Juno Captures Pictures of Ganymede for the First Time

On July 5, 2016, NASA’s Juno spacecraft arrived around Jupiter, becoming the second mission in history to study the gas giant from orbit – the last being the Galileo spacecraft, which orbited Jupiter from 1995 to 2003. Since then, the spacecraft has gathered data on Jupiter’s atmosphere, composition, gravity field, and magnetic field in the hopes of learning more about how the planet formed and evolved.

In addition, the spacecraft has gathered some of the most breathtaking images ever taken of Jupiter and its system of moons. In fact, as the spacecraft was making another approach towards Jupiter on December 26th, 2019, it managed to capture the first infrared images of the moon Ganymede’s northern polar region. These images will inform future missions to this satellite, which could host life beneath its icy mantle.

Continue reading “Juno Captures Pictures of Ganymede for the First Time”

Amateur Astronomers Find a Brand New Storm on Jupiter

JunoCam took this image during its eleventh close flyby of Jupiter on February 7, 2018. Image credit: NASA / JPL / SwRI / MSSS / David Marriott.
JunoCam took this image during its eleventh close flyby of Jupiter on February 7, 2018. Image credit: NASA / JPL / SwRI / MSSS / David Marriott.

There’s a new storm brewing on Jupiter. The most famous storm on Jupiter is the Great Red Spot, which has been active since at least the time of Galileo. Most of Jupiter’s storms don’t last for hundreds of years. They grow and fade just as they do on Earth. This latest storm was discovered by amateur astronomer Clyde Foster.

Continue reading “Amateur Astronomers Find a Brand New Storm on Jupiter”

Spacecraft and Ground Telescopes Work Together to Give us Stunning New Pictures of Jupiter

A Hubble Telescope image of Jupiter's Great Red Spot. A new effort is combining Hubble, Juno, and Gemini Observatory images in an effort to understand Jupiter's stormy behaviour. Image Credit: NASA, ESA, and M.H. Wong (UC Berkeley) and team

It’s difficult to imagine the magnitude of storms on Jupiter. The gas giant’s most visible atmospheric feature, the Great Red Spot, may be getting smaller, but one hundred years ago, it was about 40,000 km (25,000 miles) in diameter, or three times Earth’s diameter.

Jupiter’s atmosphere also features thunderheads that are five times taller than Earth’s: a whopping 64 km (40 miles) from bottom to top. Its atmosphere is not entirely understood, though NASA’s Juno spacecraft is advancing our understanding. The planet may contain strange things like a layer of liquid metallic hydrogen.

Now a group of scientists are combining the power of the Hubble Space Telescope, the Gemini Observatory and the Juno spacecraft to probe Jupiter’s atmosphere, and the awe-inspiring storms that spawn there.

Continue reading “Spacecraft and Ground Telescopes Work Together to Give us Stunning New Pictures of Jupiter”

Artwork Inspired by Jupiter’s Great Red Spot

Artist Mik Petter created this unique, digital artwork using data from the JunoCam imager on NASA’s Juno spacecraft. The original JunoCam image was taken on July 10, 2017, at 10:10 p.m. EDT. Image Credit: NASA/JPL/Mik Petter

Artist Mik Petter has created a vibrant new piece of art based on JunoCam images of Jupiter’s Great Red Spot (GRS). The piece makes use of fractals, which are recursive mathematical creations; increasingly complex patterns that are similar to each other, yet never exactly the same.

Continue reading “Artwork Inspired by Jupiter’s Great Red Spot”

Clouds On Jupiter Rising Up Above the Surrounding Atmosphere

At center right, a patch of bright, high-altitude "pop-up" clouds rises above Jupiter's surrounding atmosphere. Image Credit: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstadt

Though it looks like it to us, Jupiter’s clouds do no form a flat surface. Some of its clouds rise up above the surrounding cloud tops. The two bright spots in the right center of this image are much higher than the surrounding clouds.

Continue reading “Clouds On Jupiter Rising Up Above the Surrounding Atmosphere”

Juno is Afraid to Death of Jupiter’s Shadow. So it Fired its Thruster for Over 10 Hours to Avoid It.

Illustration of NASA's Juno spacecraft firing its main engine to slow down and go into orbit around Jupiter. Lockheed Martin built the Juno spacecraft for NASA's Jet Propulsion Laboratory. Credit: NASA/Lockheed Martin

In a death-defying maneuver for the spacecraft, NASA’s Juno has completed an unprecedented and unplanned engine burn. The purpose? To save the spacecraft’s “life,” or at least the rest of its mission to Jupiter.

Jupiter casts a deep, dark shadow. Dark enough, in fact, to effectively kill Juno if it flies through it. Rather than let the spacecraft spend 12 battery-draining hours in Jupiter’s shadow, and then attempt a risky resuscitation on the other side, NASA took another course of action: a 10.5 hour burn of Juno’s reaction thrusters that will steer it clear of Jupiter’s life-draining shadow.

via Gfycat

Continue reading “Juno is Afraid to Death of Jupiter’s Shadow. So it Fired its Thruster for Over 10 Hours to Avoid It.”

Yes, This is Actually the Shadow of Io Passing Across the Surface of Jupiter.

Io casts a crisp circular shadow on the the cloud tops in Jupiter's atmosphere in this JunoCam image processed by Kevin Gill. Image Credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill https://creativecommons.org/licenses/by/2.0/

The JunoCam onboard NASA’s Juno spacecraft continues to provide we Earthbound humans with a steady stream of stunning images of Jupiter. We can’t get enough of the gas giant’s hypnotic, other-worldly beauty. This image of Io passing over Jupiter is the latest one to awaken our sense of wonder.

This image was processed by Kevin Gill, a NASA software engineer who has produced other stunning images of Jupiter.

Continue reading “Yes, This is Actually the Shadow of Io Passing Across the Surface of Jupiter.”

The Latest Insanely Beautiful Image of Jupiter Captured by Juno

This stunning image comes from the Juno spacecraft. Citizen scientist Kevin M. Gill created it using images from Juno's JunoCam imager. Image Credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill

There’s something about Jupiter that mesmerizes those who gaze at it. It’s intricate, dazzling clouds are a visual representation of the laws of nature that’s hard to turn away from. And even though the Juno spacecraft has been at Jupiter for almost three years now, and has delivered thousands of images of the gas giant’s colourful, churning clouds, we can’t seem to satisfy our appetite.

Continue reading “The Latest Insanely Beautiful Image of Jupiter Captured by Juno”

Juno Saw One of Io’s Volcanoes Erupting During its Recent Flyby

An amazingly active Io, Jupiter's "pizza moon" shows multiple volcanoes and hot spots in this photo taken with Juno's infrared camera. Credit: NASA / JPL-Caltech / SwRI / ASI / INAF /JIRAM / Roman Tkachenko

Thanks to a mission extension, NASA’s Juno probe continues to orbit Jupiter, being only the second spacecraft in history to do so. Since it arrived around the gas giant on July 5th, 2016, Juno has managed to gather a great deal of information on Jupiter’s atmosphere, magnetic and gravity environment, and its interior structure.

In that time, the probe has also managed to capture some breathtaking images of Jupiter as well. But on December 21st, during the probe’s sixteenth orbit of the gas giant, the Juno probe changed things up when four of its cameras captured images of the Jovian moon Io, showcasing its polar regions and spotting what appeared to be a volcanic eruption.

Continue reading “Juno Saw One of Io’s Volcanoes Erupting During its Recent Flyby”

NASA’s Juno Mission Spots Another Possible Volcano on Jupiter’s Moon Io

Infrared image of the southern hemisphere of Jupiter’s moon Io taken by NASA's Juno spacecraft on Dec. 16, 2017. Credits: NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM

When the Juno spacecraft arrived in orbit around Jupiter in 2016, it became the second spacecraft in history to study Jupiter directly – the first being the Galileo probe, which orbited Jupiter between 1995 and 2003. With every passing orbit (known as a perijove, which take place every 53 days), the spacecraft has revealed more about Jupiter’s atmosphere, weather patterns, and magnetic environment.

In addition, Juno recently discovered something interesting about Jupiter’s closest orbiting moon Io. Based on data collected by its Jovian InfraRed Auroral Mapper (JIRAM) instrument, Juno detected a new heat source close to the south pole of Io that could indicate the presence of a previously undiscovered volcano. This is just the latest discovery made by the probe during its mission, which NASA recently extended to 2021.

Annotated image of the new heat source in the southern hemisphere of the Jupiter moon Io. Credits: NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM

The infrared data was collected on Dec. 16th, 2017, when the Juno spacecraft was about 470,000 km (290,000 mi) away from Io. As Alessandro Mura, a Juno co-investigator from the National Institute for Astrophysics (INAF) in Rome, explained in a recent NASA press release:

“The new Io hotspot JIRAM picked up is about 200 miles (300 kilometers) from the nearest previously mapped hotspot. We are not ruling out movement or modification of a previously discovered hot spot, but it is difficult to imagine one could travel such a distance and still be considered the same feature.”

Aside from Juno and Galileo, many NASA missions have visited or passed through the Jovian System in the past few decades. These have including the Pioneer 10 and 11 missions in 1973/74, the Voyager 1 and 2 missions in 1979, and the Cassini and New Horizons missions in 2000 and 2007, respectively. Each of these missions managed to snap pictures of the Jovians moons on their way to the outer Solar System.

Annotated image of the new heat source close to the south pole of Io, with a scale depicting the range of temperatures displayed in the infrared image. Credits: NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM

Combined with ground-based observations, scientists have accounted for over 150 volcanoes on the surface of Io so far, with estimates claiming there could over 400 in total. Since it entered Jupiter’s orbit on July 4th, 2016, the Juno probe has traveled nearly 235 million km (146 million mi) from one pole to other. On July 16th, Juno will conduct its 13th perijove maneuver, once again passing low over Jupiter’s cloud tops at a distance of about 3,400 km (2,100 mi).

During these flybys, Juno probes beneath the upper atmosphere to study the planet’s auroras to learn more about it’s structure, atmosphere and magnetosphere. By shedding light on these characteristics, the Juno probe will also teach us more about the planet’s origins and evolution. This in turn will teach scientists a great deal more about the formation and evolution of our Solar System, and perhaps how life began here.

Further Reading: NASA