Saturn-Circling Cassini Spacecraft Plumbs Titan’s Seas Next Week

Titan's thick haze. Image: NASA/JPL/Space Science Institute.

Is the surf up yet on Titan? As the moon of Saturn moves towards northern summer, scientists are trying to spot signs of the winds picking up. This weekend, the Cassini spacecraft plans a look at the the largest body of liquid on Titan, Kraken Mare, to see if there are any waves on this huge hydrocarbon sea.

Cassini will make the 105th flyby of Titan on Monday (Sept. 22) to probe the moon’s atmosphere, seas and even a crater. The spacecraft will examine “the seas and lakes of the northern polar area, including Kraken and Ligeia at resolution better than 3 miles (5 kilometers) per pixel,” the Cassini website stated.

Besides wet areas of Titan, Cassini will also look at dunes and the relatively fresh-looking Sinlap crater, where scientists hope to get a high-resolution image. Managers also plan a mosaic of Tsegihi — a bright zone south of the equator — and the darker dune-filled area of Fensal. The spacecraft additionally will examine aerosols and the transparency of hazes in Titan’s atmosphere.

Titan is of interest to scientists in part because its chemistry is a possible precursor to what made life possible. Earlier this week, Cassini transmitted several raw images of its view of Titan and Saturn right now — some of the latest pictures are below.

A raw image of Saturn's moon Titan taken by the Cassini spacecraft Sept. 14, 2014. Credit: NASA/JPL/Space Science Institute
A raw image of Saturn’s moon Titan taken by the Cassini spacecraft Sept. 14, 2014. Credit: NASA/JPL/Space Science Institute
Atmospheric features on Saturn's moon Titan appear to be faintly visible in this raw image taken by the Cassini spacecraft Sept. 10, 2014. Credit: NASA/JPL/Space Science Institute
Atmospheric features on Saturn’s moon Titan appear to be faintly visible in this raw image taken by the Cassini spacecraft Sept. 10, 2014. Credit: NASA/JPL/Space Science Institute
A crescent Titan beckons the Cassini spacecraft (in Saturn's system) in this image taken Aug. 24, 2014. Credit: NASA/JPL/Space Science Institute
A crescent Titan beckons the Cassini spacecraft (in Saturn’s system) in this image taken Aug. 24, 2014. Credit: NASA/JPL/Space Science Institute
A raw image of Saturn taken by the Cassini spacecraft Sept. 15, 2014. Credit: NASA/JPL/Space Science Institute
A raw image of Saturn taken by the Cassini spacecraft Sept. 15, 2014. Credit: NASA/JPL/Space Science Institute

New Recipe For Saturn’s Orangey Moon Titan Is ‘Aromatic’ And Hazy

A fish-eye view of Titan's surface from the European Space Agency's Huygens lander in January 2005. Credit: ESA/NASA/JPL/University of Arizona

What’s in all that browny orangey stuff in the atmosphere around Titan? It’s a question that scientists have been trying to answer concerning Saturn’s moon for decades (Carl Sagan was among them). That’s because it’s hard to reverse-engineer the recipe.

There are hundreds of thousands of hydrocarbons (hydrogen and carbon molecules) that could form the compounds in the atmosphere along with nitriles (nitrogen-abundant chemicals). But scientists are hoping that their new recipe gets a bit closer to understanding how the atmosphere works.

The researchers put gases inside of a chamber and monitored their reactions, starting with nitrogen and methane — the gases that are the most common in Titan’s atmosphere. Then they included benzene — which the Cassini spacecraft has detected in the atmosphere — along with close chemical relatives.

Titan's surface is almost completely hidden from view by its thick orange "smog" (NASA/JPL-Caltech/SSI. Composite by J. Major)
Titan’s surface is almost completely hidden from view by its thick orange “smog” (NASA/JPL-Caltech/SSI. Composite by J. Major)

In the end, it seemed the best third ingredient was choosing an “aromatic”, a sort of hydrocarbon, that includes nitrogen. That’s because the scientists saw that the spectrum of this gas appeared to be similar to what was spotted by Cassini.

“This is the closest anyone has come, to our knowledge, to recreating with lab experiments this particular feature seen in the Cassini data,” stated lead author Joshua Sebree, a former postdoctoral fellow at the NASA Goddard Space Flight Center who is now an assistant professor at the University of Northern Iowa in Cedar Falls.

Scientists say the recipe still needs some modifications, but this is a good start. The research is available in the journal Icarus.

Source: Jet Propulsion Laboratory