NASA Tests a Solar Sail Segment of its Enormous Solar Cruiser Mission

Artist's concept of the Solar Cruiser mission. Credit: NASA

A team led by NASA’s Marshall Space Flight Center (MSFC) was recently selected to develop a solar sail spacecraft that would launch sometime in 2025. Known as the Solar Cruiser, this mission of opportunity measures 1653 m2 (~17790 ft2) in area and is about the same thickness as a human hair. Sponsored by the Science Mission Directorate’s (SMD) Heliophysics Division, this technology demonstrator will integrate several new solar sail technologies developed by various organizations to mature solar sail technology for future missions.

In a recent video released by NASA, we see engineers and industry partners at the MSFC in Huntsville, Alabama, unfurling a segment of the prototype solar sail. The video, taken on October 13th, shows how the teams used two 30.5 m (100-foot) lightweight composite booms to unfurl a 400 m2 (4,300 ft2) quadrant of the solar sail prototype for the first time. Once realized, the Solar Cruiser demonstrator will validate technologies that enable future missions to study the Sun, its interaction with Earth, and its extended atmosphere (aka. heliosphere).

Continue reading “NASA Tests a Solar Sail Segment of its Enormous Solar Cruiser Mission”

First Interplanetary CubeSats to Launch on NASA’s 2016 InSight Mars Lander

NASA's two small MarCO CubeSats will be flying past Mars in 2016 just as NASA's next Mars lander, InSight, is descending to land on the surface. MarCO, for Mars Cube One, will provide an experimental communications relay to inform Earth quickly about the landing. Credits: NASA/JPL-Caltech

NASA’s two small MarCO CubeSats will be flying past Mars in 2016 just as NASA’s next Mars lander, InSight, is descending to land on the surface. MarCO, for Mars Cube One, will provide an experimental communications relay to inform Earth quickly about the landing. Credits: NASA/JPL-Caltech
See fly by and cubesat spacecraft graphics and photos below[/caption]

CubeSats are taking the next great leap for science – departing Earth and heading soon for the fourth rock from the Sun.

For the first time, two tiny CubeSat probes will launch into deep space in early 2016 on their first interplanetary expedition – aiming for the Red Planet as part of an experimental technology relay demonstration project aiding NASA’s next Mission to Mars; the InSight lander.

NASA announced the pair of briefcase-sized CubeSats, called Mars Cube One or MarCO, as a late and new addition to the InSight mission, that could substantially enhance communications options on future Mars missions. They were designed and built by NASA’s Jet Propulsion Laboratory (JPL), Pasadena, California.

InSight, which stands for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is a stationary lander. It will join NASA’s surface science exploration fleet currently comprising of the Curiosity and Opportunity missions which by contrast are mobile rovers.

InSight is the first mission to understand the interior structure of the Red Planet. Its purpose is to elucidate the nature of the Martian core, measure heat flow and sense for “Marsquakes.”

The full-scale mock-up of NASA's MarCO CubeSat held by Farah Alibay, a systems engineer for the technology demonstration, is dwarfed by the one-half-scale model of NASA's Mars Reconnaissance Orbiter behind her.  Credits: NASA/JPL-Caltech
The full-scale mock-up of NASA’s MarCO CubeSat held by Farah Alibay, a systems engineer for the technology demonstration, is dwarfed by the one-half-scale model of NASA’s Mars Reconnaissance Orbiter behind her. Credits: NASA/JPL-Caltech

Because of their small size – roughly 4 inches (10 centimeters) square) – and simplicity using off-the-shelf components, they are a favored platform for university students and others seeking low cost access to space – such as the Planetary Society’s recently successful Light Sail solar sailing cubesat demonstration launched in May. Six units are combined together to create MarCO.

Over the past few years many hundreds of cubesats have already been deployed in Earth orbit – including many dozens from the International Space Station (ISS) – but these will be the first going far beyond our Home Planet.

Data relayed by MarCO at 8 kbps in real time could reveal InSight’s fate on the Martian surface within minutes to mission controllers back on Earth, rather than waiting for a potentially prolonged period of agonizing nail-biting lasting an hour or more.

The two probes, known as MarCO-A and MarCO-B, will operate during InSight’s highly complex entry, descent and landing (EDL) operations as it descends through the thin Martian atmosphere. Their function is merely to quickly relay landing data. But the cubesats will have no impact on the ultimate success of the mission. They will intentionally sail by but not land on Mars.

“MarCO is an experimental capability that has been added to the InSight mission, but is not needed for mission success,” said Jim Green, director of NASA’s planetary science division at the agency’s headquarters in Washington, in a statement.

The MarCO Cubesats will serve as a test bed for a revolutionary communications mode that seeks to quickly relay data back to Earth about the status of InSight – in real time – as it plummets down to the Red Planet for the “Seven Minutes of Terror” that hopefully climaxes with a soft landing.

The MarCO duo will fly by past Mars at a planned distance and altitude of about 3,500 kilometers as InSight descends towards the surface during EDL operations. They will rapidly retransmit signals coming from the lander in real time, directly back to NASA’s huge Deep Space Network (DSN) receiving dish antennas back on Earth.

 MarCO cubesats fly by trajectory for rapid communications relay as NASA’s InSight spacecraft lands on Mars in September 2016. Credit: NASA/JPL-Caltech

MarCO cubesats fly by trajectory for rapid communications relay as NASA’s InSight spacecraft lands on Mars in September 2016. Credit: NASA/JPL-Caltech

For this flight, six cubesats will be joined together to provide the additional capability required for the journey to Mars and to accomplish their communications task.

The six-unit MarCO CubeSat has a stowed size of about 14.4 inches (36.6 centimeters) by 9.5 inches (24.3 centimeters) by 4.6 inches (11.8 centimeters) and weighs 14 kilograms.

The solar powered probes will be outfitted with UHF and X-band communications gear as well as propulsion, guidance and more.

The overall cost to design, build, launch and operate MarCO-A and MarCO-B is approximately $13 million, a NASA spokesperson told Universe Today.

InSight and MarCO are slated to blastoff together on March 4, 2016 atop a United Launch Alliance Atlas V rocket from Vandenberg Air Force Base, California.

After launch, both MarCO CubeSats will separate from the Atlas V booster and travel along their own trajectories to the Red Planet.

“MarCO will fly independently to Mars,” says Green.

They will be navigated independently from InSight. They will all reach Mars at approximately the same time for InSight’s landing slated for Sept. 28, 2016.

MarCO’s two solar panels and two radio antennas will unfurl after being released from the Atlas booster. The high-gain, X-band antenna is a flat panel engineered to direct radio waves the way a parabolic dish antenna does,” according to a NASA description.

The softball-size radio “provides both UHF (receive only) and X-band (receive and transmit) functions capable of immediately relaying information received over UHF.”

MarCO cubesat graphic annotated to show dimensions, instruments, physical characteristics and capabilities.  Credit: NASA/JPL-Caltech
MarCO cubesat graphic annotated to show dimensions, instruments, physical characteristics and capabilities. Credit: NASA/JPL-Caltech

During EDL, InSight will transmit landing data via UHF radio to the MarCO cubesats sailing past Mars as well as to NASA’s Mars Reconnaissance Orbiter (MRO) soaring overhead.

MarCO will assist InSight by receiving the lander information transmitted in the UHF radio band and then immediately forward EDL information to Earth using the X-band radio. By contrast, MRO cannot simultaneously receive information over one band while transmitting on another, thus delaying confirmation of a successful landing possibly by an hour or more.

Engineers for NASA's MarCO technology demonstration display a full-scale mechanical mock-up of the small craft in development as part of NASA's next mission to Mars. Mechanical engineer Joel Steinkraus and systems engineer Farah Alibay are on the team at NASA's Jet Propulsion Laboratory, Pasadena, California, preparing twin MarCO (Mars Cube One) CubeSats for a March 2016 launch.  Credit: NASA/JPL-Caltech
Engineers for NASA’s MarCO technology demonstration display a full-scale mechanical mock-up of the small craft in development as part of NASA’s next mission to Mars. Mechanical engineer Joel Steinkraus and systems engineer Farah Alibay are on the team at NASA’s Jet Propulsion Laboratory, Pasadena, California, preparing twin MarCO (Mars Cube One) CubeSats for a March 2016 launch. Credit: NASA/JPL-Caltech

“Ultimately, if the MarCO demonstration mission succeeds, it could allow for a “bring-your-own” communications relay option for use by future Mars missions in the critical few minutes between Martian atmospheric entry and touchdown,” say NASA officials.

It’s also very beneficial and critical to the success of future missions to have a stream of data following the progress of past missions so that lessons can be learned and applied, whatever the outcome.

“By verifying CubeSats are a viable technology for interplanetary missions, and feasible on a short development timeline, this technology demonstration could lead to many other applications to explore and study our solar system,” says NASA.

InSight will smash into the Martian atmosphere at high speeds of approximately 13,000 mph in September 2016 and then decelerate within a few minutes for landing via a heat shield, retro rocket and parachute assisted touchdown on the plains at flat-lying terrain at “Elysium Planitia,” some four degrees north of Mars’ equator, and a bit north of the Curiosity rover.

As I reported in recently here, InSight has now been assembled into its flight configuration and begun a comprehensive series of rigorous environmental stress tests that will pave the path to launch in 2016 on a mission to unlock the riddles of the Martian core.

The countdown clock is ticking relentlessly towards liftoff in less than nine months time in March 2016.

NASA's InSight Mars lander spacecraft in a Lockheed Martin clean room near Denver. As part of a series of deployment tests, the spacecraft was commanded to deploy its solar arrays in the clean room to test and verify the exact process that it will use on the surface of Mars.  Credits: NASA/JPL-Caltech/Lockheed Martin
NASA’s InSight Mars lander spacecraft in a Lockheed Martin clean room near Denver. As part of a series of deployment tests, the spacecraft was commanded to deploy its solar arrays in the clean room to test and verify the exact process that it will use on the surface of Mars. Credits: NASA/JPL-Caltech/Lockheed Martin

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Air Force X-37B Spaceplane Launches on May 20 with Military, NASA and LightSail Payloads: Watch Live

Fourth flight of the X-37B Orbital Test Vehicle is set for blastoff on May 20, 2015 from Cape Canaveral, Florida Photo: Boeing

Fourth flight of the secretive U.S. Air Force X-37B Orbital Test Vehicle is set for blastoff on May 20, 2015 from Cape Canaveral, Florida. Photo: Boeing
Story updated with further details and photos[/caption]

All systems are currently “GO” for the fourth launch of the US Air Force’s secretive unmanned, X-37B military space plane this Wednesday, May 20, on a flight combining both US national security experimental payloads as well as civilian science experiments sponsored by NASA, US Universities, commercial companies, and the solar sailing LightSail test from the Planetary Society.

LightSail marks the first controlled, Earth orbit solar sail flight according to the non-profit Planetary Society. It will launch as a separate cubesat experiment. NASA also has an advanced materials science experiment flying aboard the robotically controlled X-37B.

The X-37B is set for blastoff atop a two stage United Launch Alliance (ULA) Atlas V 501 rocket on the AFSPC-5 mission under contract for the U.S. Air Force Rapid Capabilities Office.

The Boeing-built X-37B is an unmanned reusable mini shuttle, also known as the Orbital Test Vehicle (OTV) and is flying on the OTV-4 mission. It launches vertically like a satellite but lands horizontally like an airplane.

Although virtually all the goals of the X-37B program are shrouded in secrecy, some details on the national security objectives have emerged and there are several unclassified experiments flying along as secondary objectives on the rocket and space plane, among them are experiments for NASA and the Planetary Society.

LightSail launches aboard the X-37B on May 20, 2015.  Credit: The Planetary Society
LightSail launches aboard the X-37B on May 20, 2015. Credit: The Planetary Society

Among the primary mission goals of the first three flights were check outs of the vehicles capabilities and reentry systems and testing the ability to send experiments to space and return them safely. OTV-4 will shift somewhat more to conducting research.

“We are excited about our fourth X-37B mission,” Randy Walden, director of the USAF’s Rapid Capabilities Office, said in a statement. “With the demonstrated success of the first three missions, we’re able to shift our focus from initial checkouts of the vehicle to testing of experimental payloads.”

Liftoff will take place from Space Launch Complex (SLC)-41 at Cape Canaveral Air Force Station, Florida, at some point during a four hour launch period that opens at 10:45 a.m. EDT and extends until 2:45 p.m. EDT on May 20.

ULA announced that the Launch Readiness Review was completed on Monday and everything is progressing normally toward the AFSPC-5 launch. The rocket is fully assembled and the space plane is encapsulated inside the 5 meter diameter payload fairing. It rolled out to the pad today, Tuesday, May 19.

You can watch the Atlas launch live via a ULA webcast here: http://www.ulalaunch.com

The ULA webcast begins at 10:45 a.m. EDT on May 20. The precise launch time is classified and won’t be announced until Wednesday morning.

The weather prognosis has improved markedly to a 60 percent chance of favorable weather conditions, up from only a 40 percent chance this past weekend.

The primary weather concerns are for violations of the launch weather rules related to cumulus clouds, surface electric fields, anvil clouds and lightning.

Launch officials are hopeful that acceptable launch conditions will occur sometime during the lengthy four hour launch window.

In the event of a 24 hour delay due to weather or technical issues, the outlook drops to only a 30% chance of favorable weather conditions during the launch window.

The OTV is somewhat like a miniature version of NASA’s space shuttles. Boeing has built two OTV vehicles.

2nd X-37B Orbital Test Vehicle Successfully Completes 1st Flight by landing at Vandenberg AFB, Calif., on June 16, 2012.  The record setting mission lasted 469 days in earth orbit.  Designed to be launched like a satellite and land like an airplane, the second X-37B Orbital Test Vehicle, built by Boeing for the United States Air Force’s Rapid Capabilities Office, is an affordable, reusable space vehicle. Credit: Boeing. See landing video below
2nd X-37B Orbital Test Vehicle Successfully Completes 1st Flight by landing at Vandernberg AFB, Calif., on June 16, 2012. It is designed to be launched like a satellite and land like an airplane. Credit: Boeing.

Altogether the two X-37B vehicles have spent a cumulative total of 1367 days in space during the first three OTV missions and successfully checked out the vehicles reusable flight, reentry and landing technologies.

The reusable space plane is designed to be launched like a satellite and land on a runway like an airplane and a NASA space shuttle. The X-37B is one of the newest and most advanced reentry spacecraft.

The 11,000 pound (4990 kg) state-of -the art reusable OTV space plane was built by Boeing and is about a quarter the size of a NASA space shuttle. It was originally developed by NASA but was transferred to the Defense Advanced Research Projects Agency (DARPA) in 2004.

All three OTV missions to date have launched from Cape Canaveral, Florida and landed at Vandenberg Air Force Base, California. Future missions could potentially land at the shuttle landing facility at the Kennedy Space Center, Florida.

The first OTV mission launched on April 22, 2010, and concluded on Dec. 3, 2010, after 224 days in orbit.

USAF X-37B orbital test vehicle poised for launch atop  United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni
USAF X-37B orbital test vehicle poised for launch atop United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni

The following flights were progressively longer in duration. The second OTV mission began March 5, 2011, and concluded on June 16, 2012, after 468 days on orbit. The third OTV mission launched on Dec. 11, 2012 and landed on Oct. 17, 2014 after 674 days in orbit.

The vehicle measures 29 ft 3 in (8.9 m) in length with a wingspan of 14 ft 11 in (4.5 m). The payload bay measures 7 ft × 4 ft (2.1 m × 1.2 m). The space plane is powered by Gallium Arsenide Solar Cells with Lithium-Ion batteries.

The OTV-4 mission will shift its focus at least somewhat from tests of the vehicles performance to more on science experiments both with extra capacity available on the Atlas V rocket and payload space aboard the X-37B itself.

“We’re very pleased with the experiments lined-up for our fourth OTV Mission OTV-4,” Walden noted.

“We’ll continue to evaluate improvements to the space vehicle’s performance, but we’re honored to host these collaborative experiments that will help advance the state-of-the-art for space technology

Among the experiments for the flight are 10 CubeSats. They will launch in the Aft Bulkhead Carrier (ABC) located below the Centaur upper stage that contains eight P-Pods to release the CubeSats.

Following primary spacecraft separation the Centaur will change altitude and inclination in order to release the CubeSat spacecraft, ULA said in a statement.

They are sponsored by the National Reconnaissance Office (NRO) and NASA and were developed by the U.S. Naval Academy, the Aerospace Corporation, the Air Force Research Laboratory, California Polytechnic State University, and Planetary Society.

NASA is also flying an advanced materials science payload on the X-37B called the Materials Exposure and Technology Innovation in Space (METIS) investigation that will build on more than a decades worth of materials science research on the International Space Station (ISS) research.

“By flying the Materials Exposure and Technology Innovation in Space (METIS) investigation on the X-37B, materials scientists have the opportunity to expose almost 100 different materials samples to the space environment for more than 200 days. METIS is building on data acquired during the Materials on International Space Station Experiment (MISSE), which flew more than 4,000 samples in space from 2001 to 2013, NASA said in a statement.

“By exposing materials to space and returning the samples to Earth, we gain valuable data about how the materials hold up in the environment in which they will have to operate,” said Miria Finckenor, the co-investigator on the MISSE experiment and principal investigator for METIS at NASA’s Marshall Space Flight Center in Huntsville, Alabama.

“Spacecraft designers can use this information to choose the best material for specific applications, such as thermal protection or antennas or any other space hardware.”

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

United Launch Alliance to launch USAF X-37B orbital test vehicle on May 20, 2015. Credit: Julian Leek
United Launch Alliance to launch USAF X-37B orbital test vehicle on May 20, 2015. Credit: Julian Leek

US Air Force X-37B OTV-4 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to planned 20 May 2015 launch. This up close view of the nose cone holding the secretive  X-37B shows the umbilical line attachments. Credit: Ken Kremer
US Air Force X-37B OTV-4 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to planned 20 May 2015 launch. Credit: Ken Kremer/kenkremer.com

The X-37B is similar in many ways to NASA's space shuttle - but it is far smaller and unmanned. Photo Credit: Air Force
The X-37B is similar in many ways to NASA’s space shuttle – but it is far smaller and unmanned. Photo Credit: Air Force

US Air Force X-37B OTV-2 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to 5 March 2011 launch. This up close view of the nose cone holding the secretive  X 37-B shows the umbilical line attachments. Credit: Ken Kremer
US Air Force X-37B OTV-2 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to 5 March 2011 launch. This up close view of the nose cone holding the secretive X 37-B shows the umbilical line attachments. Credit: Ken Kremer/kenkremer.com

Weekly Space Hangout – Feb. 6, 2015: Astronaut Ron Garan’s “Orbital Perspective”

Host: Fraser Cain (@fcain)

Guests:
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )

Special Guest: Astronaut Ron Garan (orbitalpersepctive.com / @Astro_Ron)
Ron will talk about his new book The Orbital Perspective: Lessons in Seeing the Big Picture from a Journey of 71 Million Miles.

This Week’s Stories:

Obama’s NASA budget request
Black Holes Do Not Exist Where Space and Time Do Not Exist, Says New Theory
SES Rethinking Being First to Fly on a Full-Throttle Falcon 9
5 Lunar X-Prize Teams Land Payday; Only 2 Landed Hardware
Moroccan Meteorite May Be a 4.4-Billion-Year-Old Chunk of Martian Crust
After Canceling NRO Launch Competition, USAF Dangles More Plums for SpaceX
Where is Saturn? VLBA Used to Accurately Measure Position of Saturn and its 62 Moons
SpaceX Nears Pad Abort Test for Human-Rated Dragon Capsule
Closer Look at the IXV Intermediate eXperimental Vehicle
Skylon Spaceplane’s Inventor Sees Busy Spaceports Coming Soon
SpaceX Conducts Static Fire Test Ahead of DSCOVR Mission
Supernova Mystery Found at the Bottom of the Sea
NASA Does an About Face on SOFIA: Requests Full Funding
LightSail Test Flight Scheduled for May 2015
Mining the Moon Becomes a Serious Prospect
TWiM: NASA Presses Congress for More Commercial Crew Funding
A Second Ringed Centaur? Centaurs with Rings Could Be Common
Rosetta Swoops In for a Close Encounter
Super Sizing Pegasus for SLS Core Transport
TWiM: SpaceX Drone Boats Named After Sci-Fi Legend’s Spaceships
It’s Official: We’re On the Way to Europa
McCain Accuses USAF of “Actively Keeping Out” SpaceX
Europe Tired of Playing “Simon Says” with SpaceX
Business on the Moon: FAA Backs Bigelow Aerospace
Mystery of the Universe’s Gamma-Ray Glow May Be Solved
New Infrared View of the Trifid Nebula Reveals New Variable Stars Far Beyond
Gap Reveals Potential Exomoon

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.

You can join in the discussion between episodes over at our Weekly Space Hangout Crew group in G+, and suggest your ideas for stories we can discuss each week!

The Planetary Society’s Solar Sail Will Hitch a Ride to Space on a Falcon Heavy

The Planetary Society's LightSail-1 solar sailing spacecraft is scheduled to ride a SpaceX Falcon Heavy rocket to orbit in 2016 with its parent satellite, Prox-1. Credit: Josh Spradling/The Planetary Society.

In a live webcast, The Planetary Society CEO Bill Nye announced that its long-awaited LightSail solar sail mission will launch to Earth orbit on a SpaceX Falcon Heavy, currently scheduled for an April 2016 liftoff. LightSail-1 and its parent satellite, Prox-1, will be on the same launch vehicle as the U.S. Air Force’s Space Test Program 2 (STP-2) mission. If successful, it will be the first CubeSat to demonstrate controlled solar sailing.

“It’s fantastic that at last we have a launch date for this pioneering mission,” said Nye.

The Planetary Society has raised over $4 million for the mission, but according to Jason Davis from TPS, the launch costs will be paid by the USAF and Georgia Institute of Technology, which developed the Prox-1, a technology demonstration for using small satellites to autonomously inspect other spacecraft.

LightSail will go to an orbit about 720 km above Earth, stored inside the Prox-1, which was developed by the Georgia Institute of Technology to demonstrate new technologies enabling two spacecraft to work in close proximity. After ejecting LightSail, the largely student-built Prox-1 will track and image LightSail, including the sail deployment.

Here’s the LightSail-1 mission trailer:

According to TPS, cubesats utilize a standard design based on 10-centimeter (about 4-inch) cubes. LightSail is three cubes, or just 30 centimeters long. Tucked inside this tiny package are four ultra-thin Mylar sails that will be deployed a few weeks after orbital insertion. The reflective wings will expand to 32 square meters (344 square feet), making LightSail easily visible to naked eye observers on Earth.

There might be a test flight of a prototype LightSail-A on a smaller rocket, perhaps in 2015. This flight will only reach low earth orbit, where the atmosphere is too thick for a solar sail to function, but it will allow the LightSail team to check the operation of vital systems in the extreme environment of space. That team includes faculty and students at California Polytechnic State University in San Luis Obispo.

While the test flight would only stay in orbit for a week or so, the 2016 main LightSail mission should remain in orbit for several years.

Solar sails are not new, and have already been launched and deployed in space, but have had limited success. The Japanese Ikaros satellite unfurled a 14-meter solar sail back in 2010. NASA launched the Nanosail-D spacecraft in 2011 and is expected to launch the Sunjammer solar sail in early 2015.

A spacecraft propelled by a solar sail uses the sail to capture photons emitted from the Sun. Over time, the buildup of the solar photons provides enough thrust for a small spacecraft to travel in space. Solar sails could one day be an alternative to conventional propellant-based spacecraft.

The Planetary Society has a long history of solar sail activity. In June 2005, the Society attempted to launch Cosmos 1, which would have been the first solar sail in space. The failure of a Russian booster doomed that effort, but then proceeded with fundraising for the Lightsail mission.

Find out more details about the LightSail mission at the Planetary Society, and here’s Fraser with more details about solar sails: