vesta Captured by Dawn
NASA's Dawn spacecraft obtained this image over the northern hemisphere with its framing camera on July 23, 2011. It was taken from a distance of about 3,200 miles (5,200 kilometers) away from the giant asteroid Vesta. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn was launched atop a Delta II Heavy booster rocket in September 2007, took a gravity assist as it flew past Mars and has been thrusting with exotic ion propulsion for about 70 percent of the time ever since.

Dawn will spend 1 year collecting science data in orbit around Vesta before heading off to the Dwarf Planet Ceres.

The science team has just completed their press briefing. Watch for my more detailed report upcoming soon.

And don’t forget JUNO launches on Aug 5 – It’s an exciting week for NASA Space Science and I’ll be reporting on the Jupiter orbiter’s blastoff and more – as Opportunity closes in on Spirit Point !

NASA’s groundbreaking interplanetary science is all inter connected – because Vesta and Ceres failed to form into full-fledged planets thanks to the disruptive influence of Jupiter.

Read my prior features about Dawn
Dawn Spirals Down Closer to Vesta’s South Pole Impact Basin
First Ever Vesta Vistas from Orbit – in 2D and 3D
Dawn Exceeds Wildest Expectations as First Ever Spacecraft to Orbit a Protoplanet – Vesta
Dawn Closing in on Asteroid Vesta as Views Exceed Hubble
Dawn Begins Approach to Asteroid Vesta and Snaps First Images
Revolutionary Dawn Closing in on Asteroid Vesta with Opened Eyes

Exoplanet of Extragalactic Origin Could Foretell Our Solar System’s Future

Artist's impression of a yellowish star being orbited by an extra-solar planet. Credit: ESO/L. Calçada

[/caption]

While astronomers have detected over 500 extrasolar planets during the past 15 years, this latest one might have the most storied and unusual past. But its future is also of great interest, as it could mirror the way our own solar system might meet its demise. This Jupiter-like planet, called HIP 13044 b, is orbiting a star that used to be in another galaxy but that galaxy was swallowed by the Milky Way. While astronomers have never directly detected an exoplanet in another galaxy, this offers evidence that other galaxies host stars with planets, too. The star is nearing the end of its life and as it expands, could engulf the planet, just as our Sun will likely snuff out our own world. And somehow, this exoplanet has survived the first death throes of the star.

“The star is in the horizontal branch stage and it still has a planet, which is a glimmer of hope for those of us who worry about how our Solar System will look in 5 billion years,” said Markus Poessel, from the Max-Planck-Institut für Astronomie (MPIA) press office.


The star, HIP 13044, lies about 2,000 light-years from Earth in the southern constellation of Fornax (the Furnace). It is part of the so-called Helmi stream, a group of stars that originally belonged to a dwarf galaxy that was devoured by the Milky Way, probably about six to nine billion years ago.

The planet was detected using the radial velocity method — astronomers saw tiny telltale wobbles of the star caused by the gravitational tug of an orbiting companion. The instrument used was FEROS, a high-resolution spectrograph attached to the 2.2-meter MPG/ESO telescope at the La Silla Observatory in Chile.

“This discovery is very exciting,” says Rainer Klement from MPIA, who selected the target stars for this study. “For the first time, astronomers have detected a planetary system in a stellar stream of extragalactic origin. Because of the great distances involved, there are no confirmed detections of planets in other galaxies. But this cosmic merger has brought an extragalactic planet within our reach.”

Last year, another group of astronomers claimed the detection of an extragalactic exoplanet through “pixel lensing” where the planet passing in front of an even more distant star leads to a subtle, but detectable flash. However, this method relies on a singular event — the chance alignment of a distant light source, planetary system and observers on Earth — and there has been no confirmation of this exoplanet.

This artist’s impression shows HIP 13044 b, an exoplanet orbiting a star that entered our galaxy, the Milky Way, from another galaxy. Credit: ESO/L. Calçada

HIP 13044 is in the red giant phase of stellar evolution, and this exoplanet must have survived the period when its host star expanded massively after exhausting the hydrogen fuel supply in its core . The star has now contracted again and is burning helium in its core. Until now, these horizontal branch stars have remained largely uncharted territory for planet-hunters.

“This discovery is part of a study where we are systematically searching for exoplanets that orbit stars nearing the end of their lives,” says Johny Setiawan, also from MPIA, who led the research. “This discovery is particularly intriguing when we consider the distant future of our own planetary system, as the Sun is also expected to become a red giant in about five billion years.”

Our sun is going down the same stellar evolutionary path as HIP 13044, so astronomers may be able to determine the fate of our solar system by studying the system.

Setiawan told Universe Today that he and his team will continue to observe HIP 13044 and other stars in the group to search for other planets. “It is of course difficult to follow how this particular star evolves over time,” he said, “but if you just observe other stars with different evolutionary phase, you can also complete the picture without waiting until this one single star evolves.”

How has this planet survived so far?

“The star is rotating relatively quickly for a horizontal branch star,” said Setiawan. “One explanation is that HIP 13044 swallowed its inner planets during the red giant phase, which would make the star spin more quickly.”

HIP 13044b probably once orbited much farther away from the star but spiraled inwards as the star began to spin faster.

The star also poses interesting questions about how giant planets form, as the star appears to contain very few elements heavier than hydrogen and helium — fewer than any other star known to host planets, and Setiawan said it is a puzzle how such a star could have formed a planet.

“There is indeed a possibility to form planets around metal-poor stars due to gravitational disk instability, which is an alternative to the core accretion model,” Setiawan said in an email. “But, for such a very metal poor star like HIP 13044, I am also not completely sure if the disk instability model can also explain the whole process. Still, it is probably the best explanation for this particular system.”

Source: Max Planck institute for Astronomy, ESO, email exchange with Setiawan

Spiral Galaxies Could Eat Dwarfs All Across the Universe

Stellar streams around the galaxy M 63. Credit: R. Jay Gabany (Blackbird Obs.) in collaboration with D. Martinez-Delgado (MPIA and IAC) et al.

[/caption]

For years, astronomers have seen evidence that – at least in our own local neighborhood — spiral galaxies are consuming smaller dwarf galaxies. As they are digested, these dwarf galaxies are severely distorted, forming structures like strange, looping tendrils and stellar streams that surround the cannibalistic spirals. But now, for the first time, a new survey has detected such tell-tale structures in galaxies more distant than our immediate galactic neighborhood, providing evidence that this galactic cannibalism might take place on a universal scale. Remarkably, these cutting-edge results were obtained with small, amateur-sized telescopes.


Since 1997, astronomers have seen evidence that spirals in our local group of galaxies are swallowing dwarfs. In fact, our own Milky Way is currently in the process of eating the Canis Major dwarf galaxy and the Sagittarius dwarf galaxy. But the Local group with its three spiral galaxies and numerous dwarfs is much too small a sample to see whether this digestive process is happening elsewhere in the Universe. But an international group of researchers led by David Martínez-Delgado from the Max Planck Institute for Astronomy recently completed a survey of spiral galaxies at distances of up to 50 million light-years from Earth, discovering the tell-tale signs of spirals eating dwarfs.

For their observations, the researchers used small telescopes with apertures between 10 and 50 cm, equipped with commercially available CCD cameras. The telescopes are located at two private observatories — one in the US and one in Australia. They are robotic telescopes that can be controlled remotely.

During the “eating” process, when a spiral galaxy is approached by a much smaller companion, such as a dwarf galaxy, the larger galaxy’s uneven gravitational pull severely distorts the smaller star system. Over the course of a few billions of years, tendril-like structures develop that can be detected by sensitive observation. In one typical outcome, the smaller galaxy is transformed into an elongated “tidal stream” consisting of stars that, over the course of additional billions of years, will join the galaxy’s regular stellar inventory through a process of complete assimilation. The study shows that major tidal streams with masses between 1 and 5 percent of the galaxy’s total mass are quite common in spiral galaxies.

One of the galaxies in the survey, NGC 4651, sports a remarkable umbrella-like structure. It is composed of tidal star streams, the remnants of a smaller satellite galaxy which NGC 4651 has attracted and torn apart. This galaxy's distance from Earth is 35 million light-years.Credit: R. Jay Gabany (Blackbird Obs.) in collaboration with D. Martínez-Delgado (MPIA and IAC) et al.

Detailed simulations depicting the evolution of galaxies predict both tidal streams and a number of other distinct features that indicate mergers, such as giant debris clouds or jet-like features emerging from galactic discs. Interestingly, all these various features are indeed seen in the new observations – impressive evidence that current models of galaxy evolution are indeed on the right track.

Smaller satellite galaxies caught by a spiral galaxy are distorted into elongated structures consisting of stars, which are known as tidal streams, as shown in this artist's impression. Credit: Jon Lomberg

The ultra-deep images obtained by Delgado and his colleagues open the door to a new round of systematic galactic interaction studies. Next, with a more complete survey that is currently in progress, the researchers intend to subject the current models to more quantitative tests, checking whether current simulations make the correct predictions for the relative frequency of the different morphological features.

While larger telescopes have the undeniable edge in detecting very distant, but comparatively bright star systems such as active galaxies, this survey provides some of the deepest insight yet when it comes to detecting ordinary galaxies that are similar to our own cosmic home, the Milky Way. The results attest to the power of systematic work that is possible even with smaller instruments.

For more images see this page from the Max Planck Institute for Astronomy

*Note: Originally the lead image image was credited incorrectly, and is actually a product of R. Jay Gabany, an astrophotographer whose work has been featured quite often here on Universe Today. See more of his amazing handiwork at his website, Cosmotography.

Source: Max Planck Institute for Astronomy