The Mars Project! Von Braun’s Ideas for a Mars Mission. Collaboration with Vintage Space

Humans to Mars!
Humans to Mars!

Did you know that it’s been almost 45 years since humans walked on the surface of the Moon? Of course you do. Anyone who loves space exploration obsesses about the last Apollo landings, and counts the passing years of sadness.

Sure, SpaceX, Blue Origins and the new NASA Space Launch Systems rocket offer a tantalizing future in space. But 45 years. Ouch, so much lost time.

What would happen if we could go back in time? What amazing and insane plans did NASA have to continue exploring the Solar System? What alternative future could we have now, 45 years later?

In order to answer this question, I’ve teamed up with my space historian friend, Amy Shira Teitel, who runs the Vintage Space blog and YouTube Channel. We’ve decided to look at two groups of missions that never happened.

In her part, Amy talks about the Apollo Applications Program; NASA’s original plans before the human exploration of the Moon was shut down. More Apollo missions, the beginnings of a lunar base, and even a human flyby of Venus.

In my half of the series, I look at Werner Von Braun’s insanely ambitious plans to send a human mission to Mars. Put it together with Amy’s episode and you can imagine a space exploration future with all the ambition of the Kerbal Space Program.

Keep mind here that we’re not going to constrain ourselves with the pesky laws of physics, and the reality of finances. These ideas were cool, and considered by NASA engineers, but they weren’t necessarily the best ideas, or even feasible.

So, 2 parts, tackle them in any order you like. My part begins right now.

Werner Von Braun, of course, was the architect for NASA’s human spaceflight efforts during the space race. It was under Von Braun’s guidance that NASA developed the various flight hardware for the Mercury, Gemini and Apollo missions including the massive Saturn V rocket, which eventually put a human crew of astronauts on the Moon and safely returned them back to Earth.

Wernher von Braun. Credit: NASA/Marshall Space Flight Center

Von Braun was originally a German rocket scientist, pivotal to the Nazi “rocket team”, which developed the ballistic V-2 rockets. These unmanned rockets could carry a 1-tonne payload 800 kilometers away. They were developed in 1942, and by 1944 they were being used in war against Allied targets.

By the end of the war, Von Braun coordinated his surrender to the Allies as well as 500 of his engineers, including their equipment and plans for future rockets. In “Operation Paperclip”, the German scientists were captured and transferred to the White Sands Proving Ground in New Mexico, where they would begin working on the US rocket efforts.

Von Braun and others standing in front a V-2 rocket engine at White Sands. Credit: U.S. Army/ Ordway Collection/Space Rocket Center

Before the work really took off, though, Von Braun had a couple of years of relative downtime, and in 1947 and 1948, he wrote a science fiction novel about the human exploration of Mars.

The novel itself was never published, because it was terrible, but it also contained a detailed appendix containing all the calculations, mission parameters, hardware designs to carry out this mission to Mars.

The Mars Project

In 1952, this appendix was published in Germany as “Das Marsproject”, or “The Mars Project”. And an English version was published a few years later. Collier’s Weekly Magazine did an 8-part special on the Mars Project in 1952, captivating the world’s imagination.

Here’s the plan: In the Mars Project, Von Braun envisioned a vast armada of spaceships that would make the journey from Earth to Mars. They would send a total of 10 giant spaceships, each of which would weigh about 4,000 tonnes.

Just for comparison, a fully loaded Saturn V rocket could carry about 140 tonnes of payload into Low Earth Orbit. In other words, they’d need a LOT of rockets. Von Braun estimated that 950 three-stage rockets should be enough to get everything into orbit.

Ships being assembled in orbit. Credit: Collier’s

All the ships would be assembled in orbit, and 70 crewmembers would take to their stations for an epic journey. They’d blast their rockets and carry out a Mars Hohmann transfer, which would take them 8 months to make the journey from Earth to Mars.

The flotilla consisted of 7 orbiters, huge spheres that would travel to Mars, go into orbit and then return back to Earth. It also consisted of 3 glider landers, which would enter the Martian atmosphere and stay on Mars.

Once they reached the Red Planet, they would use powerful telescopes to scan the Martian landscape and search for safe and scientifically interesting landing spots. The first landing would happen at one of the planet’s polar caps, which Von Braun figured was the only guaranteed flat surface for a landing.

A rocket-powered glider descending towards Mars. Credit: Collier’s

At this point, it’s important to note that Von Braun assumed that the Martian atmosphere was about as thick as Earth’s. He figured you could use huge winged gliders to aerobrake into the atmosphere and land safely on the surface.

He was wrong. The atmosphere on Mars is actually only 1% as thick as Earth’s, and these gliders would never work. Newer missions, like SpaceX’s Red Dragon and Interplanetary Transport Ship will use rockets to make a powered landing.

I think if Von Braun knew this, he could have modified his plans to still make the whole thing work.

Landed at the polar cap. Credit: Collier’s

Once the first expedition landed at one of the polar caps, they’d make a 6,400 kilometer journey across the harsh Martian landscape to the first base camp location, and build a landing strip. Then two more gliders would detach from the flotilla and bring the majority of the explorers to the base camp. A skeleton crew would remain in orbit.

Once again, I think it’s important to note that Von Braun didn’t truly understand how awful the surface of Mars really is. The almost non-existent atmosphere and extreme cold would require much more sophisticated gear than he had planned for. But still, you’ve got to admire his ambition.

Preparing the gliders for rocket-powered ascent. Credit: Collier’s

With the Mars explorer team on the ground, their first task was to turn their glider-landers into rockets again. They would stand them up and get them prepped to blast off from the surface of Mars when their mission was over.

The Martian explorers would set up an inflatable habitat, and then spend the next 400 days surveying the area. Geologists would investigate the landscape, studying the composition of the rocks. Botanists would study the hardy Martian plant life, and seeing what kinds of Earth plants would grow.

Zoologists would study the local animals, and help figure out what was dangerous and what was safe to eat. Archeologists would search the region for evidence of ancient Martian civilizations, and study the vast canal network seen from Earth by astronomers. Perhaps they’d even meet the hardy Martians that built those canals, struggling to survive to this day.

Once again, in the 1940s, we thought Mars would be like the Earth, just more of a desert. There’d be plants and animals, and maybe even people adapted to the hardy environment. With our modern knowledge, this sounds quaint today. The most brutal desert on Earth is a paradise compared to the nicest place on Mars. Von Braun did the best he could with the best science of the time.

Finally, at the end of their 400 days on Mars, the astronauts would blast off from the surface of Mars, meet up with the orbiting crew, and the entire flotilla would make the return journey to Earth using the minimum-fuel Mars-Earth transfer trajectory.

The planned trajectories to and from Mars. Credit: Collier’s

Although Von Braun got a lot of things wrong about his Martian mission plan, such as the thickness of the atmosphere and habitability of Mars, he got a lot of things right.

He anticipated a mission plan that required the least amount of fuel, by assembling pieces in orbit, using the Hohmann transfer trajectory, exploring Mars for 400 days to match up Earth and Mars orbits. He developed the concept of using orbiters, detachable landing craft and ascent vehicles, used by the Apollo Moon missions.

The missions never happened, obviously, but Von Braun’s ideas served as the backbone for all future human Mars mission plans.

I’d like to give a massive thanks to the space historian David S.F. Portree. He wrote an amazing book called Humans to Mars, which details 50 years of NASA plans to send humans to the Red Planet, including a fantastic synopsis of the Mars Project.

I asked David about how Von Braun’s ideas influenced human spaceflight, he said it was his…

“… reliance on a conjunction-class long-stay mission lasting 400 days. That was gutsy – in the 1960s, NASA and contractor planners generally stuck with opposition-class short-stay missions. In recent years we’ve seen more emphasis on the conjunction-class mission mode, sometimes with a relatively short period on Mars but lots of time in orbit, other times with almost the whole mission spent on the surface.”

This is Important! Students Are Figuring Out How to Make Beer on the Moon

A team of UC San Diego students have created an experiment to test if beer can be brewed on the Moon. Credit: NASA

When human beings colonize other Solar bodies, how will they see to their basic needs? Already, research has been performed to determine where colonists would be able to procure water, how they might grow their own food, and where and how they might live. But what about the finer things in life, the things that make all the hard labor and sacrifice worth it? In case it’s not clear yet, I’m talking about beer!

If and when Lunar or Martian colonies become a reality, will the colonists be able to brew and enjoy their own beer? Or will imported beer be the only thing available to them? That’s the question a team of bioengineering students from the University of California San Diego sought to answer. As finalists who competed in the Lab2Moon competition being held by TeamIndus, they combined their love of beer with their love of space exploration.

As the only Indian team in the Google Lunar XPRIZE competition, TeamIndus has been working on a privately-funded spacecraft to send to the Moon. Once complete, TeamIndus hopes to conduct a soft landing on the surface of the Moon later this year. Their accomplishments so far include being one of the five teams selected to compete in the Milestone Prizes and successfully winning the $1 million Milestone Prize for their landing technology.

Johnny Koo, Jared Buchanan, Han Lu Ling, Neeki Ashari, Srivaths Kalyan, and Tavish Traut. Credit: Erik Jepsen/UC San Diego Publications

The Lab2Moon competition was held in order to see a youth experiment brought to the Moon aboard that spacecraft. And while their experiment did not take home the top prize, their final prototype will still be going into space. Thanks to Synergy Moon, who won an XPrize verified launch contract, the experiment will be launched aboard a rocket this December (the planned launch date is currently Dec. 28th, 2017).

For the sake of their experiment, the UC San Diego team – all undergraduates with the Jacobs School of Engineering – sought to test if yeast would be viable in a Lunar environment. As the key ingredient in the production of beer (and many other beneficial things), their experiment sought to determine if Lunar colonists will be capable of becoming their own brewmasters.

Their team name is “Original Gravity”, a delicious pun that alludes to both brewing and the Lunar conditions they are investigating. In the case of brewing, Original Gravity (OG) is the measure of sugars dissolved in the wort (the beer before it is fermented). In the case of the Moon, it refers to the fact that Lunar gravity is just 0.165 times that of Earth’s, which could affect the behavior of the microorganisms like yeast.

As Neeki Ashari, a fifth-year bioengineering student and the team’s PR & Operations Lead, said in a University press release:

“The idea started out with a few laughs amongst a group of friends. We all appreciate the craft of beer, and some of us own our own home-brewing kits. When we heard that there was an opportunity to design an experiment that would go up on India’s moonlander, we thought we could combine our hobby with the competition by focusing on the viability of yeast in outer space.”

With sponsorship from the Omega Yeast Labs, the team designed a unique brewing system. First, all the prep work that precedes the adding of yeast – for instance, combining malted barley and water to create wort – would take place on Earth. Second, the team plans to combine the “fermentation” and “carbonation” phases – which are usually done separately – into one phase.

This process makes for a system that is much easier to design, eliminates the need for releasing accumulated CO² (which can be a hazard) and also prevents the possibility of over-pressurization if anything in the system fails. Last, the testing of fermentation will not rely on density measurements that rely on gravity (as brewers do on Earth), using pressure to determine sugar content instead.

As Han Ling, a fifth-year bioengineering undergraduate student and the team’s leader, explained, “Converting the pressure buildup to fermentation progress is straightforward, as long as volume and original gravity – specific gravity before fermentation, hence our name – are known prior to the experiment.” Measuring roughly as wide as a soda can, their system is able to ferment yeast and worst to create beer, even under Lunar conditions.

In addition to being the first-ever experiment to brew beer in space, their experiment will also be the first to craft beer using such a small apparatus. A Srivaths Kaylan, a fourth-year nano-engineering major and the team’s mechanical lead, indicated:

“Our canister is designed based on actual fermenters. It contains three compartments—the top will be filled with the unfermented beer, and the second will contain the yeast. When the rover lands on the moon with our experiment, a valve will open between the two compartments, allowing the two to mix. When the yeast has done it’s job, a second valve opens and the yeast sink to the bottom and separate from the now fermented beer.”

Team Original Gravity’s revolutionary brewing system. Credit: jacobsschool.ucsd.edu

Looking to the future, Ashari and the team hope to see their experiment adapted for use on other planets – like Mars! Other proposed experiments that were entered in the competition included methods for photosynthesis to producing electricity in a Lunar environment.  Beyond making beer, understanding how yeast will behave in a Lunar environment is also important in the development of pharmaceuticals and yeast-containing foods, such as bread.

It certainly is interesting to think about what kind of beers could be produced in an extra-terrestrial environment, isn’t it? Will future generations of brewers have the option of using locally-grown barley, wheat, hops, and yeast cultures to craft their beer? Will the use of Lunar or Martian water have an effect on the taste of the beer?

And then there’s the matter of names and styles. Will Lunar brewers create a Dark Side of the Moon Stout? Will the people of Mars specialize in Red Ales? Like I said, interesting!

Further Reading: UC San Diego, ABC 10News

Is There Life on Mars?

Is There Life on Mars?
Is There Life on Mars?


Perhaps the most important question we can possible ask is, “are we alone in the Universe?”.

And so far, the answer has been, “I don’t know”. I mean, it’s a huge Universe, with hundreds of billions of stars in the Milky Way, and now we learn there are trillions of galaxies in the Universe.

Is there life closer to home? What about in the Solar System? There are a few existing places we could look for life close to home. Really any place in the Solar System where there’s liquid water. Wherever we find water on Earth, we find life, so it make sense to search for places with liquid water in the Solar System.

I know, I know, life could take all kinds of wonderful forms. Enlightened beings of pure energy, living among us right now. Or maybe space whales on Titan that swim through lakes of ammonia. Beep boop silicon robot lifeforms that calculate the wasted potential of our lives.

Sure, we could search for those things, and we will. Later. We haven’t even got this basic problem done yet. Earth water life? Check! Other water life? No idea.

It turns out, water’s everywhere in the Solar System. In comets and asteroids, on the icy moons of Jupiter and Saturn, especially Europa or Enceladus. Or you could look for life on Mars.

Sloping buttes and layered outcrops within the "Murray formation" layer of lower Mount Sharp. Credit: NASA
Sloping buttes and layered outcrops within the “Murray formation” layer of lower Mount Sharp. Credit: NASA

Mars is similar to Earth in many ways, however, it’s smaller, has less gravity, a thinner atmosphere. And unfortunately, it’s bone dry. There are vast polar caps of water ice, but they’re frozen solid. There appears to be briny liquid water underneath the surface, and it occasionally spurts out onto the surface. Because it’s close and relatively easy to explore, it’s been the place scientists have gone looking for past or current life.

Researchers tried to answer the question with NASA’s twin Viking Landers, which touched down in 1976. The landers were both equipped with three biology experiments. The researchers weren’t kidding around, they were going to nail this question: is there life on Mars?

In the first experiment, they took soil samples from Mars, mixed in a liquid solution with organic and inorganic compounds, and then measured what chemicals were released. In a second experiment, they put Earth organic compounds into Martian soil, and saw carbon dioxide released. In the third experiment, they heated Martian soil and saw organic material come out of the soil.

The landing site of Viking 1 on Mars in 1977, with trenches dug in the soil for the biology experiments. Credit: NASA/JPL
The landing site of Viking 1 on Mars in 1977, with trenches dug in the soil for the biology experiments. Credit: NASA/JPL

Three experiments, and stuff happened in all three. Stuff! Pretty exciting, right? Unfortunately, there were equally plausible non-biological explanations for each of the results. The astrobiology community wasn’t convinced, and they still fight in brutal cage matches to this day. It was ambitious, but inconclusive. The worst kind of conclusive.

Researchers found more inconclusive evidence in 1994. Ugh, there’s that word again. They were studying a meteorite that fell in Antarctica, but came from Mars, based on gas samples taken from inside the rock.

They thought they found evidence of fossilized bacterial life inside the meteorite. But again, there were too many explanations for how the life could have gotten in there from here on Earth. Life found a way… to burrow into a rock from Mars.

NASA learned a powerful lesson from this experience. If they were going to prove life on Mars, they had to go about it carefully and conclusively, building up evidence that had no controversy.

Greetings from Mars! I’m Spirit and I was the first of two twin robots to land on Mars. Unlike my twin, Opportunity, I’m known as the hill-climbing robot. Artist Concept, Mars Exploration Rovers. NASA/JPL-Caltech
Artist Concept, Mars Exploration Rovers. NASA/JPL-Caltech

The Spirit and Opportunity Rovers were an example of building up this case cautiously. They were sent to Mars in 2004 to find evidence of water. Not water today, but water in the ancient past. Old water Over the course of several years of exploration, both rovers turned up multiple lines of evidence there was water on the surface of Mars in the ancient past.

They found concretions, tiny pebbles containing iron-rich hematite that forms on Earth in water. They found the mineral gypsum; again, something that’s deposited by water on Earth.

Opportunity's Approach to 'Homestake'. This view from the front hazard-avoidance camera on NASA's Mars Exploration Rover Opportunity shows the rover's arm's shadow falling near a bright mineral vein informally named Homestake. The vein is about the width of a thumb and about 18 inches (45 centimeters) long. Opportunity examined it in November 2011 and found it to be rich in calcium and sulfur, possibly the calcium-sulfate mineral gypsum. Opportunity took this image on Sol 2763 on Mars (Nov. 7, 2011). Credit: NASA/JPL-Caltech
A bright mineral vein informally named Homestake. The vein is about the width of a thumb and about 18 inches (45 centimeters) long. Opportunity examined it in November 2011 (Sol 2763) and found it to be rich in calcium and sulfur, possibly the calcium-sulfate mineral gypsum. Credit: NASA/JPL-Caltech

NASA’s Curiosity Rover took this analysis to the next level, arriving in 2012 and searching for evidence that water was on Mars for vast periods of time; long enough for Martian life to evolve.

Once again, Curiosity found multiple lines of evidence that water acted on the surface of Mars. It found an ancient streambed near its landing site, and drilled into rock that showed the region was habitable for long periods of time.

In 2014, NASA turned the focus of its rovers from looking for evidence of water to searching for past evidence of life.

Curiosity found one of the most interesting targets: a strange strange rock formations while it was passing through an ancient riverbed on Mars. While it was examining the Gillespie Lake outcrop in Yellowknife Bay, it photographed sedimentary rock that looks very similar to deposits we see here on Earth. They’re caused by the fossilized mats of bacteria colonies that lived billions of years ago.

A bright and interestingly shaped tiny pebble shows up among the soil on a rock, called "Gillespie Lake," which was imaged by Curiosity's Mars Hand Lens Imager on Dec. 19, 2012, the 132nd sol, or Martian day of Curiosity's mission on Mars. Credit: NASA / JPL-Caltech / MSSS.
A bright and interestingly shaped tiny pebble shows up among the soil on a rock, called “Gillespie Lake,” which was imaged by Curiosity’s Mars Hand Lens Imager on Dec. 19, 2012, the 132nd sol, or Martian day of Curiosity’s mission on Mars. Credit: NASA / JPL-Caltech / MSSS.

Not life today, but life when Mars was warmer and wetter. Still, fossilized life on Mars is better than no life at all. But there might still be life on Mars, right now, today. The best evidence is not on its surface, but in its atmosphere. Several spacecraft have detected trace amounts of methane in the Martian atmosphere.

Methane is a chemical that breaks down quickly in sunlight. If you farted on Mars, the methane from your farts would dissipate in a few hundred years. If spacecraft have detected this methane in the atmosphere, that means there’s some source replenishing those sneaky squeakers. It could be volcanic activity, but it might also be life. There could be microbes hanging on, in the last few places with liquid water, producing methane as a byproduct.

The European ExoMars orbiter just arrived at Mars, and its main job is sniff the Martian atmosphere and get to the bottom of this question.

Are there trace elements mixed in with the methane that means its volcanic in origin? Or did life create it? And if there’s life, where is it located? ExoMars should help us target a location for future study.

The European/Russian ExoMars Trace Gas Orbiter (TGO) will launch in 2016 and sniff the Martian atmosphere for signs of methane which could originate for either biological or geological mechanisms. Credit: ESA
The European/Russian ExoMars Trace Gas Orbiter (TGO) will sniff the Martian atmosphere for signs of methane which could originate for either biological or geological mechanisms. Credit: ESA

NASA is following up Curiosity with a twin rover designed to search for life. The Mars 2020 Rover will be a mobile astrobiology laboratory, capable of scooping up material from the surface of Mars and digesting it, scientifically speaking. It’ll search for the chemicals and structures produced by past life on Mars. It’ll also collect samples for a future sample return mission.

Even if we do discover if there’s life on Mars, it’s entirely possible that we and Martian life are actually related by a common ancestor, that split off billions of years ago. In fact, some astrobiologists think that Mars is a better place for life to have gotten started.

Not the dry husk of a Red Planet that we know today, but a much wetter, warmer version that we now know existed billions of years ago. When the surface of Mars was warm enough for liquid water to form oceans, lakes and rivers. And we now know it was like this for millions of years.

A conception of an ancient and/or future Mars, flush with oceans, clouds and life. Credit: Kevin Gill.
A conception of an ancient Mars, flush with oceans, clouds and life. Credit: Kevin Gill.

While Earth was still reeling from an early impact by the massive planet that crashed into it, forming the Moon, life on Mars could have gotten started early.

But how could we actually be related? The idea of Panspermia says that life could travel naturally from world to world in the Solar System, purely through the asteroid strikes that were regularly pounding everything in the early days.

Imagine an asteroid smashing into a world like Mars. In the lower gravity of Mars, debris from the impact could be launched into an escape trajectory, free to travel through the Solar System.

We know that bacteria can survive almost indefinitely, freeze dried, and protected from radiation within chunks of space rock. So it’s possible they could make the journey from Mars to Earth, crossing the orbit of our planet.

Even more amazingly, the meteorites that enter the Earth’s atmosphere would protect some of the bacterial inhabitants inside. As the Earth’s atmosphere is thick enough to slow down the descent of the space rocks, the tiny bacterialnauts could survive the entire journey from Mars, through space, to Earth.

In February 2013, asteroid DA 2014 safely passed by the Earth. There are several proposals abounding about bringing asteroids closer to our planet to better examine their structure. Credit: NASA/JPL-Caltech
Credit: NASA/JPL-Caltech

If we do find life on Mars, how will we know it’s actually related to us? If Martian life has the similar DNA structure to Earth life, it’s probably related. In fact, we could probably trace the life back to determine the common ancestor, and even figure out when the tiny lifeforms make the journey.

If we do find life on Mars, which is related to us, that just means that life got around the Solar System. It doesn’t help us answer the bigger question about whether there’s life in the larger Universe. In fact, until we actually get a probe out to nearby stars, or receive signals from them, we might never know.

An even more amazing possibility is that it’s not related. That life on Mars arose completely independently. One clue that scientists will be looking for is the way the Martian life’s instructions are encoded. Here on Earth, all life follows “left-handed chirality” for the amino acid building blocks that make up DNA and RNA. But if right-handed amino acids are being used by Martian life, that would mean a completely independent origin of life.

Of course, if the life doesn’t use amino acids or DNA at all, then all bets are off. It’ll be truly alien, using a chemistry that we don’t understand at all.

There are many who believe that Mars isn’t the best place in the Solar System to search for life, that there are other places, like Europa or Enceladus, where there’s a vast amount of liquid water to be explored.

But Mars is close, it’s got a surface you can land on. We know there’s liquid water beneath the surface, and there was water there for a long time in the past. We’ve got the rovers, orbiters and landers on the planet and in the works to get to the bottom of this question. It’s an exciting time to be part of this search.

Watch the You-Know-What Out Of This New Trailer for The Martian

The second full trailer for 20th Century Fox’s upcoming film The Martian dropped this morning and it looks like a whole red-planetful of awesome space adventure! Directed by Ridley Scott and based on the runaway hit novel of the same name by Andy Weir, The Martian stars Matt Damon as Mark Watney, a member of a fictional yet not-too-distant-future NASA mission to explore the surface of Mars. After a violent dust storm batters the camp the team is forced to abort the mission, abandoning the base and Watney, who was injured and assumed dead. Except, of course, he’s not, thus beginning his new mission to remain alive on Mars long enough to be rescued — a feat which will require bravery, brains, luck… and a whole you-know-what-load of science. (If you haven’t read the book yet, it’s a lot of fun. I highly suggest it.) So check out the trailer above, and feel free to repeat as necessary.

The Martian opens in U.S. theaters on Oct. 2. Visit the official movie site here.

How Do We Settle on Mars?

Artist's illustration of a SpaceX Starship lands on Mars. Credit: SpaceX

Welcome back to our series on Settling the Solar System! Today, we take a look at that cold and dry world known as “Earth’s Twin”. I’m talking about Mars. Enjoy!

Mars. It’s a pretty unforgiving place. On this dry, desiccated world, the average surface temperature is -55 °C (-67 °F). And at the poles, temperatures can reach as low as  -153 °C (243 °F). Much of that has to do with its thin atmosphere, which is too thin to retain heat (not to mention breathe). So why then is the idea of colonizing Mars so intriguing to us?

Well, there are a number of reasons, which include the similarities between our two planets, the availability of water, the prospects for generating food, oxygen, and building materials on-site. And there are even long-term benefits to using Mars as a source of raw materials and terraforming it into a liveable environment. Let’s go over them one by one…

Examples in Fiction:

The idea of exploring and settling Mars has been explored in fiction for over a century. Most of the earliest depiction of Mars in fiction involved a planet with canals, vegetation, and indigenous life – owing to the observations of the astronomers like Giovanni Schiaparelli and Percival Lowell.

However, by the latter half of the 20th century (thanks in large part to the Mariner 4 missions and scientists learning of the true conditions on Mars) fictional accounts moved away from the idea of a Martian civilization and began to deal with humans eventually colonizing and transforming the environment to suit their needs.

Artist impression of a Mars settlement with cutaway view. Credit: NASA Ames Research Center
Artist impression of a Mars settlement with cutaway view. Credit: NASA Ames Research Center

This shift is perhaps best illustrated by Ray Bradbury’s The Martian Chronicles (published in 1950). A series of short stories that take place predominantly on Mars, the collection begins with stories about a Martian civilization that begins to encounter human explorers. The stories then transition to ones that deal with human settlements on the planet, the genocide of the Martians, and Earth eventually experiencing nuclear war.

During the 1950s, many classic science fiction authors wrote about colonizing Mars. These included Arthur C. Clarke and his 1951 story The Sands of Mars, which is told from the point of view of a human reporter who travels to Mars to write about human colonists. While attempting to make a life for themselves on a desert planet, they discover that Mars has native life forms.

In 1952, Isaac Asimov released The Martian Way, a story that deals with the conflict between Earth and Mars colonists. The latter manage to survive by salvaging space junk and are forced to travel to Saturn to harvest ice when Earth enforces an embargo on their planet.

Robert A. Heinlein’s seminal novel Stranger in a Strange Land (1961) tells the story of a human who was raised on Mars by the native Martians and then travels to Earth as a young adult. His contact with humans proves to have a profound effect on Earth’s culture, and calls into questions many of the social mores and accepted norms of Heinlein’s time.

Artist's concept of possible exploration of the surface of Mars. Credit: NASA Ames Research Center
Artist’s concept of possible exploration of the surface of Mars. Credit: NASA Ames Research Center

Philip K. Dick’s fiction also features Mars often, in every case being a dry, empty land with no native inhabitants. In his works Martian Time Slip (1964), and The Three Stigmata of Palmer Eldritch (1965), life on Mars is presented as difficult, consisting of isolated communities who do not want to live there.

In Do Androids Dream of Electric Sheep? (1968), most of humanity has left Earth after a nuclear war and now live in “the colonies” on Mars. Androids (Replicants) escaping illegally to come back to Earth claim that they have left because “nobody should have to live there. It wasn’t conceived for habitation, at least not within the last billion years. It’s so old. You feel it in the stones, the terrible old age”.

Kim Stanley Robinson’s Mars trilogy (published between 1992–1996), Mars is colonized and then terraformed over the course of many centuries. Ben Bova’s Grand Tour series – which deals with the colonization of the Solar System – also includes a novel titled Mars (1992). In this novel, explorers travel to Mars – locations including Mt. Olympus and Valles Marineris – to determine is Mars is worth colonizing.

Alastair Reynolds’ short story “The Great Wall of Mars” (2000) takes place in a future where the most technologically advanced humans are based on Mars and embroiled in an interplanetary war with a faction that takes issue with their experiments in human neurology.

Artist's impression of the terraforming of Mars, from its current state to a livable world. Credit: Daein Ballard
Artist’s impression of the terraforming of Mars, from its current state to a livable world. Credit: Daein Ballard

In Hannu Rajaniemi’s The Quantum Thief (2010), we get a glimpse of Mars in the far future. The story centers on the city of Oubliette, which moves across the face of the planet. Andry Weir’s The Martian (2011) takes place in the near future, where an astronaut is stranded on Mars and forced to survive until a rescue party arrives.

Kim Stanley Robinson’s 2312 (2012) takes place in a future where humanity has colonized much of the Solar System. Mars is mentioned in the course of the story as a world that has been settled and terraformed (which involved lasers cutting canals similar to what Schiaparelli described) and now has oceans covering much of its surface.

Proposed Methods:

NASA’s proposed manned mission to Mars – which is slated to take place during the 2030s using the Orion Multi-Purpose Crew Vehicle (MPCV) and the Space Launch System (SLS) – is not the only proposal to send humans to the Red Planet. In addition to other federal space agencies, there are also plans by private corporations and non-profits, some of which are far more ambitious than mere exploration.

The European Space Agency (ESA) has long-term plans to send humans, though they have yet to build a manned spacecraft. Roscosmos, the Russian Federal Space Agency, is also planning a manned Mars mission, with simulations (called Mars-500) having been completed in Russia back in 2011. The ESA is currently participating in these simulations as well.

In 2012, a group of Dutch entrepreneurs revealed plans for a crowdfunded campaign to establish a human Mars base, beginning in 2023. Known as Mars One, the plan calls for a series of one-way missions to establish a permanent and expanding colony on Mars, which would be financed with the help of media participation.

Mars-manned-mission vehicle (NASA Human Exploration of Mars Design Reference Architecture 5.0) feb 2009. Credit: NASA
Mars-manned-mission vehicle (NASA Human Exploration of Mars Design Reference Architecture 5.0) Feb 2009. Credit: NASA

Other details of the MarsOne plan include sending a telecom orbiter by 2018, a rover in 2020, and the base components and its settlers by 2023. The base would be powered by 3,000 square meters of solar panels, and the SpaceX Falcon 9 Heavy rocket would be used to launch the hardware. The first crew of 4 astronauts would land on Mars in 2025; then, every two years, a new crew of 4 astronauts would arrive.

On December 2nd, 2014, NASA’s Advanced Human Exploration Systems and Operations Mission Director Jason Crusan and Deputy Associate Administrator for Programs James Reuther announced tentative support for the Boeing “Affordable Mars Mission Design.” Currently planned for the 2030s, the mission profile includes plans for radiation shielding, centrifugal artificial gravity, in-transit consumable resupply, and a return-lander.

SpaceX and Tesla CEO Elon Musk also announced plans to establish a colony on Mars with a population of 80,000 people. Intrinsic to this plan is the development of the Mars Colonial Transporter (MCT), a spaceflight system that would rely on reusable rocket engines, launch vehicles, and space capsules to transport humans to Mars and return to Earth.

As of 2014, SpaceX has begun developing the large Raptor rocket engine for the Mars Colonial Transporter, and a successful test was announced in September of 2016. In January 2015, Musk said that he hoped to release details of the “completely new architecture” for the Mars transport system in late 2015.

In June 2016, Musk stated in the first unmanned flight of the Mars transport spacecraft would take place in 2022, followed by the first manned MCT Mars flight departing in 2024. In September 2016, during the 2016 International Astronautical Congress, Musk revealed further details of his plan, which included the design for an Interplanetary Transport System (ITS) and estimated costs.

There may come a day when, after generations of terraforming and numerous waves of colonists, that Mars will begin to have a viable economy as well. This could take the form of mineral deposits being discovered and then sent back to Earth for sale. Launching precious metals, like platinum, off the surface of Mars would be relatively inexpensive thanks to its lower gravity.

But according to Musk, the most likely scenario (at least for the foreseeable future) would involve an economy based on real estate. With human populations exploding all over Earth, a new destination that offers plenty of room to expand is going to look like a good investment.

And once transportation issues are worked out, savvy investors are likely to start buying up land. Plus, there is likely to be a market for scientific research on Mars for centuries to come. Who knows what we might find once planetary surveys really start to open up!

Over time, many or all of the difficulties in living on Mars could be overcome through the application of geoengineering (aka. terraforming). Using organisms like cyanobacteria and phytoplankton, colonists could gradually convert much of the CO² in the atmosphere into breathable oxygen.

In addition, it is estimated that there is a significant amount of carbon dioxide (CO²) in the form of dry ice at the Martian south pole, not to mention absorbed by in the planet’s regolith (soil). If the temperature of the planet were raised, this ice would sublimate into gas and increase atmospheric pressure. Although it would still not be breathable by humans, it would be sufficient enough to eliminate the need for pressure suits.

A possible way of doing this is by deliberately triggering a greenhouse effect on the planet. This could be done by importing ammonia ice from the atmospheres of other planets in our Solar System. Because ammonia (NH³) is mostly nitrogen by weight, it could also supply the buffer gas needed for a breathable atmosphere – much as it does here on Earth.

Similarly, it would be possible to trigger a greenhouse effect by importing hydrocarbons like methane – which is common in Titan’s atmosphere and on its surface. This methane could be vented into the atmosphere where it would act to compound the greenhouse effect.

Zubrin and Chris McKay, an astrobiologist with NASA’s Ames Research center, have also suggested creating facilities on the surface that could pump greenhouse gases into the atmosphere, thus triggering global warming (much as they do here on Earth).

Other possibilities exist as well, ranging from orbital mirrors that would heat the surface to deliberately impacting the surface with comets. But regardless of the method, possibilities exist for transforming Mars’ environment that could make it more suitable for humans in the long run – many of which we are currently doing right here on Earth (with less positive results).

Another proposed solution is building habitats underground. By building a series of tunnels that connect between subterranean habitats, settlers could forgo the need for oxygen tanks and pressure suits when they are away from home.

Additionally, it would provide protection against radiation exposure. Based on data obtained by the Mars Reconnaissance Orbiter, it is also speculated that habitable environments exist underground, making it an even more attractive option.

Potential Benefits:

As already mentioned, there are many interesting similarities between Earth and Mars that make it a viable option for colonization. For starters, Mars and Earth have very similar lengths of days. A Martian day is 24 hours and 39 minutes, which means that plants and animals – not to mention human colonists – would find that familiar.

This diagram shows the distances of the planets in the Solar System (upper row) and in the Gliese 581 system (lower row), from their respective stars (left). The habitable zone is indicated as the blue area, showing that Gliese 581 d is located inside the habitable zone around its low-mass red star. Based on a diagram by Franck Selsis, Univ. of Bordeaux. Credit: ESO
Diagram showing the habitable zones of the Solar System (upper row) and the Gliese 581 system (lower row). Based on a diagram by Franck Selsis, Univ. of Bordeaux. Credit: ESO

Mars also has an axial tilt that is very similar to Earth’s, which means it has the same basic seasonal patterns as our planet (albeit for longer periods of time). Basically, when one hemisphere is pointed towards the Sun, it experiences summer while the other experiences winter – complete with warmer temperatures and longer days.

This too would work well when it comes to growing seasons and would provide colonists with a comforting sense of familiarity and a way of measuring out the year. Much like farmers here on Earth, native Martians would experience a “growing season”, a “harvest”, and would be able to hold annual festivities to mark the changing of the seasons.

Also, much like Earth, Mars exists within our Sun’s habitable zone (aka. “Goldilocks zone“), though it is slightly towards its outer edge. Venus is similarly located within this zone, but its location on the inner edge (combined with its thick atmosphere) has led to it becoming the hottest planet in the Solar System. That, combined with its sulfuric acid rains makes Mars a much more attractive option.

Additionally, Mars is closer to Earth than the other Solar planets – except for Venus, but we already covered why it’s not a very good option! This would make the process of colonizing it easier. In fact, every few years when the Earth and Mars are at opposition – i.e. when they are closest to each other – the distance varies, making certain “launch windows” ideal for sending colonists.

For example, on April 8th, 2014, Earth and Mars were 92.4 million km (57.4 million miles) apart at opposition. On May 22nd, 2016, they will be 75.3 million km (46.8 million miles) apart, and by July 27th of 2018, a meager 57.6 million km (35.8 million miles) will separate our two worlds. During these windows, getting to Mars would be a matter of months rather than years.

Also, Mars has vast reserves of water in the form of ice. Most of this water ice is located in the polar regions, but surveys of Martian meteorites have suggested that much of it may also be locked away beneath the surface. This water could be extracted and purified for human consumption easily enough.

In his book, The Case for Mars, Robert Zubrin also explains how future human colonists might be able to live off the land when traveling to Mars, and eventually colonize it. Instead of bringing all their supplies from Earth – like the inhabitants of the International Space Station – future colonists would be able to make their own air, water, and even fuel by splitting Martian water into oxygen and hydrogen.

Global map of Water ice on Mars
New estimates of water ice on Mars suggest there may be large reservoirs of underground ice at non-polar latitudes. Credit: Feldman et al., 2011

Preliminary experiments have shown that Mars soil could be baked into bricks to create protective structures, which would reduce the amount of material that needs to be shipped to the surface. Earth plants could eventually be grown in Martian soil too, assuming they get enough sunlight and carbon dioxide. Over time, planting on the native soil could also help to create a breathable atmosphere.

Challenges:

Despite the aforementioned benefits, there are also some rather monumental challenges to colonizing the Red Planet. For starters, there is the matter of the average surface temperature, which is anything but hospitable. While temperatures around the equator at midday can reach a balmy 20 °C, at the Curiosity site – the Gale Crater, which is close to the equator – typical nighttime temperatures are as low as -70 °C.

The gravity on Mars is also only about 40% of what we experience on Earth’s, which would make adjusting to it quite difficult. According to a NASA report, the effects of zero-gravity on the human body are quite profound, with a loss of up to 5% muscle mass a week and 1% of bone density a month.

Naturally, these losses would be lower on the surface of Mars, where there is at least some gravity. But permanent settlers would still have to contend with the problems of muscle degeneration and osteoporosis in the long run.

 The Biosphere 2 project is an attempt to simulate Mars-like conditions on Earth. Credit: Science Photo Library
The Biosphere 2 project is an attempt to simulate Mars-like conditions on Earth. Credit: Science Photo Library

And then there’s the atmosphere, which is unbreathable. About 95% of the planet’s atmosphere is carbon dioxide, which means that in addition to producing breathable air for their habitats, settlers would also not be able to go outside without a pressure suit and bottled oxygen.

Mars also has no global magnetic field comparable to Earth’s geomagnetic field. Combined with a thin atmosphere, this means that a significant amount of ionizing radiation is able to reach the Martian surface.

Thanks to measurements taken by the Mars Odyssey spacecraft’s Mars Radiation Environment Experiment (MARIE), scientists learned that radiation levels in orbit above Mars are 2.5 times higher than at the International Space Station. Levels on the surface would be lower, but would still be higher than human beings are accustomed to.

In fact, a recent paper submitted by a group of MIT researchers – which analyzed the Mars One plan to colonize the planet beginning in 2020 – concluded that the first astronaut would suffocate after 68 days, while the others would die from a combination of starvation, dehydration, or incineration in an oxygen-rich atmosphere.

Artist's concept of a Martian astronaut standing outside the Mars One habitat. Credit: Bryan Versteeg/Mars One
Artist’s concept of a Martian astronaut standing outside the Mars One habitat. Credit: Bryan Versteeg/Mars One

In short, the challenges to creating a permanent settlement on Mars are numerous, but not necessarily insurmountable. And if we do decide, as individuals and as a species, that Mars is to become a second home for humanity, we will no doubt find creative ways to address them all.

Who knows? Someday, perhaps even within our own lifetimes, there could be real Martians. And they would be us!

Universe Today has many interesting articles about the possibility of humans living on Mars. Here’s a great article by Nancy Atkinson about the possibility of a one-way, one-person trip to Mars

What about using microbes to help colonize mars? And if you want to know the distances between Earth and Mars, check it out here.

For more information, check out Mars colonies coming soon, Hubblesite’s News Releases about Mars, and NASA’s Quick Facts

The Mars Society is working to try and colonize Mars. And Red Colony is a great resource of articles about colonizing Mars.

Finally, if you’d like to learn more about Mars in general, we have done several podcast episodes about the Red Planet at Astronomy Cast. Episode 52: Mars, Episode 91: The Search for Water on Mars, and Episode 94: Humans to Mars – Part 1, Scientists.

Reference:
NASA Quest: Possibility of colonizing Mars