Maybe “Boson Clouds” Could Explain Dark Matter

Coalsack Nebula and Kappa Crucis Cluster, photo: A. Fujii — The Jewel Box is shown just right of center, above the dark nebula called the Coal Sack in this picture of the southern sky. The picture was taken with a small ground-based camera.

The nature of dark matter continues to perplex astronomers. As the search for dark matter particles continues to turn up nothing, it’s tempting to throw out the dark matter model altogether, but indirect evidence for the stuff continues to be strong. So what is it? One team has an idea, and they’ve published the results of their first search.

Continue reading “Maybe “Boson Clouds” Could Explain Dark Matter”

CERN Declares War On The Standard Model

The LHCb collaboration was launched in 2016 to test explore the events that followed the Big Bang. Credit: CERN

Ever since the discovery of the Higgs Boson in 2012, the Large Hadron Collider has been dedicated to searching for the existence of physics that go beyond the Standard Model. To this end, the Large Hadron Collider beauty experiment (LHCb) was established in 1995, specifically for the purpose of exploring what happened after the Big Bang that allowed matter to survive and create the Universe as we know it.

Since that time, the LHCb has been doing some rather amazing things. This includes discovering five new particles, uncovering evidence of a new manifestation of matter-antimatter asymmetry, and (most recently) discovering unusual results when monitoring beta decay. These findings, which CERN announced in a recent press release, could be an indication of new physics that are not part of the Standard Model.

In this latest study, the LHCb collaboration team noted how the decay of B0 mesons resulted in the production of an excited kaon and a pair of electrons or muons. Muons, for the record, are subatomic particles that are 200 times more massive than electrons, but whose interactions are believed to be the same as those of electrons (as far as the Standard Model is concerned).

The LHCb collaboration team. Credit: lhcb-public.web.cern.ch

This is what is known as “lepton universality”, which not only predicts that electrons and muons behave the same, but should be produced with the same probability – with some constraints arising from their differences in mass. However, in testing the decay of B0 mesons, the team found that the decay process produced muons with less frequency. These results were collected during Run 1 of the LHC, which ran from 2009 to 2013.

The results of these decay tests were presented on Tuesday, April 18th, at a CERN seminar, where members of the LHCb collaboration team shared their latest findings. As they indicated during the course of the seminar, these findings are significant in that they appear to confirm results obtained by the LHCb team during previous decay studies.

This is certainly exciting news, as it hints at the possibility that new physics are being observed. With the confirmation of the Standard Model (made possible with the discovery of the Higgs boson in 2012), investigating theories that go beyond this (i.e. Supersymmetry) has been a major goal of the LHC. And with its upgrades completed in 2015, it has been one of the chief aims of Run 2 (which will last until 2018).

A typical LHCb event fully reconstructed. Particles identified as pions, kaon, etc. are shown in different colours. Credit: LHCb collaboration

Naturally, the LHCb team indicated that further studies will be needed before any conclusions can be drawn. For one, the discrepancy they noted between the creation of muons and electrons carries a low probability value (aka. p-value) of between 2.2. to 2.5 sigma. To put that in perspective, the first detection of the Higgs Boson occurred at a level of 5 sigma.

In addition, these results are inconsistent with previous measurements which indicated that there is indeed symmetry between electrons and muons. As a result, more decay tests will have to be conducted and more data collected before the LHCb collaboration team can say definitively whether this was a sign of new particles, or merely a statistical fluctuation in their data.

The results of this study will be soon released in a LHCb research paper. And for more information, check out the PDF version of the seminar.

Further Reading: CERN, LHCb

What are Leptons?

CERN visualization showing two electrons (green), one to two muons (red lines) resulting from a collision between two Z bosons. Credit: CERN

During the 19th and 20th centuries, physicists began to probe deep into the nature of matter and energy. In so doing, they quickly realized that the rules which govern them become increasingly blurry the deeper one goes. Whereas the predominant theory used to be that all matter was made up of indivisible atoms, scientists began to realize that atoms are themselves composed of even smaller particles.

From these investigations, the Standard Model of Particle Physics was born. According to this model, all matter in the Universe is composed of two kinds of particles: hadrons – from which Large Hadron Collider (LHC) gets its name – and leptons. Where hadrons are composed of other elementary particles (quarks, anti-quarks, etc), leptons are elementary particles that exist on their own.

Definition:

The word lepton comes from the Greek leptos, which means “small”, “fine”, or “thin”. The first recorded use of the word was by physicist Leon Rosenfeld in his book Nuclear Forces (1948). In the book, he attributed the use of the word to a suggestion made by Danish chemist and physicist Prof. Christian Moller.

The Standard Model of Elementary Particles. Image: By MissMJ - Own work by uploader, PBS NOVA [1], Fermilab, Office of Science, United States Department of Energy, Particle Data Group, CC BY 3.0
The Standard Model of Particle Physics, showing all known elementary particles. Credit: Wikipedia Commons/MissMJ/PBS NOVA/Fermilab/Particle Data Group
The term was chosen to refer to particles of small mass, since the only known leptons in Rosenfeld’s time were muons. These elementary particles are over 200 times more massive than electrons, but have only about one-ninth the the mass of a proton. Along with quarks, leptons are the basic building blocks of matter, and are therefore seen as “elementary particles”.

Types of Leptons:

According to the Standard Model, there are six different types of leptons. These include the Electron, the Muon, and Tau particles, as well as their associated neutrinos (i.e. electron neutrino, muon neutrino, and tau neutrino). Leptons have negative charge and a distinct mass, whereas their neutrinos have a neutral charge.

Electrons are the lightest, with a mass of 0.000511 gigaelectronvolts (GeV), while Muons have a mass of 0.1066 Gev and Tau particles (the heaviest) have a mass of 1.777 Gev. The different varieties of the elementary particles are commonly called “flavors”. While each of the three lepton flavors are different and distinct (in terms of their interactions with other particles), they are not immutable.

A neutrino can change its flavor, a process which is known as “neutrino flavor oscillation”. This can take a number of forms, which include solar neutrino, atmospheric neutrino, nuclear reactor, or beam oscillations. In all observed cases, the oscillations were confirmed by what appeared to be a deficit in the number of neutrinos being created.

Muons, a type of lepton, shown being produced by the Large Hadron Collider. Credit: CERN
Muons, a type of lepton, shown being produced by the Large Hadron Collider. Credit: CERN

One observed cause has to do with “muon decay” (see below), a process where muons change their flavor to become electron neutrinos  or  tau neutrinos – depending on the circumstances. In addition, all three leptons and their neutrinos have an associated antiparticle (antilepton).

For each, the antileptons have an identical mass, but all of the other properties are reversed. These pairings consist of the electron/positron, muon/antimuon, tau/antitau, electron neutrino/electron antineutrino, muon neutrino/muan antinuetrino, and tau neutrino/tau antineutrino.

The present Standard Model assumes that there are no more than three types (aka. “generations”) of leptons with their associated neutrinos in existence. This accords with experimental evidence that attempts to model the process of nucleosynthesis after the Big Bang, where the existence of more than three leptons would have affected the abundance of helium in the early Universe.

Properties:

All leptons possess a negative charge. They also possess an intrinsic rotation in the form of their spin, which means that electrons with an electric charge – i.e. “charged leptons” – will generate magnetic fields. They are able to interact with other matter only though weak electromagnetic forces. Ultimately, their charge determines the strength of these interactions, as well as the strength of their electric field and how they react to external electrical or magnetic fields.

None are capable of interacting with matter via strong forces, however. In the Standard Model, each lepton starts out with no intrinsic mass. Charged leptons obtain an effective mass through interactions with the Higgs field, while neutrinos either remain massless or have only very small masses.

History of Study:

The first lepton to be identified was the electron, which was discovered by British physicist J.J. Thomson and his colleagues in 1897 using a series of cathode ray tube experiments. The next discoveries came during the 1930s, which would lead to the creation of a new classification for weakly-interacting particles that were similar to electrons.

The first discovery was made by Austrian-Swiss physicist Wolfgang Pauli in 1930, who proposed the existence of the electron neutrino in order to resolve the ways in which beta decay contradicted the Conservation of Energy law, and Newton’s Laws of Motion (specifically the Conservation of Momentum and Conservation of Angular Momentum).

The positron and muon were discovered by Carl D. Anders in 1932 and 1936, respectively. Due to the mass of the muon, it was initially mistook for a meson. But due to its behavior (which resembled that of an electron) and the fact that it did not undergo strong interaction, the muon was reclassified. Along with the electron and the electron neutrino, it became part of a new group of particles known as “leptons”.

In 1962, a team of American physicists – consisting of Leon M. Lederman, Melvin Schwartz, and Jack Steinberger – were able to detect of interactions by the muon neutrino, thus showing that more than one type of neutrino existed. At the same time, theoretical physicists postulated the existence of many other flavors of neutrinos, which would eventually be confirmed experimentally.

The tau particle followed in the 1970s, thanks to experiments conducted by Nobel-Prize winning physicist Martin Lewis Perl and his colleagues at the SLAC National Accelerator Laboratory. Evidence of its associated neutrino followed thanks to the study of tau decay, which showed missing energy and momentum analogous to the missing energy and momentum caused by the beta decay of electrons.

In 2000, the tau neutrino was directly observed thanks to the Direct Observation of the NU Tau (DONUT) experiment at Fermilab. This would be the last particle of the Standard Model to be observed until 2012, when CERN announced that it had detected a particle that was likely the long-sought-after Higgs Boson.

Today, there are some particle physicists who believe that there are leptons still waiting to be found. These “fourth generation” particles, if they are indeed real, would exist beyond the Standard Model of particle physics, and would likely interact with matter in even more exotic ways.

We have written many interesting articles about Leptons and subatomic particles here at Universe Today. Here’s What are Subatomic Particles?, What are Baryons?First Collisions of the LHC, Two New Subatomic Particles Found, and Physicists Maybe, Just Maybe, Confirm the Possible Discovery of 5th Force of Nature.

For more information, SLAC’s Virtual Visitor Center has a good introduction to Leptons and be sure to check out the Particle Data Group (PDG) Review of Particle Physics.

Astronomy Cast also has episodes on the topic. Here’s Episode 106: The Search for the Theory of Everything, and Episode 393: The Standard Model – Leptons & Quarks.

Sources:

What is the CERN Particle Accelerator?

Particle Collider
Today, CERN announced that the LHCb experiment had revealed the existence of two new baryon subatomic particles. Credit: CERN/LHC/GridPP

What if it were possible to observe the fundamental building blocks upon which the Universe is based? Not a problem! All you would need is a massive particle accelerator, an underground facility large enough to cross a border between two countries, and the ability to accelerate particles to the point where they annihilate each other – releasing energy and mass which you could then observe with a series of special monitors.

Well, as luck would have it, such a facility already exists, and is known as the CERN Large Hardron Collider (LHC), also known as the CERN Particle Accelerator. Measuring roughly 27 kilometers in circumference and located deep beneath the surface near Geneva, Switzerland, it is the largest particle accelerator in the world. And since CERN flipped the switch, the LHC has shed some serious light on some deeper mysteries of the Universe.

Purpose:

Colliders, by definition, are a type of a particle accelerator that rely on two directed beams of particles. Particles are accelerated in these instruments to very high kinetic energies and then made to collide with each other. The byproducts of these collisions are then analyzed by scientists in order ascertain the structure of the subatomic world and the laws which govern it.

The Large Hadron Collider is the most powerful particle accelerator in the world. Image: CERN
The Large Hadron Collider is the most powerful particle accelerator in the world. Credit: CERN

The purpose of colliders is to simulate the kind of high-energy collisions to produce particle byproducts that would otherwise not exist in nature. What’s more, these sorts of particle byproducts decay after very short period of time, and are are therefor difficult or near-impossible to study under normal conditions.

The term hadron refers to composite particles composed of quarks that are held together by the strong nuclear force, one of the four forces governing particle interaction (the others being weak nuclear force, electromagnetism and gravity). The best-known hadrons are baryons – protons and neutrons – but also include mesons and unstable particles composed of one quark and one antiquark.

Design:

The LHC operates by accelerating two beams of “hadrons” – either protons or lead ions – in opposite directions around its circular apparatus. The hadrons then collide after they’ve achieved very high levels of energy, and the resulting particles are analyzed and studied. It is the largest high-energy accelerator in the world, measuring 27 km (17 mi) in circumference and at a depth of 50 to 175 m (164 to 574 ft).

The tunnel which houses the collider is 3.8-meters (12 ft) wide, and was previously used to house the Large Electron-Positron Collider (which operated between 1989 and 2000). This tunnel contains two adjacent parallel beamlines that intersect at four points, each containing a beam that travels in opposite directions around the ring. The beam is controlled by 1,232 dipole magnets while 392 quadrupole magnets are used to keep the beams focused.

Superconducting quadrupole electromagnets are used to direct the beams to four intersection points, where interactions between accelerated protons will take place. Credit: Wikipedia Commons/gamsiz
Superconducting quadrupole electromagnets are used to direct the beams to four intersection points, where interactions between accelerated protons will take place.Credit: Wikipedia Commons/gamsiz

About 10,000 superconducting magnets are used in total, which are kept at an operational temperature of -271.25 °C (-456.25 °F) – which is just shy of absolute zero – by approximately 96 tonnes of liquid helium-4. This also makes the LHC the largest cryogenic facility in the world.

When conducting proton collisions, the process begins with the linear particle accelerator (LINAC 2). After the LINAC 2 increases the energy of the protons, these particles are then injected into the Proton Synchrotron Booster (PSB), which accelerates them to high speeds.

They are then injected into the Proton Synchrotron (PS), and then onto the Super Proton Synchrtron (SPS), where they are sped up even further before being injected into the main accelerator. Once there, the proton bunches are accumulated and accelerated to their peak energy over a period of 20 minutes. Last, they are circulated for a period of 5 to 24 hours, during which time collisions occur at the four intersection points.

During shorter running periods, heavy-ion collisions (typically lead ions) are included the program. The lead ions are first accelerated by the linear accelerator LINAC 3, and the Low Energy Ion Ring (LEIR) is used as an ion storage and cooler unit. The ions are then further accelerated by the PS and SPS before being injected into LHC ring.

While protons and lead ions are being collided, seven detectors are used to scan for their byproducts. These include the A Toroidal LHC ApparatuS (ATLAS) experiment and the Compact Muon Solenoid (CMS), which are both general purpose detectors designed to see many different types of subatomic particles.

Then there are the more specific A Large Ion Collider Experiment (ALICE) and Large Hadron Collider beauty (LHCb) detectors. Whereas ALICE is a heavy-ion detector that studies strongly-interacting matter at extreme energy densities, the LHCb records the decay of particles and attempts to filter b and anti-b quarks from the products of their decay.

Then there are the three small and highly-specialized detectors – the TOTal Elastic and diffractive cross section Measurement (TOTEM) experiment, which measures total cross section, elastic scattering, and diffractive processes; the Monopole & Exotics Detector (MoEDAL), which searches magnetic monopoles or massive (pseudo-)stable charged particles; and the Large Hadron Collider forward (LHCf) that monitor for astroparticles (aka. cosmic rays).

History of Operation:

CERN, which stands for Conseil Européen pour la Recherche Nucléaire (or European Council for Nuclear Research in English) was established on Sept 29th, 1954, by twelve western European signatory nations. The council’s main purpose was to oversee the creation of a particle physics laboratory in Geneva where nuclear studies would be conducted.

Illustration showing the byproducts of lead ion collisions, as monitored by the ATLAS detector. Credit: CERN
Illustration showing the byproducts of lead ion collisions, as monitored by the ATLAS detector. Credit: CERN

Soon after its creation, the laboratory went beyond this and began conducting high-energy physics research as well. It has also grown to include twenty European member states: France, Switzerland, Germany, Belgium, the Netherlands, Denmark, Norway, Sweden, Finland, Spain, Portugal, Greece, Italy, the UK, Poland, Hungary, the Czech Republic, Slovakia, Bulgaria and Israel.

Construction of the LHC was approved in 1995 and was initially intended to be completed by 2005. However, cost overruns, budget cuts, and various engineering difficulties pushed the completion date to April of 2007. The LHC first went online on September 10th, 2008, but initial testing was delayed for 14 months following an accident that caused extensive damage to many of the collider’s key components (such as the superconducting magnets).

On November 20th, 2009, the LHC was brought back online and its First Run ran from 2010 to 2013. During this run, it collided two opposing particle beams of protons and lead nuclei at energies of 4 teraelectronvolts (4 TeV) and 2.76 TeV per nucleon, respectively. The main purpose of the LHC is to recreate conditions just after the Big Bang when collisions between high-energy particles was taking place.

Major Discoveries:

During its First Run, the LHCs discoveries included a particle thought to be the long sought-after Higgs Boson, which was announced on July 4th, 2012. This particle, which gives other particles mass, is a key part of the Standard Model of physics. Due to its high mass and elusive nature, the existence of this particle was based solely in theory and had never been previously observed.

The discovery of the Higgs Boson and the ongoing operation of the LHC has also allowed researchers to investigate physics beyond the Standard Model. This has included tests concerning supersymmetry theory. The results show that certain types of particle decay are less common than some forms of supersymmetry predict, but could still match the predictions of other versions of supersymmetry theory.

In May of 2011, it was reported that quark–gluon plasma (theoretically, the densest matter besides black holes) had been created in the LHC. On November 19th, 2014, the LHCb experiment announced the discovery of two new heavy subatomic particles, both of which were baryons composed of one bottom, one down, and one strange quark. The LHCb collaboration also observed multiple exotic hadrons during the first run, possibly pentaquarks or tetraquarks.

Since 2015, the LHC has been conducting its Second Run. In that time, it has been dedicated to confirming the detection of the Higgs Boson, and making further investigations into supersymmetry theory and the existence of exotic particles at higher-energy levels.

The ATLAS detector, one of two general-purpose detectors at the Large Hadron Collider (LHC). Credit: CERN
The ATLAS detector, one of two general-purpose detectors at the Large Hadron Collider (LHC). Credit: CERN

In the coming years, the LHC is scheduled for a series of upgrades to ensure that it does not suffer from diminished returns. In 2017-18, the LHC is scheduled to undergo an upgrade that will increase its collision energy to 14 TeV. In addition, after 2022, the ATLAS detector is to receive an upgrade designed to increase the likelihood of it detecting rare processes, known as the High Luminosity LHC.

The collaborative research effort known as the LHC Accelerator Research Program (LARP) is currently conducting research into how to upgrade the LHC further. Foremost among these are increases in the beam current and the modification of the two high-luminosity interaction regions, and the ATLAS and CMS detectors.

Who knows what the LHC will discover between now and the day when they finally turn the power off? With luck, it will shed more light on the deeper mysteries of the Universe, which could include the deep structure of space and time, the intersection of quantum mechanics and general relativity, the relationship between matter and antimatter, and the existence of “Dark Matter”.

We have written many articles about CERN and the LHC for Universe Today. Here’s What is the Higgs Boson?, The Hype Machine Deflates After CERN Data Shows No New Particle, BICEP2 All Over Again? Researchers Place Higgs Boson Discovery in Doubt, Two New Subatomic Particles Found, Is a New Particle about to be Announced?, Physicists Maybe, Just Maybe, Confirm the Possible Discovery of 5th Force of Nature.

If you’d like more info on the Large Hadron Collider, check out the LHC Homepage, and here’s a link to the CERN website.

Astronomy Cast also has some episodes on the subject. Listen here, Episode 69: The Large Hadron Collider and The Search for the Higgs Boson and Episode 392: The Standard Model – Intro.

Sources:

The Hype Machine Deflates After CERN Data Shows No New Particle

Image of the results obtained by colliding lead ions in the ALICE detector. Credit: CERN

This summer in Chicago, from August 3rd until the 10th, theorists and experimental physicists from around the world will be participating in the International Conference of High Energy Physics (ICHEP). One of the highlights of this conference comes from CERN Laboratories, where particle physicists are showcasing the wealth of new data that the Large Hadron Collider (LHC) has produced so far this year.

But amidst all the excitement that comes from being able to peer into the more than 100 latest results, some bad news also had to be shared. Thanks to all the new data provided by the LHC, the chance that a new elementary particle was discovered – a possibility that had begun to appear likely eight months ago – has now faded. Too bad, because the existence of this new particle would have been groundbreaking!

The indications of this particle first appeared back in December of 2015, when teams of physicists using two of CERN’s particle detectors (ATLAS and CMS) noted that the collisions performed by the LHC were producing more pairs of photons than expected, and with a combined energy of 750 gigaelectronvolts. While the most likely explanation was a statistical fluke, there was another tantalizing possibility – that they were seeing evidence of a new particle.

The ATLAS detector, one of two general-purpose detectors at the Large Hadron Collider (LHC). Credit: CERN
The ATLAS instrument, one of two general-purpose detectors at the Large Hadron Collider (LHC). Credit: CERN

If this particle were in fact real, then it was likely to be a heavier version of the Higgs boson. This particle, which gives other elementary particles their mass, had been discovered in 2012 by researchers at CERN. But whereas the discover of the Higgs boson confirmed the Standard Model of Particle Physics (which has been the scientific convention for the past 50 years), the possible existence of this particle was inconsistent with it.

Another, perhaps even more exciting, theory was that the particle was the long-sought-after gravitron, the theoretical particle that acts as the “force carrier” for gravity. If indeed it was this particle, then scientists would finally have a way for explaining how General Relativity and Quantum Mechanics go together – something that has eluded them for decades and inhibited the development of a Theory of Everything (ToE).

For this reason, there has been a fair degree of excitement in the scientific community, with over 500 scientific papers produced on the subject. However, thanks to the massive amounts of data provided in the past few months, the CERN researchers were forced to announce on Friday at ICEP 2016 that there was no new evidence of a particle to be had.

The results were presented by representatives of the teams that first noticed the unusual data last December. Representing CERN’s ATLAS detector, which first noted the photon pairs, was Bruno Lenzi. Meanwhile, Chiara Rovelli representing the competing team that uses the Compact Muon Solenoid (CMS), which confirmed the readings.

The Compact Muon Solenoid (CMS) is a general-purpose detector at the Large Hadron Collider. Credit: CERN
The Compact Muon Solenoid (CMS) is a general-purpose detector at the Large Hadron Collider. Credit: CERN

As they showed, the readings which indicated a bump in photon pairs last December have since gone into the flatline, removing any doubt as to whether or not it was a fluke. However, as Tiziano Campores – a spokesman for C.M.S. – was quoted by the New York Times as saying on the eve of the announcement, the teams had always been clear about this not being a likely possibility:

“We don’t see anything. In fact, there is even a small deficit exactly at that point. It’s disappointing because so much hype has been made about it. [But] we have always been very cool about it.”

These results were also stated in a paper submitted to CERN by the C.M.S. team on the same day. And CERN Laboratories echoed these statement in a recent press release which addressed the latest data-haul being presented at ICEP 2016:

“In particular, the intriguing hint of a possible resonance at 750 GeV decaying into photon pairs, which caused considerable interest from the 2015 data, has not reappeared in the much larger 2016 data set and thus appears to be a statistical fluctuation.”

This was all disappointing news, since the discovery of a new particle could have shed some light on the many questions arising out of the discovery of the Higgs boson. Ever since it was first observed in 2012, and later confirmed, scientists have been struggling to understand how it is that the very thing that gives other particles their mass could be so “light”.

The Large Hadron Collider - destined to deliver fabulous science data, but uncertain if these will include an evidence basis for quantum gravity theories. Credit: CERN.
The Large Hadron Collider – which discovered the Higgs Boson in 2012 – appears to have confirmed the Standard Model yet again. Credit: CERN

Despite being the heaviest elementary particle – with a mass of 125 billion electron volts – quantum theory predicted that the Higgs boson had to be trillions of times heavier. In order to explain this, theoretical physicists have been wondering if in fact there are some other forces at work that keep the Higgs boson’s mass at bay – i.e. some new particles. While no new exotic particles have been discovered just yet, the results so far have still been encouraging.

For instance, they showed that LHC experiments have already recorded about five times more data in the past eight months than they did in all of last year. They also offered scientists a glimpse of how subatomic particles behave at energies of 13 trillion electronvolts (13 TeV), a new level that was reached last year. This energy level has been made possible from the upgrades performed on the LHC during its two-year hiatus; prior to which, it was functioning at only half-power.

Another thing worth bragging about was the fact that the LHC surpassed all previous performance records this past June, reaching a peak luminosity of 1 billion collisions per second. Being able to conduct experiments at this energy level, and involving this many collisions, has provided LHC researchers with a large enough data set that they are able to conduct more precise measurements of Standard Model processes.

In particular, they will be able to look for anomalous particle interactions at high mass, which constitutes an indirect test for physics beyond the Standard Model – specifically new particles predicted by the theory of Supersymmetry and others. And while they have yet to discover any new exotic particles, the results so far have still been encouraging, mainly because they show that the LHC is producing more results than ever.

This is the signature of one of 100s of trillions of particle collisions detected at the Large Hadron Collider. The combined analysis lead to the discovery of the Higgs Boson. This article describes one team in dissension with the results. (Photo Credit: CERN)
Data representation from the CMS experiment, showing the decay of protons into two photons (dashed yellow lines and green towers). Credit: CERN

And while discovering something that could explain the questions arising from the discovery of the Higgs bosons would have been a major breakthrough, many agree that it was simply too soon to get our hopes up. As Fabiola Gianotti, the Director-General at CERN, said:

“We’re just at the beginning of the journey. The superb performance of the LHC accelerator, experiments and computing bodes extremely well for a detailed and comprehensive exploration of the several TeV energy scale, and significant progress in our understanding of fundamental physics.”

For the time being, it seems we are all going to have to be patient and wait on more scientific results to be produced. And we can all take solace in the fact that, at least for now, the Standard Model still appears to be the correct one. Clearly, there are no short cuts when it comes to figuring out how the Universe works and how all its fundamental forces fit together.

Further Reading: CERN

What Are The Parts Of An Atom?

A depiction of the atomic structure of the helium atom. Credit: Creative Commons

Since the beginning of time, human beings have sought to understand what the universe and everything within it is made up of. And while ancient magi and philosophers conceived of a world composed of four or five elements – earth, air, water, fire (and metal, or consciousness) – by classical antiquity, philosophers began to theorize that all matter was actually made up of tiny, invisible, and indivisible atoms.

Since that time, scientists have engaged in a process of ongoing discovery with the atom, hoping to discover its true nature and makeup. By the 20th century, our understanding became refined to the point that we were able to construct an accurate model of it. And within the past decade, our understanding has advanced even further, to the point that we have come to confirm the existence of almost all of its theorized parts.

Continue reading “What Are The Parts Of An Atom?”

Book Review and Giveaway: “Most Wanted Particle” by Jon Butterworth

Most Wanted Particle is an insider’s tale of the hunt for the Higgs boson, the field which imparts mass to, well, nearly everything. Written by Jon Butterworth —- a physicist working with the ATLAS team at the Large Hadron Collider —- the book documents the construction of the Large Hadron Collider, the catastrophe after it was first turned on, and the global excitement as evidence for the Higgs boson grew incontrovertible.

Most Wanted Particle has already received glowing praise from the likes of Brian Cox and even Peter Higgs —- for whom the boson is named -— and I’m sure that several physicists reading this site already have the book on their ‘to read’ list. But what about the rest of us? As a biology PhD whose last physics class was about 15 years ago, I decided to see if the book was accessible enough for your average science geek.

Find out how you can win a copy of this book, below.

First and only warning: the book discusses some very fundamental physics, and if you’re afraid to learn about topics like quarks, gluons, and hadronic jets, then this book will be tough going for you (all three of these are introduced on page 22, for instance). This complexity should be largely expected given the subject matter of the book; the alternative would be like a WW2 book that didn’t mention Normandy. So if learning some jargon scares you, you’d best stick to reading the news headlines from CERN.

With that caveat out of the way, Butterworth is a stellar writer and teacher, and he employs a number of tricks to make Most Wanted Particle extremely readable. First of all, equations are largely absent—they are described rather than displayed. (More kudos are due for making it over halfway through the book before the first Feynman diagram appears). Second is Butterworth’s impressive facility with analogy: often, even if you are struggling with the specifics of a concept, you will be able to grasp the broad brush strokes, and that’s enough to follow along with the tale.

Finally, there is the journalistic style. The book is written as a passionate first-person account, and the main narrative is pleasingly interrupted by diversions. It’s not uncommon to have a dense description of, say, super symmetry, broken up by a blog-like chapter discussing an international trip to a conference. (Other topics include meeting etiquette and ‘taking things offline’; what makes a good acronym; and a particularly memorable drunken night for the author and friends in Hamburg.)

Do you have friends who are scientists? If so, you will feel at home reading this book, and it took me a while to understand why. It’s because the general impression that I get from this book is very similar to taking a scientist friend to the pub, and having them describe their work to you over a beer. Sometimes you’ll get a little lost in the more thorny parts of the science; often you’ll get carried off by a tangent; but overall you’ll just enjoy a rollicking good tale, told by an intelligent storyteller.

This book comes highly recommended!

Most Wanted Particle is published by The Experiment Publishing. Find out more about the book here.

Thanks to The Experiment, Universe Today has one copy of this book to give away to our readers. The publisher has specified that for this contest, winners need to be from the US or Canada.

In order to be entered into the giveaway drawing, just put your email address into the box at the bottom of this post (where it says “Enter the Giveaway”) before Monday, April 13, 2015. We’ll send you a confirmation email, so you’ll need to click that to be entered into the drawing. If you’ve entered our giveaways before you should also receive an email with a link on how to enter.

What’s Next for the Large Hadron Collider?

A section of the LHC. Image Credit: CERN

The world’s most powerful particle collider is waking up from a well-earned rest. After roughly two years of heavy maintenance, scientists have nearly doubled the power of the Large Hadron Collider (LHC) in preparation for its next run. Now, it’s being cooled to just 1.9 degrees above absolute zero.

“We have unfinished business with understanding the universe,” said Tara Shears from the University of Liverpool in a news release. Shears and other LHC physicists will work to better understand the Higgs Boson and hopefully unravel some of the secrets of supersymmetry and dark matter.

On February 11, 2013 the LHC shut down for roughly two years. The break, known as LS1 for “long stop one,” was needed to correct several flaws in the original design of the collider.

The LHC’s first run got off to a rough start in 2008. Shortly after it was fired up, a single electrical connection triggered an explosion, damaging an entire sector (one-eighth) of the accelerator. To protect the accelerator from further disaster, scientists decided to run it at half power until all 10,000 copper connections could be repaired.

So over the last two years, scientists have worked around the clock to rework every single connection in the accelerator.

Now that the step (along with many others) is complete, the collider will operate at almost double its previous power. This was tested early last week, when scientists powered up the magnets of one sector to the level needed to reach the high energy expected in its second run.

“The machine that’s now being started up is almost a new LHC,” said John Womersley, the Chief Executive Officer of the Science and Technology Facilities Council.

With such a powerful new tool, scientists will look for deviations from their initial detection of the Higgs boson, potentially revealing a deeper level of physics that goes well beyond the Standard Model of particle physics.

Many theorists have turned to supersymmetry — the idea that for every known fundamental particle there exists a “supersymmetric” partner particle. If true, the enhanced LHC could be powerful enough to create supersymmetric particles themselves or prove their existence in subtler ways.

“The higher energy and more frequent proton collisions in Run 2 will allow us to investigate the Higgs particle in much more detail,” said Victoria Martin from Edinburgh University. “Higher energy may also allow the mysterious “dark matter” observed in galaxies to be made and studied in the lab for the first time.”

It’s possible that the Higgs could interact with — or even decay into — dark matter particles. If the latter occurs, then the dark matter particles would fly out of the LHC without ever being detected. But their absence would be evident.

So stay turned because these issues might be resolved in the spring of 2015 when the particle accelerator roars back to life.