SpaceX Nails Dazzling Midnight Launch of Japanese Comsat and Droneship Landing

Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL — Shortly after midnight today, Sunday, Aug. 14, and under near pristine Florida Space Coast skies, SpaceX dazzled its commercial customers and space enthusiasts alike worldwide with the twin feats of nailing the nighttime launch of the firm’s Falcon 9 carrying a huge Japanese telecommunications satellite to orbit and accomplishing the nailbiting precision touchdown of the first stage on a miniscule droneship at sea.

A virgin SpaceX Falcon 9 rocket carrying the JCSAT-16 telecom satellite roared to life right on time Sunday morning at 1:26 a.m. from Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida and streaked to orbit.

Streak shot of SpaceX Falcon 9 delivering JCSAT-16 Japanese communications satellite to orbit after blastoff on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
Streak shot of SpaceX Falcon 9 delivering JCSAT-16 Japanese communications satellite to orbit after blastoff on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

Scarcely some nine minutes later the 15 story tall first stage completed a pinpoint and upright soft landing on a prepositioned ocean going platform after carrying the Japanese satellite to its intended Geostationary Transfer Orbit (GTO).

First stage landing confirmed on the droneship. Second stage & JCSAT-16 continuing to orbit on 15 Aug 2016.  Credit: SpaceX
First stage landing confirmed on the droneship. Second stage & JCSAT-16 continuing to orbit on 15 Aug 2016. Credit: SpaceX

The satellite was launched using the upgraded version of the 229 foot tall Falcon 9 rocket. The first stage generates over 1.71 million pounds of sea level thrust when all nine Merlin 1D engines fire up on the pad.

Check out the expanding gallery of launch photos and videos.

The JCSAT-16 communications satellite was built by Space Systems Loral for Tokyo-based SKY Perfect JSAT Corp. It is equipped Ku-band and Ka-band communications services for customers of SKY Perfect JSAT Corp.

SKY Perfect JSAT Corp. ia a leading satellite operator in the Asia – Pacific region. JCSAT-16 will be positioned 22,300 miles (35,800 kilometers) above the equator.

Sunday’s launch was the second this year for The sextet of intact and upright landings of the recovered 156-foot-tall (47-meter) booster count as stunning successes towards SpaceX founder and CEO Elon Musk’s vision of rocket reusability and radically slashing the cost of sending rockets to space by recovering the boosters and eventually reflying them with new payloads from paying customers.

Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Ken Kremer/kenkremer.com
Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

The JCSAT-14 satellite was already successfully launched earlier this year atop a SpaceX Falcon 9 on May 6.

JCSAT-16 will primarily serve as an on orbit back up spare for the company’s existing services, a company spokeswomen told Universe Today at the media launch viewing site.

The U.S. Air Force’s 45th Space Wing supported SpaceX’s Falcon 9 launch of JCSAT-16.

“I am very proud of the entire Space Coast team. Their flawless work made this mission a success,” said Col. Walt Jackim, 45th Space Wing vice commander and mission Launch Decision Authority.

“Assured access to space remains a difficult and challenging endeavor. Today’s launch reflects a superb collaborative effort between commercial launch providers, allied customers, and U.S. Air Force range and safety resources. The 45th Space Wing remains a proud member of the Space Coast team and we look forward to continuing our service as the ‘World’s Premier Gateway to Space.”

With today’s event, SpaceX has now successfully soft landed 6 of the spent first stage boosters over the past eight months following successful rocket delivery launches to orbit for NASA and commercial customers – two on land and four at sea.

Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese comsat to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from SLC-40 at Cape Canaveral Air Force Station, Fl. Credit: Dawn Leek Taylor
Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese comsat to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from SLC-40 at Cape Canaveral Air Force Station, Fl. Credit: Dawn Leek Taylor

The sextet of intact and upright landings of the recovered 156-foot-tall (47-meter) booster count as stunning successes towards SpaceX founder and CEO Elon Musk’s vision of rocket reusability and radically slashing the cost of sending rockets to space by recovering the boosters and eventually reflying them with new payloads from paying customers.

JCSAT-16 satellite manufactured by Space Systems Loral for Tokyo-based SKY Perfect JSAT Corp.
JCSAT-16 satellite manufactured by Space Systems Loral for Tokyo-based SKY Perfect JSAT Corp.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX Launch and :Landing control center. Credit: Lane Hermann
SpaceX Launch and :Landing control center. Credit: Lane Hermann
Mission patch for SpaceX JCSAT-16 launch. Credit: SpaceX
Mission patch for SpaceX JCSAT-16 launch. Credit: SpaceX
SKY Perfect JSAT Corporation communications managers Yoko Watanabe and Katsumi Sugiura discuss and Ken Kremer of Universe Today discuss the JCSAT-16 mission in this prelaunch view of SpaceX Falcon 9 at SLC-40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek
SKY Perfect JSAT Corporation communications managers Yoko Watanabe and Katsumi Sugiura, and Ken Kremer of Universe Today discuss the JCSAT-16 Japanese telecom sat mission in this prelaunch view of SpaceX Falcon 9 at SLC-40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

SpaceX Falcon 9 Set for Post-Midnight Blastoff and Landing on Aug. 14 – Watch Live

Blastoff of SpaceX Falcon 9 from Cape Canaveral Air Force Station on Dec. 21, 2015. First stage successfully landed vertically back at the Cape ten minutes later for the first time in history. Credit: Ken Kremer/kenkremer.com
Blastoff of SpaceX Falcon 9 from Cape Canaveral Air Force Station on Dec. 21, 2015.   First stage successfully landed vertically back at the Cape ten minutes later for the first time in history.   Credit: Ken Kremer/kenkremer.com
Blastoff of SpaceX Falcon 9 from Cape Canaveral Air Force Station on Dec. 21, 2015. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Scarcely three weeks after the mesmerizing midnight launch and landing of a SpaceX Falcon 9 rocket that delivered over two tons of science and critical hardware to the space station for NASA, the innovative firm is set to repeat the back to back space feats – with a few big twists – during a post midnight launch this Sunday, Aug.14 of a Japanese telecom satellite.

In less than 24 hours, a freshly built SpaceX Falcon 9 is set to transform night into day and launch the JCSAT-16 communications satellite from Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida.

And some nine minutes later, the 15 story Falcon 9 first stage is scheduled to make a pinpoint soft landing on a tiny, prepositioned drone ship at sea in the vast Atlantic Ocean.

SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing  rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com

To date SpaceX has successfully soft landed 5 first stage boosters over the past eight months – two by land and three by sea.

Nighttime liftoffs are always a viewing favorite among the general public – whether visiting from near or far. And this one is virtually certain to offer some spectacular summer fireworks since the weather looks rather promising – if all goes well.

Sunday’s launch window opens at 1:26 a.m. EDT and extends two hours long for the 229 foot tall Falcon 9 rocket. The window closes at 3:26 a.m. EDT.

The commercial mission involves lofting the JCSAT-16 Japanese communications satellite to a Geostationary Transfer Orbit (GTO) for SKY Perfect JSAT – a leading satellite operator in the Asia – Pacific region. JCSAT-16 will be positioned 22,300 miles (35,800 kilometers) above the equator.

Sunday’s launch is the second this year for SKY Perfect JSAT. The JCSAT-14 satellite was already launched earlier this year on May 6.

You can watch the launch live via a special live webcast from SpaceX.

The SpaceX webcast will be available starting at about 20 minutes before liftoff, at approximately 1:06 a.m. EDT at SpaceX.com/webcast

The weather currently looks very good. Air Force meteorologists are predicting an 80 percent chance of favorable weather conditions at launch time in the wee hours early Sunday morning.

The primate concerns are for violations of the Cumulus Cloud and Think Cloud rules.

The U.S. Air Force’s 45th Space Wing will support SpaceX’s Falcon 9 launch of JCSAT-16.

In cases of any delays for technical or weather issues, a backup launch opportunity exists 24 hours later on Monday morning with a 70 percent chance of favorable weather.

The rocket has already been rolled out to the launch pad on the transporter and raised to its vertical position.

The path to launch was cleared following the successful Aug. 10 hold down static fire test of the Falcon 9 first stage Merlin 1-D engines. SpaceX routinely performs the hot fire test to ensure the rocket is ready.

Watch this crystal clear video of the Static Fire Test from USLaunchReport:

Video Caption: SpaceX – JCSAT-16 – Static Fire Test 08-10-2016. On a humid, windless evening at 11 PM, JCSAT-16 gave one good vapor show. Credit: USLaunchReport

Via a fleet of 15 satellites, Tokyo, Japan based SKY Perfect JSAT provides high quality satellite communications to its customers.
The JCSAT-16 communications satellite was designed and manufactured by Space Systems/Loral for SKY Perfect JSAT Corporation.

JCSAT-16 satellite will separate from the second stage and will be deployed about 32 minutes after liftoff from Cape Canaveral. The staging events are usually broadcast live by SpaceX via stunning imagery from onboard video cameras.

A secondary objective is to try and recover the first stage booster via a propulsive landing on an ocean-going platform.

This booster is again equipped with 4 landing legs and 4 grid fins.

Following stage separation, SpaceX will try to soft land the first stage on the “Of Course I Still Love You” drone ship positioned about 400 miles (650 km) off shore of Florida’s east coast in the Atlantic Ocean.

But SpaceX officials say landings from GTO mission destinations are extremely challenging because the first stage will be subject to extreme velocities and re-entry heating.

If all goes well with the supersonic retropropulsion landing on the barge, the booster will arrive back into Port Canaveral a few days later.

Pelican Navy stands watch and greets SpaceX Naval Fleet and Falcon 9 rocket float by on barge approaching mouth of Port Canaveral, Fl, on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Pelican Navy stands watch and greets SpaceX Naval Fleet and Falcon 9 rocket float by on barge approaching mouth of Port Canaveral, Fl, on June 2, 2016. Credit: Ken Kremer/kenkremer.com

To date SpaceX has successfully recovered first stages three times in a row at sea this year on the an ocean going drone ship barge using the company’s OCISLY Autonomous Spaceport Drone Ship (ASDS) on April 8, May 6 and May 27.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Up closse view of SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket returns late at night to Port Canaveral, Florida on May 9, 2016.  Credit:  Julian Leek
Up closse view of SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket returns late at night to Port Canaveral, Florida on May 9, 2016. Credit: Julian Leek

Mission patch for SpaceX JCSAT-16 launch. Credit: SpaceX
Mission patch for SpaceX JCSAT-16 launch. Credit: SpaceX

………….

Learn more about SpaceX missions, Juno at Jupiter, SpaceX CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Aug 12-14: “SpaceX missions/launches to ISS on CRS-9, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX Adopts Lessons Learned From Multiple Booster Landings – Test Fires Recovered 1st Stage: Videos

SpaceX completed the first full duration test firing of a landed first stage booster on July 28, 2016 on a test stand at their rocket development facility in McGregor, Texas. Credit: SpaceX
SpaceX completed the first full duration test firing of a landed first booster on July 28, 2016 on a test stand at their rocket development facility in McGregor, Texas.
SpaceX completed the first full duration test firing of a landed first stage booster on July 28, 2016 on a test stand at their rocket development facility in McGregor, Texas. Credit: SpaceX

KENNEDY SPACE CENTER, FL – SpaceX founder Elon Musk’s daring dream of rocket recycling and reusability is getting closer and closer to reality with each passing day. After a breathtaking series of experimental flight tests aimed at safely landing the firms spent Falcon 9 first stages on land and at sea over the past half year the bold effort achieved another major milestone by just completing the first full duration test firing of one of those landed boosters.

On Thursday, July 28, SpaceX engineers successful conducted a full duration static engine test firing of the 156-foot-tall (47-meter) recovered Falcon 9 first stage booster while held down on a test stand at the company’s rocket development test facility in McGregor, Texas. The engines fired up for about two and a half minutes.

The SpaceX team has been perfecting the landing techniques by adopting lessons learned after each landing campaign attempt.

What are the lessons learned so far from the first stage landings and especially the hard landings? Are there any changes being made to the booster structure? How well did the landing burn scenario perform?

During SpaceX’s recent CRS-9 launch campaign media briefings at NASA’s Kennedy Space Center on July 18, I asked SpaceX VP Hans Koenigsmann for some insight.

“We learned a lot … from the landings,” Hans Koenigsmann, SpaceX vice president of Flight Reliability, told Universe Today during the recent media briefings for the SpaceX CRS-9 space station cargo resupply launch on July 18.

“There are no structural changes first of all.”

“The key thing is to protect the engines,” Koenigsmann elaborated, while they are in flight and “during reentry”.

The SpaceX Falcon 9 first stage is outfitted with four landing legs at the base and four grid fins at the top to conduct the landing attempts.

“In general I think the landing concept with the legs, and the number of burns and the way we perform those seems to work OK,” Koenigsmann told Universe Today.

After separating from the second stage at hypersonic speeds of up to some 4000 mph, the first stage engines are reignited to reverse course and do a boost backburn back to the landing site and slow the rocket down for a soft landing, via supersonic retropulsion.

Proper engine performance is critical to enabling a successful touchdown.

“The key thing is to protect the engines – and make sure that they start up well [in space during reentry],” Koenigsmann explained. “And in particular the hot trajectory, so to speak, like the ones that comes in after a fast payload, like the geo-transfer payload basically.”

“Those engines need to be protected so that they start up in the proper way. That’s something that we learned.”

Elon Musk’s goal is to radically slash the cost of launching rockets and access to space via rocket reuse – in a way that will one day lead to his vision of a ‘City on Mars.’

SpaceX hopes to refly a once flown booster later this year, sometime in the Fall, using the ocean landed Falcon from NASA’s CRS-8 space station mission launched in April, says Koenigsmann.

But the company first has to prove that the used vehicle can survive the extreme and unforgiving stresses of the violent spaceflight environment before they can relaunch it.

The July 28 test firing is part of that long life endurance testing and involved igniting all nine used first stage Merlin 1D engines housed at the base of a used landed rocket.

The Falcon 9 first stage generates over 1.71 million pounds of thrust when all nine Merlin engines fire up on the test stand for a duration of up to three minutes – the same as for an actual launch.

Watch the engine test in this SpaceX video:

Video Caption: Falcon 9 first stage from May 2016 JCSAT mission was test fired, full duration, at SpaceX’s McGregor, Texas rocket development facility on July 28, 2016. Credit: SpaceX

The used 15 story Falcon booster had successfully carried out an intact soft landing on an ocean going platform after launching a Japanese commercial telecommunications satellite only two months ago on May 6 of this year.

Just 10 minutes after launching the JCSAT-14 telecom satellite to a Geostationary Transfer Orbit (GTO), the used first stage relit a first stage Merlin 1D engine.

It conducted a series of three recovery burns to maneuver the rocket to a designated landing spot at sea or on land and rapidly decelerate it from supersonic speeds for a propulsive soft landing, intact and upright using a quartet of landing legs that deploy in the final moments before a slow speed touchdown.

However, although the landing was upright and intact, this particular landing was also classed as a ‘hard landing’ because the booster landed at a higher velocity and Merlin 1D first stage engines did sustain heavy damage as seen in up close photos and acknowledged by Musk.

“Most recent rocket took max damage, due to v high entry velocity. Will be our life leader for ground tests to confirm others are good,” Musk tweeted at the time.

Nevertheless it all worked out spectacularly and this was the first one to be recovered from the much more demanding, high velocity trajectory delivering a satellite to GTO.

Indeed prior to liftoff, Musk had openly doubted a successful landing outcome, since this first stage was flying faster and at a higher altitude at the time of separation from the second stage and thus was much more difficult to slow down and maneuver back to the ocean based platform compared to ISS missions, for example.

So although this one cannot be reflown, it still serves another great purpose for engineers seeking to determining the longevity of the booster and its various components – as now audaciously demonstrated by the July 28 engine test stand firing.

“We learned a lot even on the missions where things go wrong with the landing, everything goes well on the main mission of course,” said Koenigsmann.

Altogether SpaceX has successfully soft landed and recovered five of their first stage Falcon 9 boosters intact and upright since the history making first ever land landing took place just seven months ago in December 2015 at Cape Canaveral Air Force Station in Florida.

The most recent launch and landing occurred last week on July 18, 2016 during the dramatic midnight blastoff of the SpaceX CRS-9 commercial cargo resupply mission to the International Space Station (ISS) under contract for NASA.

See the stupendous events unfold in up close photos and videos herein.

SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing  rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com

Following each Falcon 9 launch and landing attempt, SpaceX engineers assess the voluminous and priceless data gathered, analyze the outcome and adopt the lessons learned.

Moments before dramatic touchdown of SpaceX Falcon 9 1st stage at Landing Zone-1 (LX-1) accompanied by sonic booms after launching Dragon CRS-9 supply ship to orbit from Cape Canaveral Air Force Station, Florida at 12:45 a.m., bound for the International Space Station (ISS).   Credit: Ken Kremer/kenkremer.com
Moments before dramatic touchdown of SpaceX Falcon 9 1st stage at Landing Zone-1 (LX-1) accompanied by sonic booms after launching Dragon CRS-9 supply ship to orbit from Cape Canaveral Air Force Station, Florida at 12:45 a.m., bound for the International Space Station (ISS). Credit: Ken Kremer/kenkremer.com

CRS-9 marks only the second time SpaceX has attempted a land landing of the 15 story tall first stage booster back at Cape Canaveral Air Force Station – at the location called Landing Zone 1 (LZ 1).

Watch this exquisitely detailed up close video showing the CRS-9 first stage landing at LZ 1, as shot by space colleague Jeff Seibert from the ITL causeway at CCAFS- which dramatically concluded with multiple shockingly loud sonic booms rocketing across the Space Coast and far beyond and waking hordes of sleepers:

Video caption: This was the second terrestrial landing of a SpaceX Falcon 9 booster on July 18, 2016. It had just launched the CRS9 Dragon mission towards the ISS. The landing took place at LZ1, formerly known as Pad 13, located on CCAFS and caused a triple sonic boom heard 50 miles away. Credit: Jeff Seibert

The history making first ever ground landing successfully took place at Landing Zone 1 (LZ 1) on Dec. 22, 2015 as part of the ORBCOMM-2 mission. Landing Zone 1 is built on the former site of Space Launch Complex 13, a U.S. Air Force rocket and missile testing range.

SpaceX also successfully recovered first stages three times in a row at sea this year on an ocean going drone ship barge using the company’s OCISLY Autonomous Spaceport Drone Ship (ASDS) on April 8, May 6 and May 27.

OCISLY is generally stationed approximately 400 miles (650 kilometers) off shore and east of Cape Canaveral, Florida in the Atlantic Ocean. The barge arrives back in port at Port Canaveral several days after the landing, depending on many factors like weather, port permission and the state of the rocket.

However while trying to extend the touchdown streak to 4 in a row during the latest drone ship landing attempt following the June 15 Eutelsat telecom launch to GTO, the booster basically crashed because it descended too quickly due to insufficient thrust from the Merlin descent engines.

The rocket apparently ran out of liquid oxygen fuel in the final moments before touchdown, hit hard, tipped over and pancaked onto the deck.

“Looks like early liquid oxygen depletion caused engine shutdown just above the deck,” Musk explained via twitter at the time.

“Looks like thrust was low on 1 of 3 landing engines. High g landings v sensitive to all engines operating at max.”

Flattened SpaceX Falcon 9 first stage arrived into Port Canaveral, FL atop a droneship late Saturday, June 18 after hard landing and tipping over following successful June 15, 2016  commercial payload launch.  Credit: Julian Leek
Flattened SpaceX Falcon 9 first stage arrived into Port Canaveral, FL atop a droneship late Saturday, June 18 after hard landing and tipping over following successful June 15, 2016 commercial payload launch. Credit: Julian Leek

“We learned a lot even on the mission where things go wrong with the landing,” Koenigsmann explained. “Everything goes well on the main mission of course.”

“That’s actually something where you have successful deploy and the landing doesn’t quite work- and yet its the landing that gets all the attention.”

“But even on those landings we learned a lot. In particular on the last landing [from Eutelsat launch] we learned a lot.”

“We believe we found a way to operationally protect these engines and to make it safer for them to start up – and to come up to full thrust and stay at full thrust.”

What exactly does “protecting the engines” mean “in flight?”

“Yes I mean protecting the engines during reentry,” Koenigsmann told me.

“That’s when the engines get hot. We enter with the engines facing the flow. So its basically the engines directly exposed to the hot flow. And that’s when you need to protect the engines and the gases and liquids that are in the engines. To make sure that nothing boils off and does funny things.”

“So all in all these series of drone ship landings has been extremely successful, even when we didn’t recover all the first stages [fully intact].”

SpaceX Falcon 9 booster moving along the Port Canaveral channel atop droneship platform with cruise ship in background nears ground docking facility on June 2, 2016 following Thaicom-8 launch on May 27, 2016.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 booster moving along the Port Canaveral channel atop droneship platform with cruise ship in background nears ground docking facility on June 2, 2016 following Thaicom-8 launch on May 27, 2016. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing SpaceX and CRS-9 mission coverage where he reported onsite direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Watch my launch pad video of the CRS-9 launch:

Video caption: SpaceX Falcon 9 lifts off with Dragon CRS-9 resupply ship bound for the International Space Station on July 18, 2016 at 12:45 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl, as seen in this up close video from Mobius remote camera positioned at pad. Credit: Ken Kremer/kenkremer.com

Watch this CRS-9 launch and landing video compilation from space colleague Mike Wagner:

Video caption: SpaceX CRS-9 Launch and Landing compilation on 7/18/2016. Local papers reported 911 calls for a loud explosion up to 75 miles away. This sonic boom seemed louder than the first landing at the Cape in Dec. 2015. Credit: USLaunchReport

Prelaunch view of SpaceX Falcon 9 awaiting launch on May 27, 2016 from Cape Canaveral Air Force Station, Fl.  Credit: Lane Hermann
Prelaunch view of SpaceX Falcon 9 awaiting launch on May 27, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Lane Hermann
First stage booster with landing legs removed from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Julian Leek
First stage booster with landing legs removed from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Julian Leek
Proud fisherman displays ultra fresh ‘catch of the day’ as ultra rare species of SpaceX Falcon 9 rocket floats by simultaneously on barge in Port Canaveral, Fl, on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Proud fisherman displays ultra fresh ‘catch of the day’ as ultra rare species of SpaceX Falcon 9 rocket floats by simultaneously on barge in Port Canaveral, Fl, on June 2, 2016. Credit: Ken Kremer/kenkremer.com
Recovered SpaceX Falcon 9 basks in nighttime glow after arriving into Port Canaveral on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Recovered SpaceX Falcon 9 basks in nighttime glow after arriving into Port Canaveral on June 2, 2016. Credit: Ken Kremer/kenkremer.com

SpaceX Targets Thursday May 26 for Thai Comsat Launch and Tough Sea Landing – Watch Live

SpaceX Falcon 9 rocket stands poised for launch on May 26 at Cape Canaveral Air Force Station, FL, similar to this file photo. Credit: Ken Kremer/kenkremer
SpaceX Falcon 9 rocket stands poised for launch on May 26 at Cape Canaveral Air Force Station, FL, similar to this file photo.  Credit: Ken Kremer/kenkremer
SpaceX Falcon 9 rocket stands poised for launch on May 26 at Cape Canaveral Air Force Station, FL, similar to this file photo. Credit: Ken Kremer/kenkremer

CAPE CANAVERAL AIR FORCE STATION, Fla. – Just three weeks after SpaceX’s last launch from their Florida launch base, the growing and influential aerospace firm is deep into commencing their next space spectacular – targeting this Thursday, May 26, for launch of a Thai comsat followed moments later by a sea landing attempt of the booster on a tough trajectory.

SpaceX is slated to launch the Thaicom-8 telecommunications satellite atop an upgraded version of the SpaceX Falcon 9 on Thursday at 5:40 p.m. EDT from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida.

SpaceX is rapidly picking up the pace of rocket launches for their wide ranging base of commercial, government and military customers that is continuously expanding and reaping contracts and profits for the Hawthorne, Calif. based company.

This commercial mission involves lofting Thaicom-8 to a Geostationary Transfer Orbit (GTO) for Thaicom PLC, a leading satellite operator in Asia.

This also counts as the second straight GTO launch and the second straight attempt to land a rocket on a sea based platform from the highly demanding GTO launch trajectory.

Will this mission make for 3 successful Falcon 9 1st stage booster landings in a row? Tune in and find out !!

Engineers have a two-hour window to launch the Falcon 9 and deliver Thaicom to orbit.

Thaicom-8 was built by aerospace competitor Orbital ATK, based in Dulles, VA. It will support Thailand’s growing broadcast industry and will provide broadcast and data services to customers in South Asia, Southeast Asia and Africa.

The Falcon 9 launch is the 5th this year for SpaceX.

You can watch the launch live via a special live webcast from SpaceX.

The SpaceX webcast will be available starting at about 20 minutes before liftoff, at approximately 5:20 a.m. EDT at SpaceX.com/webcast

The two stage Falcon 9 rocket has a two-hour launch window that extends until Thursday, May 26 at 7:40 p.m. EDT.

Thaicom-8 communications satellite built by Orbital ATK will launch on SpaceX Falcon 9 on May 26, 2016.  The satellite has delivered to the launch site in Cape Canaveral, Florida in late April 2016.  Credit: Orbital ATK
Thaicom-8 communications satellite built by Orbital ATK will launch on SpaceX Falcon 9 on May 26, 2016. The satellite has delivered to the launch site in Cape Canaveral, Florida in late April 2016. Credit: Orbital ATK

The path to liftoff was cleared late last night the company completed the customary pre-launch static fire test of the rocket’s first stage upgraded Merlin 1D engines for several seconds at pad 40.

The nine engines on the 229 foot tall Falcon 9 rocket generate approximately 1.5 million pounds of thrust.

Engineers monitored the test and after analyzing results declared the Falcon 9 was fit to launch Thursday afternoon.

The weather currently looks very good. Air Force meteorologists are predicting a 90 percent chance of favorable weather conditions at launch time Thursday morning with a minor concern for ground winds.

The backup launch opportunity is Friday, May 27. The weather outlooks is somewhat less promising at a 70 percent chance of favorable conditions.

After the Falcon 9 rocket delivers the satellite into its targeted geosynchronous transfer orbit it will enter a 30-day testing phase, says Orbital ATK.

Following in-orbit activation and after reaching its final orbital slot, Orbital ATK will then turn over control of the satellite to Thaicom to begin normal operations.

THAICOM 8’s orbital location will be positioned at 78.5 degrees east longitude and the satellite is designed to operate for more than 15 years.

Thaicom-8 is a Ku-band satellite that offers 24 active transponders that will deliver broadcast and data services to customers in Thailand, Southeast Asia, India and Africa.

Thaicom-8 has a mass of approximately 6,800 pounds (3,100 kilograms). It is based on Orbital ATK’s flight-proven GEOStar-2TM platform.

“We built and delivered this high-quality communications satellite for Thaicom PLC two months ahead of schedule, demonstrating our ability to manufacture reliable, affordable and innovative products that exceed expectations for our customer,” said Amer Khouri, Vice President of the Commercial Satellite Business at Orbital ATK.

“As one of Asia’s leading satellite operators, we are grateful for Thaicom’s continued confidence and look forward to more successful partnerships in the future.”

Thaicom-8 will join Thaicom-6 already in orbit. It was also designed, manufactured, integrated and tested by Orbital ATK. at the firm’s state-of-the-art satellite manufacturing facility in Dulles, Virginia.

Thaicom PLC commissioned Thaicom-8 in 2014, shortly after SpaceX launched the THAICOM 6 satellite into orbit in January 2014.

Thaicom-8 mission patch artwork.  Credit: SpaceX
Thaicom-8 mission patch artwork. Credit: SpaceX

The secondary test objective of SpaceX is to land the Falcon 9 rockets first stage on an ocean going barge several hundred miles offshore in the Atlantic Ocean.

The Autonomous Spaceport Drone Ship (ASDS) barge is named “Of Course I Still Love You.”

However with this mission’s GTO destination, the first stage will be subject to extreme velocities and re-entry heating and a successful landing will be difficult.

Having said that and despite those hurdles, the last GTO mission landing attempt did succeed brilliantly following the May 6 JCSAT-14 launch.

Tune in to the SpaceX webcast Thursday afternoon to catch all the exciting action !!

Composite image of first stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace.  Inset: Trio of SpaceX boosters inside pad 39A hangar. Credit: SpaceX.  Composite:  Ken Kremer
Composite image of first stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace. Inset: Trio of SpaceX boosters inside pad 39A hangar. Credit: SpaceX. Composite: Ken Kremer

Watch for Ken’s on site reports direct from Cape Canaveral and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX Falcon 9 rocket, ULA Atlas rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

May 25/26: “SpaceX, ULA, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Jun 2 to 5: “ULA, NRO, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

2 By Sea, 1 By Land, 3rd Recovered Booster Joins SpaceX Siblings: Up Close Gallery

Composite image of first stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace. Inset: Trio of SpaceX boosters inside pad 39A hangar. Credit: SpaceX. Composite: Ken Kremer
Composite image of first stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace.  Inset: Trio of SpaceX boosters inside pad 39A hangar. Credit: SpaceX.  Composite:  Ken Kremer
Composite image of first stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace. Inset: Trio of SpaceX boosters inside pad 39A hangar. Credit: SpaceX. Composite: Ken Kremer

Rolling rolling rolling! Yee-haw!

2 By Sea, 1 By Land. The 3rd recovered Falcon 9 booster has joined her siblings inside SpaceX’s gleaming new processing hangar, laying side-by-side at Launch Complex 39A at NASA’s Kennedy Space Center (KSC) in Florida.

What was once unfathomable science fiction has turned into science fact.

In the space of 5 short months, SpaceX has recovered three of the company’s spent Falcon 9 first stage boosters following successful rocket delivery launches to orbit for NASA and commercial customers.

The trio of landings count as stunning successes towards SpaceX founder and CEO Elon Musk’s vision of rocket reusability and radically slashing the cost of sending rockets to space by recovering the boosters and eventually reflying them with new payloads from paying customers.

Over the weekend, the latest Falcon 9 booster recovered after nailing a spectacular middle-of-the-night touchdown on a sea based platform, was transported horizontally from a work site at Port Canaveral to the SpaceX rocket processing hanger at pad 39A at KSC.

Check out the extensive gallery of up close photos/videos herein of the boosters travels along the long and winding road from the port to KSC from my space photographer friends Jeff Seibert and Julian Leek. As well as booster trio hangar photos from SpaceX.

“Three’s company,” tweeted SpaceX’s Elon Musk, after the third booster met the first two inside the pad 39A hangar.

Video caption: Close-up video of SpaceX JCSAT-14 Falcon 9 booster rolls to SpaceX hanger at Pad 39A after removal from the drone ship where it landed on May 6th. Credit: Jeff Seibert/AmericaSpace

The 156 foot tall booster safely soft landed on the tiny drone ship named “Of Course I Still Love You” or “OCISLY” barely nine minutes after liftoff of the SpaceX Falcon 9 a week and a half ago on a mission to deliver the Japanese JCSAT-14 telecom satellite to a Geostationary Transfer Orbit (GTO).

The upgraded SpaceX Falcon 9 soared to orbit on May 6, roaring to life with 1.5 million pounds of thrust on a mission carrying the JCSAT-14 commercial communications satellite, following an on time nighttime liftoff at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.

The used first stage then carried out an intricate propulsive soft landing on the waiting ocean going platform located some 400 miles off the east coast of Florida.

The booster was then towed into the Florida space coast at Port Canaveral where it was removed from the barge, defueled and had its four landing legs removed.

Thereafter it was tilted and lowered horizontally and placed onto the multi-wheeled transport for shipment back to SpaceX launch facilities at the Kennedy Space Center.

First stage booster with landing legs removed from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Julian Leek
First stage booster with landing legs removed from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Julian Leek

The newly recovered first stage joins the fleet of two others recovered last December and in April.

“May need to increase size of rocket storage hangar,” tweeted Musk.

3 landed SpaceX rockets in hangar at pad 39A at the Kennedy Space Center, Florida.  Credit: SpaceX
3 landed SpaceX rockets in hangar at pad 39A at the Kennedy Space Center, Florida. Credit: SpaceX

To date SpaceX has recovered 3 Falcon 9 first stages – 2 by sea and 1 by at land. But this was the first one to be recovered from the much more demanding, high velocity trajectory delivering a satellite to GTO.

The first rocket was flying faster and at a higher altitude at the time of separation from the second stage and thus was much more difficult to slow down and maneuver back to the ocean based platform.

Musk and SpaceX officials had openly doubted a successful outcome for this landing attempt.

Nevertheless it all worked out spectacularly as seen live at the time via the SpaceX launch and landing webcast.

However, the booster and the Merlin 1D first stage engines did sustain heavy damage as seen in the up close photos and acknowledged by Musk.

“Most recent rocket took max damage, due to v high entry velocity. Will be our life leader for ground tests to confirm others are good,” Musk tweeted.

So although this cannot be reflown, it still serves another great purpose for engineers seeking to determining the longevity of booster and its various components.

Apparent cracks in the recovered booster from SpaceX JCSAT-14 launch seen in this up close view revealing damage due to high velocity launch and touchdown on droneship at sea.  Credit: Jeff Seibert/AmericaSpace
The recovered booster from SpaceX JCSAT-14 launch seen in this up close view revealing possible damage due to high velocity launch and touchdown on droneship at sea. Credit: Jeff Seibert/AmericaSpace

“A few pictures show some signs of distress, this obviously was a rough re-entry,” Seibert told Universe Today.

Damage to the booster may be visible. Looking at the Falcon 9s Merlin 1D engines arranged in an octoweb configuration, the center engine appears to be held in place with restraining straps.

“It looks like the octoweb area may have been breached due to the high entry energy. It appears that for some reason, they are supporting the center Merlin engine for transport. They may be some burn through below the orange strap holding up the center engine.”

Apparent damage around Merlin 1D engines at base of recovered booster from SpaceX JCSAT-14 launch seen in this up close view showing straps around center engine.  Credit: Jeff Seibert/AmericaSpace
Apparent damage around Merlin 1D engines at base of recovered booster from SpaceX JCSAT-14 launch seen in this up close view showing straps around center engine. Credit: Jeff Seibert/AmericaSpace

Musk says the next SpaceX commercial launch is tentatively slated for late May – watch for my onsite reports.

Blastoff of the first reflown booster could follow sometime this summer.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Video caption: SpaceX Falcon 9 launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

Booster move gallery:

Recovered first stage booster after SpaceX JCSAT-14 launch rolls into Cape Canaveral Air Force Station and Kennedy Space Center, Florida on May 16, 2016.  Credit: Julian Leek
Recovered first stage booster after SpaceX JCSAT-14 launch rolls into Cape Canaveral Air Force Station and Kennedy Space Center, Florida on May 16, 2016. Credit: Julian Leek
Base of recovered first stage booster with 9 Merlin 1D engines covered, after SpaceX JCSAT-14 launch, rolls into Cape Canaveral Air Force Station and Kennedy Space Center, Florida on May 16, 2016.
Base of recovered first stage booster with 9 Merlin 1D engines covered and landing legs removed, after SpaceX JCSAT-14 launch, rolls into Cape Canaveral Air Force Station and Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace
9 Merlin 1D engines powered the recovered first stage from SpaceX JCSAT-14 launch, rolls to SpaceX hanger at Kennedy Space Center, Florida on May 16, 2016.  Credit: Jeff Seibert/AmericaSpace
9 Merlin 1D engines powered the recovered first stage from SpaceX JCSAT-14 launch, rolls to SpaceX hanger at Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace
Up close look at grid fins from recovered first stage booster after SpaceX JCSAT-14 launch during transport to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida. Credit: Jeff Seibert/AmericaSpace
Up close look at grid fins from recovered first stage booster after SpaceX JCSAT-14 launch during transport to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace
Credit: Jeff Seibert/AmericaSpace
Credit: Jeff Seibert/AmericaSpace
3 landed SpaceX rockets in hangar at pad 39A at the Kennedy Space Center, Florida.  Credit: SpaceX
3 landed SpaceX rockets in hangar at pad 39A at the Kennedy Space Center, Florida. Credit: SpaceX
First stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace
First stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace
First stage booster with landing legs removed from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Julian Leek
First stage booster with landing legs removed from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Julian Leek
Up close look at top of recovered first stage booster after SpaceX JCSAT-14 launch during transport to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida. Credit: Jeff Seibert/AmericaSpace
Up close look at top of recovered first stage booster after SpaceX JCSAT-14 launch during transport to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida. Credit: Jeff Seibert/AmericaSpace
Scorched skin and US flag on recovered SpaceX first stage booster during roll  to SpaceX hanger at Kennedy Space Center, Florida on May 16, 2016.  Credit: Jeff Seibert/AmericaSpace
Scorched skin and US flag on recovered SpaceX first stage booster during roll to SpaceX hanger at Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace
First stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida. Credit: Jeff Seibert/AmericaSpace
First stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace
SpaceX Crew Dragon will blast off atop a Falcon 9 rocket from Launch Pad 39A at NASA's Kennedy Space Center in Florida  for missions to the International Space Station. Pad 39A is  undergoing modifications by SpaceX to adapt it to the needs of the company's Falcon 9 and Falcon Heavy rockets, which are slated to lift off from the historic pad in the near future. A horizontal integration facility (right) has been constructed near the perimeter of the pad where rockets will be processed for launch prior of rolling out to the top of the pad structure for liftoff. Credit: Ken Kremer/Kenkremer.com
SpaceX Crew Dragon will blast off atop a Falcon 9 rocket from Launch Pad 39A at NASA’s Kennedy Space Center in Florida for missions to the International Space Station. Pad 39A is undergoing modifications by SpaceX to adapt it to the needs of the company’s Falcon 9 and Falcon Heavy rockets, which are slated to lift off from the historic pad in the near future. A horizontal integration facility (right) has been constructed near the perimeter of the pad where rockets will be processed for launch prior of rolling out to the top of the pad structure for liftoff. Credit: Ken Kremer/Kenkremer.com

Video Caption: 20X time-lapse of the first stage booster from the SpaceX JCSAT-14 launch being transferred on May 10, 2016 from the autonomous drone ship “Of Course I Still Love You” (OCISLY) to a work pedestal on land 12 hours after arriving at the dock. Credit: Jeff Seibert

Amazing Time-lapse Shows Recovered SpaceX Falcon 9 Moving To Land After Port Canaveral Arrival

First stage booster from the SpaceX JCSAT-14 launch was moved by crane on May 10, 2016 from the drone ship OCISLY to a work pedestal on land 12 hours after arriving back in Port Canaveral, Florida. See Time-lapse below. Credit: Jeff Seibert/AmericaSpace
First stage booster from the SpaceX JCSAT-14 launch was moved by crane on May 11, 2016 from the drone ship OCISLY to a work pedestal on land 12 hours after arriving back in Port Canaveral, Florida.  Credit: Jeff Seibert/AmericaSpace
First stage booster from the SpaceX JCSAT-14 launch was moved by crane on May 10, 2016 from the drone ship OCISLY to a work pedestal on land 12 hours after arriving back in Port Canaveral, Florida. Credit: Jeff Seibert/AmericaSpace

The recovered SpaceX first stage booster that nailed a spectacular middle-of-the-night touchdown at sea last week sailed back to Port Canaveral, Florida, late Monday and was transferred by crane on Tuesday from the drone ship to land – as seen in an amazing time-lapse video and photos, shown above and below and obtained by Universe Today.

The exquisite up close time-lapse sequence shows technicians carefully hoisting the 15-story-tall spent booster from the drone ship barge onto a work pedestal on land some 12 hours after arriving back in port.

The time-lapse imagery (below) of the booster’s removal from the drone ship was captured by my space photographer friend Jeff Seibert on Tuesday, May 10.

Video Caption: 20X time-lapse of the first stage booster from the SpaceX JCSAT-14 launch being transferred on May 10, 2016 from the autonomous drone ship “Of Course I Still Love You” (OCISLY) to a work pedestal on land 12 hours after arriving at the dock. Credit: Jeff Seibert

Towards the end of the video there is a rather humorous view of the technicians climbing in unison to the bottom of the hoisted Falcon.

“I particularly like the choreographed ascent by the crew to the base of the Falcon 9 near the end of the move video,” Seibert told Universe Today.

The move took place from 11:55 AM until 12:05 PM, Seibert said.

First stage booster from the SpaceX JCSAT-14 launch hoisted by crane on May 10, 2016 from drone ship to work pedestal on land 12 hours after arriving back in Port Canaveral, Florida.  Credit: Jeff Seibert/AmericaSpace
First stage booster from the SpaceX JCSAT-14 launch hoisted by crane on May 11, 2016 from drone ship to work pedestal on land 12 hours after arriving back in Port Canaveral, Florida. Credit: Jeff Seibert/AmericaSpace

The booster was towed into the space coast port around 11 p.m. Monday night, as seen in further up close images captured by my space photographer friend Julian Leek.

Leek also managed to capture a stunningly unique view of the rocket floating atop the barge when it was still out at sea and some 5 miles off shore waiting to enter the port at a safe time after most of the cruise ships had departed – as I reported earlier here.

SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket returns late at night to Port Canaveral, Florida on May 9, 2016.  Credit:  Julian Leek
SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket returns late at night to Port Canaveral, Florida on May 9, 2016. Credit: Julian Leek

The 156 foot tall booster safely soft landed on the drone ship named “Of Course I Still Love You” or “OCISLY” barely nine minutes after liftoff of the SpaceX Falcon 9 last week on a mission to deliver the Japanese JCSAT-14 telecom satellite to a Geostationary Transfer Orbit (GTO).

The upgraded SpaceX Falcon 9 soared to orbit on May 6, roaring to life with 1.5 million pounds of thrust on a mission carrying the JCSAT-14 commercial communications satellite, following an on time liftoff at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.

The first stage then carried out a propulsive soft landing on the ocean going platform located some 400 miles off the east coast of Florida.

To date SpaceX has recovered 3 Falcon 9 first stages. But this was the first one to be recovered from the much more demanding, high velocity trajectory delivering a satellite to GTO.

The first rocket was flying faster and at a higher altitude at the time of seperatoin from the second stage and thus was much more difficult to slow down and maneuver back to the ocean based platform.

Thus SpaceX officials and CEO Elon Musk had been openly doubtful of a successful outcome for this landing attempt.

“First landed booster from a GTO-class mission (final spacecraft altitude will be about 36,000 km),” tweeted SpaceX CEO and founder Elon Musk.

The commercial SpaceX launch lofted the JCSAT-14 Japanese communications satellite to a Geostationary Transfer Orbit (GTO) for SKY Perfect JSAT – a leading satellite operator in the Asia – Pacific region.

Up closse view of SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket returns late at night to Port Canaveral, Florida on May 9, 2016.  Credit:  Julian Leek
Up close view of SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket returns late at night to Port Canaveral, Florida on May 9, 2016. Credit: Julian Leek

The landing counts as another stunning success for Elon Musk’s vision of radically slashing the cost of sending rocket to space by recovering the boosters and eventually reusing them.

The next step is to defuel the booster and remove the landing legs. Thereafter it will be tilted and lowered horizontally and then be placed onto a multi-wheeled transport for shipment back to SpaceX launch facilities at Cape Canaveral for refurbishment, exhaustive engine and structural testing.

The newly recovered first stage will join a fleet of two others recovered last December and in April.

“May need to increase size of rocket storage hangar,” tweeted Musk.

If all goes well the recovered booster will eventually be reflown.

The next SpaceX commercial launch is tentatively slated for the late May/early June timeframe.

Up close look at grid fins from recovered first stage booster from the SpaceX JCSAT-14 launch after arriving back in Port Canaveral, Florida.  Credit: Jeff Seibert/AmericaSpace
Up close look at grid fins from recovered first stage booster from the SpaceX JCSAT-14 launch after arriving back in Port Canaveral, Florida. Credit: Jeff Seibert/AmericaSpace

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket lurking off Port Canaveral waiting to enter the port.  Copyright:  Julian Leek
SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket lurking off Port Canaveral waiting to enter the port. Copyright: Julian Leek
Recovered Falcon 9 first stage stands upright after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Recovered Falcon 9 first stage stands upright after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX

Video caption: SpaceX Falcon 9 launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

Recovered SpaceX Falcon 9 Booster Headed Back to Port: Launch/Landing – Photos/Videos

SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket lurking off Port Canaveral waiting to enter the port. Copyright: Julian Leek
Recovered Falcon 9 first stage after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Recovered Falcon 9 first stage after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX

The SpaceX Falcon 9 first stage booster that successfully launched a Japanese satellite to a Geostationary Transfer Orbit (GTO) just 3 days ago and then nailed a safe middle of the night touchdown on a drone ship at sea minutes minutes later, is headed back to port and may arrive overnight or soon thereafter.

The 156 foot tall booster was spotted offshore earlier today while being towed back to her home port at Port Canaveral, Florida.

The SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket is lurking off Port Canaveral waiting to enter the port until after the cruise ships depart for safety reasons. Pictured above at 7:40 a.m.

The upgraded SpaceX Falcon 9 soared to orbit on May 6, roaring to life with 1.5 million pounds of thrust on a mission carrying the JCSAT-14 commercial communications satellite, following an on time liftoff at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.

To date SpaceX has recovered 3 Falcon 9 first stages. But this was the first one to be recovered from the much more demanding, high velocity trajectory delivering a satellite to GTO.

“First landed booster from a GTO-class mission (final spacecraft altitude will be about 36,000 km),” tweeted SpaceX CEO and founder Elon Musk.

Musk was clearly ecstatic with the result, since SpaceX officials had been openly doubtful of a successful outcome with the landing.

Barely nine minutes after liftoff the Falcon 9 first stage carried out a propulsive soft landing on an ocean going platform located some 400 miles off the east coast of Florida.

The drone ship was named “Of Course I Still Love You.”

The Falcon 9 landed dead center in the bullseye.

Check out the incredible views herein from SpaceX of the Falcon 9 sailing serenely atop the “Of Course I Still Love You.”

Base of Recovered Falcon 9 first stage with landing legs after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Base of Recovered Falcon 9 first stage with landing legs after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX

Relive the launch through these pair of videos from remote video cameras set at the SpaceX launch pad 40 facility.

Video caption: SpaceX Falcon 9 launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

Video caption: SpaceX Falcon 9 launch of JCSAT-14 on 5/6/2016 Pad 40 CCAFS. Credit: Jeff Seibert/AmericaSpace

The commercial SpaceX launch lofted the JCSAT-14 Japanese communications satellite to a Geostationary Transfer Orbit (GTO) for SKY Perfect JSAT – a leading satellite operator in the Asia – Pacific region.

The landing counts as nother stunning success for Elon Musk’s vision of radically slashing the cost of sending rocket to space by recovering the boosters and eventually reusing them.

Recovered Falcon 9 first stage stands upright after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Recovered Falcon 9 first stage stands upright after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

SpaceX Scores Double Whammy with Nighttime Delivery of Japanese Comsat to Orbit and 2nd Successful Ocean Landing

Streak shot of SpaceX Falcon 9 delivering JCSAT-14 Japanese communications satellite to orbit after blastoff on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX
Streak shot of SpaceX Falcon 9 delivering JCSAT-14 Japanese communications satellite to orbit after blastoff on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Streak shot of SpaceX Falcon 9 delivering JCSAT-14 Japanese communications satellite to orbit after blastoff on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX

SpaceX scored a double whammy of successes this morning, May 6, following the stunning nighttime launch of a Japanese comsat streaking to orbit on the firm’s Falcon 9 rocket and nailing the breathtaking touchdown of the spent first stage just minutes later – furthering the goal of rocket reusability

Under clear Florida starlight, the upgraded SpaceX Falcon 9 soared to orbit on 1.5 million pounds of thrust on a mission carrying the JCSAT-14 commercial communications satellite, following an on time liftoff at 1:21 a.m. EDT this morning from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.

The spectacular launch and dramatic landing were both broadcast in real time on a live launch webcast from SpaceX.

Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Dawn Leek Taylor
Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Dawn Leek Taylor

Today’s Falcon launch was the 4th this year for SpaceX and took place less than 4 weeks after the last launch (on an ISS cargo mission for NASA) and sea based barge landing.

Barely nine minutes after liftoff the 156 foot tall Falcon 9 first stage carried out a propulsive soft landing on an ocean going platform located some 400 miles off the east coast of Florida.

“First stage landing on drone ship in Atlantic confirmed,” said a SpaceX official during the webcast, which showed a glowing body approaching the horizon.

“Woohoo!!” tweeted SpaceX CEO and billionaire founder Elon Musk.

This marked the second successful landing at sea for SpaceX following the prior history making touchdown success last month.

“May need to increase size of rocket storage hangar,” tweeted Musk.

“Yeah, this was a three engine landing burn, so triple deceleration of last flight. That’s important to minimize gravity losses.”

Falcon 9 first stage touchdown on ocean platform after successful JCSAT-14 launch on May 6, 2016 from Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Falcon 9 first stage touchdown on ocean platform after successful JCSAT-14 launch on May 6, 2016 from Cape Canaveral Air Force Station, Fl. Credit: SpaceX

The commercial SpaceX launch lofted the JCSAT-14 Japanese communications satellite to a Geostationary Transfer Orbit (GTO) for SKY Perfect JSAT – a leading satellite operator in the Asia – Pacific region.

After a brief reignition of the second stage, the spacecraft successfully separated from the upper stage and was deployed some 32 minutes after liftoff – as seen via the live SpaceX webcast.

“The Falcon 9 second stage delivered JCSAT-14 to a Geosynchronous Transfer Orbit,” said SpaceX.

Via a fleet of 15 satellites, Tokyo, Japan based SKY Perfect JSAT provides high quality satellite communications to its customers.

The JCSAT-14 communications satellite was designed and manufactured by Space Systems/Loral for SKY Perfect JSAT Corporation.

It will succeed and replace the JCSAT-2A satellite currently providing coverage to Asia, Russia, Oceania and the Pacific Islands.

JCSAT-14 is equipped with C-band and Ku-Band transponders that will extend JCSAT-2A’s geographical footprint across the Asia-Pacific region.

The JCSAT-14 communications satellite from SKY Perfect JSAT Corporation stands ready for encapsulation in the Falcon 9 payload fairing. Credit: SpaceX
The JCSAT-14 communications satellite from SKY Perfect JSAT Corporation stands ready for encapsulation in the Falcon 9 payload fairing. Credit: SpaceX

The Falcon 9 soft landed on the “Of Course I Still Love You” drone ship positioned some 400 miles (650 kilometers) off shore in the Atlantic Ocean.

Prior to the launch, SpaceX officials had rated the chances of a successful landing as “unlikely” due to “this launch mission’s GTO destination, the first stage will be subject to extreme velocities and re-entry heating.”

“Rocket reentry is a lot faster and hotter than last time, so odds of making it are maybe even, but we should learn a lot either way,” said Musk.

Nevertheless, despite those difficulties, the landing turned out to be another stunning success for SpaceX CEO Elon Musk’s vision of radically slashing the cost of sending rocket to space by recovering the boosters and eventually reusing them.

Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX
Prelaunch view of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Lane Hermann
Prelaunch view of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Lane Hermann
SpaceX JCSAT-14 mission patch. Credit: SpaceX
SpaceX JCSAT-14 mission patch. Credit: SpaceX

SpaceX Set for Night Launch of Japanese Satellite and Drone Ship Landing Friday, May 6 – Watch Live

SpaceX Falcon 9 rocket stands poised for launch on May 26 at Cape Canaveral Air Force Station, FL, similar to this file photo. Credit: Ken Kremer/kenkremer
SpaceX Falcon 9 rocket stands poised for launch on May 6 at Cape Canaveral Air Force Station, FL, similar to this file photo.  Credit: Ken Kremer/kenkremer
A SpaceX Falcon 9 rocket stands poised for launch on May 6, 2016 at Cape Canaveral Air Force Station, FL, similar to this file photo. Credit: Ken Kremer/kenkremer

Less than 4 weeks after launching a Dragon cargo ship for NASA to the International Space Station (ISS), SpaceX is poised for their next nearly simultaneous Falcon 9 rocket launch and first stage landing attempt for what promises to be a spectacular skyshow shortly after midnight on Friday, May 6.

The commercial mission involves lofting the JCSAT-14 Japanese communications satellite to a Geostationary Transfer Orbit (GTO) for SKY Perfect JSAT – a leading satellite operator in the Asia – Pacific region.

Following a day’s delay due to inclement weather, SpaceX is now targeting an overnight launch of JCSAT-14 atop the upgraded version of the Falcon 9 for Friday, May 6 at 1:21:00 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.

The Falcon 9 launch is the 4th this year for SpaceX.

You can watch the launch live via a special live webcast from SpaceX.

The SpaceX webcast will be available starting at about 20 minutes before liftoff, at approximately 1:00 a.m. EDT – at SpaceX.com/webcast

The 229 foot tall Falcon 9 rocket has a 2 hour launch window that extends until Friday, May 6 at 3:21 a.m. EDT.

The JCSAT-14 communications satellite from SKY Perfect JSAT Corporation stands ready for encapsulation in the Falcon 9 payload fairing. Credit: SpaceX
The JCSAT-14 communications satellite from SKY Perfect JSAT Corporation stands ready for encapsulation in the Falcon 9 payload fairing. Credit: SpaceX

The weather currently looks very good. Air Force meteorologists are predicting a 90 percent chance of favorable weather conditions at launch time Friday morning.

In cases of any delays for technical or weather issues, a backup launch opportunity exits 24 later on Saturday at the same time.

The rocket has been rolled out to the launch pad on the transporter and raised to its vertical position.

The path to launch was cleared following this past weekend’s successful hold down static fire test of the Falcon 9 first stage Merlin 1-D engines. SpaceX routinely performs the hotfire test to ensure the ready is ready.

Via a fleet of 15 satellites, Tokyo, Japan based SKY Perfect JSAT provides high quality satellite communications to its customers.

The JCSAT-14 communications satellite was designed and manufactured by Space Systems/Loral for SKY Perfect JSAT Corporation.

It will succeed and replace the JCSAT-2A satellite currently providing coverage to Asia, Russia, Oceania and the Pacific Islands.

JCSAT-14 satellite will separate from the second stage and will be deployed about 32 minutes after liftoff from Cape Canaveral. The staging events are usually broadcast live by SpaceX via stunning imagery from onboard video cameras.

A secondary objective is to try and recover the first stage booster via a propulsive landing on an ocean-going platform.

During the last SpaceX launch on April 8, the first stage did successfully soft land on the ship at sea for the first time. But the rocket was moving somewhat slower and aiming for low Earth orbit.

This booster is again equipped with 4 landing legs and 4 grid fins.

Following stage separation, SpaceX will try to soft land the first stage on the “Of Course I Still Love You” drone ship positioned a few hundred miles off shore in the Atlantic Ocean.

But SpaceX officials say “a successful landing is unlikely” because with “this mission’s GTO destination, the first stage will be subject to extreme velocities and re-entry heating.”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX JCSAT-14 mission patch. Credit: SpaceX
SpaceX JCSAT-14 mission patch. Credit: SpaceX