A “Mini Jet” Juts from Saturn’s F Ring

A bright "mini-jet" spotted in Saturn's F ring

We all know that Saturn’s moon Enceladus has a whole arsenal of geysers jetting a constant spray of ice out into orbit (and if you didn’t know, learn about it here) but Enceladus isn’t the only place in the Saturnian system where jets can be found — there are some miniature versions hiding out in the thin F ring as well!

Watch the 50-mile-wide Prometheus dip into the F ring (CLICK TO PLAY) NASA/JPL/SSI. Animation by J. Major.
Watch the 50-mile-wide Prometheus dip into the F ring (CLICK TO PLAY) NASA/JPL/SSI. Animation by J. Major.

The image above, captured by the Cassini spacecraft on June 20, 2013, shows a segment of the thin, ropy F ring that encircles Saturn just beyond the A ring (visible at upper right). The bright barb near the center is what scientists call a mini jet, thought to be caused by small objects getting dragged through the ring material as a result of repeated passings by the shepherd moon Prometheus.

Coincidentally, it’s gravitational perturbations by Prometheus that help form the objects — half-mile-wide snowball-like clusters of icy ring particles — in the first place.

Unlike the dramatic jets on Enceladus, which are powered by tidal stresses that flex the moon’s crust, these mini jets are much more subtle and occur at the casual rate of 4 mph (2 meters/second)… about the speed of a brisk walk.

The reflective jets themselves can be anywhere from 25 to 112 miles (40 to 180 kilometers) long.

See more images of mini jets — also called “classic trails” — below:

Various images of mini jets captured by Cassini from 2005 to 2008.
Various images of mini jets captured by Cassini from 2005 to 2008.

Over 500 of these features have been imaged by Cassini since 2005. Read more about mini jets here.

(And don’t worry, Enceladus… these little jets are interesting but they have nothing on you!)

Source: Cassini Imaging Central Laboratory for OPerationS (CICLOPS)

Image credits: NASA/JPL-Caltech/SSI/QMUL. 

The Scariest Part of “Gravity” is the Lack Thereof

I love science fiction films and I especially love it when the “science” part leans closer to fact than fiction. (Yes, I’m looking at you, Europa Report.) Now I’ve never seen an actual catastrophe in orbit (and I hope I never do) but I have to assume it’d look a whole lot like what’s happening in the upcoming film “Gravity,” opening in U.S. theaters on October 4. This full official trailer was released today.

A disaster film sure becomes a whole lot more interesting when everything is moving 18,000 miles an hour and there’s no up or down. And, of course, space. (!!!)

So what do you think? Will you be seeing Gravity? Share your thoughts in the comments…
Continue reading “The Scariest Part of “Gravity” is the Lack Thereof”

The New Trailer for “Gravity” Depicts a Dizzying Disaster… in Orbit!

The newest trailer for "Gravity" shows the intensity of an accident in orbit. (©Warner Bros. Productions)

If you’ve ever been involved in one, you know that even a minor vehicle accident is a confusing and scary event. Trying to desperately regain control of your own movement as you’re suddenly subjected to forces beyond your control is stressful and terrifying… now imagine it happening at 17,500 mph and 230 miles up and you’ve got an idea of what the upcoming film “Gravity” is about.

Still can’t quite picture it? Check out the latest trailer below:

Directed and written by Alfonso Cuarón and co-written with his son Jonas, “Gravity” is the story of two astronauts (played by George Clooney and Sandra Bullock) whose shuttle is destroyed by a run-in with space junk during an EVA, stranding them both in orbit.

If that wasn’t bad enough, their oxygen is running out and they have lost communication with the ground. Cast adrift in orbit, they have to figure out how to survive and get back home.

It’s like “Open Water” in space. Without the sharks. (Let’s hope things turn out better for them!)

I enjoy sci-fi and I especially enjoy when they try to get the “sci” part right. How do things move in microgravity? (Hint: really fast.) What happens when stuff smashes together? What would happen to the human body in that situation? And, most importantly for any movie, how do the people involved handle the experience?

Above all, “Gravity” is still a movie so it has to take us on a two-hour, candy-munching, soda-slurping ride. Based on this latest trailer, I’m confident that they’ve done their homework on the mechanics of movement in orbit… now let’s see if Cuarón (Children of Men, Y Tu Mamá También, Harry Potter and the Prisoner of Azkaban)  has once again worked his storytelling magic to bring the characters to free-falling life.

A Warner Bros. Pictures production, “Gravity” will be released in IMAX 3D and 2D this October. See the official movie site here.

ADDED 7/25: Here’s a new clip, titled “I’ve Got You”:

Video ©2013 Warner Bros. Entertainment. All rights reserved.

Hang On! Trailer for “Gravity” Previews Spacewalk Disaster Film

'Gravity' teaser poster. Via Warner Brothers.

Yikes! The trailer for an upcoming film “Gravity” is absolutely terrifying. This movie won’t hit theaters until October 4, 2013, so we can expect to see more trailers after this first ‘teaser.” We do know it is directed by Alfonso Cuarón and stars Sandra Bullock and George Clooney. But with an emergency spacewalk likely taking place tomorrow at the International Space Station, the timing of the release of this trailer is just a bit eerie.

Bullock plays a medical engineer on her first shuttle mission, with veteran astronaut Matt Kowalsky (Clooney) in command of his last flight before retiring. But on a seemingly routine spacewalk, disaster strikes. The shuttle is destroyed, the space station is damaged, leaving the two astronauts completely alone and tethered to nothing but each other and spiraling out into the blackness.

Watch the teaser below:

The word on the street is that NASA was not consulted at all for this film, so we can only hope for a hint of reality (i.e., let hope it’s not another “Armageddon.”) But from the trailer, it seems to follow the recipe for any space disaster film: go into space, have the mission go awry, bring in the heroes to save the day. Guesses on thumbs up or down?

Einstein Right Again! Rapidly Spinning Pulsar Follows General Relativity

This artist’s impression shows the exotic double object that consists of a tiny, but very heavy neutron star that spins 25 times each second, orbited every two and a half hours by a white dwarf star. The neutron star is a pulsar named PSR J0348+0432 that is giving off radio waves that can be picked up on Earth by radio telescopes. Although this unusual pair is very interesting in its own right, it is also a unique laboratory for testing the limits of physical theories. This system is radiating gravitational radiation, ripples in spacetime. Although these waves (shown as the grid in this picture) cannot be yet detected directly by astronomers on Earth they can be sensed indirectly by measuring the change in the orbit of the system as it loses energy. As the pulsar is so small the relative sizes of the two objects are not drawn to scale.

A unique and exotic laboratory about 6,800 light-years from Earth is helping Earth-based astronomers test Albert Einstein’s theory of general relativity in ways not possible until now. And the observations exactly match predictions from general relativity, say scientists in a paper to be published in the April 26 issue of the journal Science.

Using ESO’s Very Large Telescope along with other radio telescopes, John Antoniadis, a PhD student at the Max Planck Institute for radio Astronomy (MPIfR) in Bonn and lead author of the paper, says the bizarre pair of stars makes for an excellent test case for physics.

“I was observing the system with ESO’s Very Large Telescope, looking for changes in the light emitted from the white dwarf caused by its motion around the pulsar,” says Antoniadis. “A quick on-the-spot analysis made me realize that the pulsar was quite a heavyweight. It is twice the mass of the Sun, making it the most massive neutron star that we know of and also an excellent laboratory for fundamental physics.”

The strange pair consists of a tiny and unusually heavy neutron star that spins 25 times per second. The pulsar, named PSR J0348+0432 is the remains of a supernova explosion. Twice as heavy as our Sun, the pulsar would fit within the confines of the Denver metropolitan area; it’s just 20 kilometers across or about 12 miles. The gravity on this strange star is more than 300 billion times stronger than on Earth. At its center, where the intense gravity squeezes matter even more tightly together, a sugar-cubed-sized block of star stuff would weight more than one billion tons. Only three other pulsars outside globular clusters spin faster and have shorter periods.

J0348+0432 could easily fit within the confines of most American cities, including Denver, Colo. Want to see how big J0348+0432 is compared to your city? Check out this map tool. Zoom into or search for your city, enter 10 km into the radius distance field, and click on a point on the map.)
J0348+0432 could easily fit within the confines of most American cities, including Denver, Colo. Want to see how big J0348+0432 is compared to your city? Check out this map tool. Zoom into or search for your city, enter 10 km into the radius distance field, and click on a point on the map. Credit: Google Maps
In addition, a much larger white dwarf, the extremely hot, burned-out core of a Sun-like star, whips around J0348+0432 every 2.5 hours.

As a consequence, radio astronomers Ryan Lynch and colleagues who discovered the pulsar in 2011, realized the pair would enable scientists to test theories of gravity that were not possible before. Einstein’s general theory of relativity describes gravity as a curvature in spacetime. Like a bowling ball nestled in a stretched bedsheet, spacetime bends and warps in the presence of mass and energy. The theory, published in 1916, has withstood all tests so far as the simplest explanation for observed astronomical phenomena. Other theories of gravity make different predictions but these differences would reveal themselves only in extremely strong gravitational fields not found within our solar system. J0348+0432 offered the opportunity to study Einstein’s theory in detail.

Loading player…

This video shows an artist’s impression of the exotic double object known as PSR J0348+0432. This system is radiating gravitational radiation, or ripples, in spacetime. Although these waves cannot be yet detected directly by astronomers on Earth they can be detected indirectly by measuring the change in the orbit of the system as it loses energy. Credit: ESO/L.Calçada

Antoniadis’ team combined observations of the white dwarf from the European Southern Observatory’s Very Large Telescope with the precise timing of the pulsar from other radio telescopes, including the Green Bank Telescope in West Virginia, Effelsberg 100 meter radio telescope in Germany, and the Arecibo Observatory in Puerto Rico. Astronomers predict such close pulsar binaries radiate gravity waves and lose minute amounts of energy over time causing the orbital period of the white dwarf companion to change slightly. The astronomers found that predictions for this change closely matched those of general relativity while competing theories were different.

“Our radio observations were so precise that we have already been able to measure a change in the orbital period of 8 millionths of a second per year, exactly what Einstein’s theory predicts,” states Paulo Freire, another team member, in the press release.

Sources:
ESO: Einstein Was Right – So Far
Astrophysical Journal: The Green Bank Telescope 350 MHz Drift-scan Survey II: Data Analysis and the Timing of 10 New Pulsars, Including a Relativistic Binary
Aspen Center for Physics Physical Application of Millisecond Pulsars meeting January 2013: The Compact Relativistic Binary PSR J0348+0432

Titan’s Gravity Indicates a Thicker, Uneven Icy Crust

Color composite of Titan and Dione made from Cassini images acquired in May 2011. (NASA/JPL/SSI/J. Major)

It’s long been speculated that Saturn’s moon Titan may be harboring a global subsurface ocean below an icy crust, based on measurements of its rotation and orbit by NASA’s Cassini spacecraft. Titan exhibits a density and shape that indicates a pliable liquid internal layer — an underground ocean — possibly composed of water mixed with ammonia, a combination that would help explain the consistent amount of methane found in its thick atmosphere.

Now, further analysis of Cassini gravity measurements by a Stanford University team has shown that Titan’s ice layer is thicker and less uniform than originally estimated, indicating a more complex internal structure — and a stronger external influences for its heat.

Titan’s liquid subsurface ocean was previously estimated to be in the neighborhood of 100 km (62 miles) thick, sandwiched between a rocky core below and an icy shell above. This was based on the behavior of Titan in its orbit — or, more precisely, how Titan’s shape changes along the course of its orbit, as measured by Cassini’s radar instrument.

Because Titan’s 16-day orbit is not perfectly circular the moon experiences a stronger gravitational pull from Saturn at certain points than at others. As a result it’s flattened at the poles and constantly changing shape slightly — an effect called tidal flexing. Along with the decay of radioactive materials in its core, this flexing generates the internal heat that helps keep a subsurface ocean liquid.

A team of researchers from Stanford University, led by Howard Zebker, professor of geophysics and electrical engineering, used recent Cassini measurements of Titan’s topography and gravity to determine that the icy layer between the moon’s surface and ocean is up to twice as thick as previously thought — and it’s considerably thicker at the equator than at the poles.

“The picture of Titan that we get has an icy, rocky core with a radius of a little over 2,000 kilometers, an ocean somewhere in the range of 225 to 300 kilometers thick and an ice layer that is 200 kilometers thick,” said Zebker.

Different thicknesses of Titan’s ice layer would mean that there’s less heat being generated internally by the decay of radioactive materials in Titan’s core, because that type of heat would be more or less globally uniform. Instead, tidal flexing caused by the gravitational interactions with Saturn and neighboring smaller moons must play a stronger role in heating Titan’s insides.

Read more: Titan’s Tides Suggest a Subsurface Sea

With Cassini’s new measurements of Titan’s gravity, Zebker and his team calculated that the icy layer below Titan’s flattened poles is 3,000 meters (about 1.8 miles) thinner than average, while at the equator it’s 3,000 meters thicker than average. Combined with the moon’s surface features, this makes the average global thickness of the ice layer to be more like 200 km, not 100.

Heat generated by tidal flexing — which is more strongly felt at the poles — is thought to be the cause of the thinner ice there. Thinner ice would mean there’s more liquid water beneath the poles, which is denser and thus would exert a stronger gravitational pull… exactly what’s been found in Cassini’s measurements.

The findings were announced Tuesday, Dec. 4 at the AGU convention in San Francisco. Read more on the Stanford University news page.

Effects of Einstein’s Elusive Gravitational Waves Observed

Chandra data (above, graph) on J0806 show that its X-rays vary with a period of 321.5 seconds, or slightly more than five minutes. This implies that the X-ray source is a binary star system where two white dwarf stars are orbiting each other (above, illustration) only 50,000 miles apart, making it one of the smallest known binary orbits in the Galaxy. According to Einstein's General Theory of Relativity, such a system should produce gravitational waves - ripples in space-time - that carry energy away from the system and cause the stars to move closer together. X-ray and optical observations indicate that the orbital period of this system is decreasing by 1.2 milliseconds every year, which means that the stars are moving closer at a rate of 2 feet per year.
Potential stellar collision. Credit: Chandra

Two white dwarfs similar to those in the system SDSS J065133.338+284423.37 spiral together in this illustration from NASA. Credit: D. Berry/NASA GSFC

Locked in a spiraling orbital embrace, the super-dense remains of two dead stars are giving astronomers the evidence needed to confirm one of Einstein’s predictions about the Universe.

A binary system located about 3,000 light-years away, SDSS J065133.338+284423.37 (J0651 for short) contains two white dwarfs orbiting each other rapidly — once every 12.75 minutes. The system was discovered in April 2011, and since then astronomers have had their eyes — and four separate telescopes in locations around the world — on it to see if gravitational effects first predicted by Einstein could be seen.

According to Einstein, space-time is a structure in itself, in which all cosmic objects — planets, stars, galaxies — reside. Every object with mass puts a “dent” in this structure in all dimensions; the more massive an object, the “deeper” the dent. Light energy travels in a straight line, but when it encounters these dents it can dip in and veer off-course, an effect we see from Earth as gravitational lensing.

Einstein also predicted that exceptionally massive, rapidly rotating objects — such as a white dwarf binary pair — would create outwardly-expanding ripples in space-time that would ultimately “steal” kinetic energy from the objects themselves. These gravitational waves would be very subtle, yet in theory, observable.

Read: Astronomy Without a Telescope: Gravitational Waves

What researchers led by a team at The University of Texas at Austin have found is optical evidence of gravitational waves slowing down the stars in J0651. Originally observed in 2011 eclipsing each other (as seen from Earth) once every six minutes, the stars now eclipse six seconds sooner. This equates to a predicted orbital period reduction of about 0.25 milliseconds each year.*

“These compact stars are orbiting each other so closely that we have been able to observe the usually negligible influence of gravitational waves using a relatively simple camera on a 75-year-old telescope in just 13 months,” said study lead author J.J. Hermes, a graduate student at The University of Texas at Austin.

Based on these measurements, by April 2013 the stars will be eclipsing each other 20 seconds sooner than first observed. Eventually they will merge together entirely.

Although this isn’t “direct” observation of gravitational waves, it is evidence inferred by their predicted effects… akin to watching a floating lantern in a dark pond at night moving up and down and deducing that there are waves present.

“It’s exciting to confirm predictions Einstein made nearly a century ago by watching two stars bobbing in the wake caused by their sheer mass,” said Hermes.

As of early last year NASA and ESA had a proposed mission called LISA (Laser Interferometer Space Antenna) that would have put a series of 3 detectors into space 5 million km apart, connected by lasers. This arrangement of precision-positioned spacecraft could have detected any passing gravitational waves in the local space-time neighborhood, making direct observation possible. Sadly this mission was canceled due to FY2012 budget cuts for NASA, but ESA is moving ahead with developments for its own gravitational wave mission, called eLISA/NGO — the first “pathfinder” portion of which is slated to launch in 2014.

The study was submitted to Astrophysical Journal Letters on August 24. Read more on the McDonald Observatory news release here.

Inset image: simulation of binary black holes causing gravitational waves – C. Reisswig, L. Rezzolla (AEI); Scientific visualization – M. Koppitz (AEI & Zuse Institute Berlin)

*The difference in the eclipse time is noted as six seconds even though the orbital period decay of the two stars is only .25 milliseconds/year because of a pile-up effect of all the eclipses observed since April 2011. The measurements made by the research team takes into consideration the phase change in the J0651 system, which experiences a piling effect — similar to an out-of-sync watch — that increases relative to time^2 and is therefore a larger and easier number to detect and work with. Once that was measured, the actual orbital period decay could be figured out.

Water Balloons in Space

As part of his ongoing (and always entertaining) “Science Off the Sphere” series, Expedition 31 flight engineer Don Pettit experiments in orbit with a classic bit of summertime fun: water balloons.

Captured in real-time and slow-motion, we get to see how water behaves when suddenly freed from the restraints of an inflated latex balloon… and gravity. With Don NASA doesn’t only get a flight engineer, it gets its very own Mr. Wizard in space — check it out!

Thin Skinned and Wrinkled, Mercury is Full of Surprises

[/caption]

Until relatively recently, Mercury was one of the most poorly understood planets in the inner solar system. The MESSENGER mission to Mercury, is changing all of the that. New results from the Mercury Laser Altimeter (MLA) and gravity measurements are showing us that the planet closest to our sun is thin skinned and wrinkled, which is very different from what we originally thought.

The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft was launched back in 2004. It took a long time getting to its destination, completing 3 flybys of Mercury before finally entering orbit a little over a year ago. Currently, the spacecraft is in a highly eccentric polar orbit, approaching the planet much closer in the north than in the south. This allows the northern hemisphere to be probed and imaged at enviably high resolutions, but leaves the southern hemisphere poorly understood.

Even so, the data returned from MESSENGER is showing us some quite unanticipated findings. Two papers from the MESSENGER team, published in today’s issue of Science, are showing some surprising results from the laser altimeter and gravity experiments.

Using NASA’s Deep Space Network, Earth-based radio tracking of MESSENGER has allowed minute changes in the spacecraft’s orbit to be monitored and recorded. From this, Dr. Maria Zuber of MIT and her team calculated a model of Mercury’s gravity. Meanwhile, the on-board laser altimeter has provided invaluable topographic information. Combined together, these data have allowed the MESSENGER team to glean a great deal of information about the planet’s interior workings.

One of the most striking findings is that the iron-rich core of Mercury is very large. A combination of measurements and models suggest that the core has both a solid interior portion and a liquid outer portion. And while it is not certain how much of the core is solid and how much is liquid, it is clear that the total core has a radius of about 2030 km. This is a huge core, representing 83% of Mercury’s 2440 km radius!

Interior of Mercury vs Earth
The internal structure of Mercury is very different from that of the Earth. The core is a much larger part of the whole planet in Mercury and it also has a solid iron-sulfur cover. As a result, the mantle and crust on Mercury are much thinner than on the Earth.
Credit: Case Western Reserve University

Furthermore, these calculations suggest that the layer above the core is much denser than previously expected. Results from MESSENGER’s X-Ray spectrometer indicate that the crust, and by extension the mantle, are too low in iron to explain this high density. Dr. Zuber’s team think that the only way to explain this discrepancy is by the presence of a solid iron-sulfur layer just above the core. Such a layer could be anywhere from 20 to 200 km thick, leaving only a very thin crust and mantle at the top. This kind of interior structure is completely different from what was originally suggested for Mercury, and it is nothing like what we have seen in the other planets!

This striking fact may help explain some unexpected altimeter results, which show that Mercury’s topography has less variation than other planets. The total difference between the highest and lowest elevations on Mercury is only 9.85 km. Meanwhile, the Moon has a total difference of 19.9 km between its highest and lowest points, and on Mars this difference is 30 km. Dr. Zuber and her team speculate that the presence of the core so close to the surface could keep the mantle hot, allowing topographic features to relax. In such a scenario, the lithosphere under tall impact-formed mountains would sink down into a mushy mantle that cannot support their weight. Conversely, the thin lithosphere under impact basins would rebound upwards, taking part of the mobile mantle with it.

In fact, the gravity data shows evidence of exactly this kind of process, in the form of “mascons”. These mass concentrations form when large imacts make the local crust very thin, allowing denser mantle material to rise closer to the surface as the lithosphere rebounds from the impact event. Mascons are well known from studies on the Moon and Mars, and now MESSENGER’s gravity data has revealed three such mascons on Mercury, located in the Caloris, Sobkou, and Budh basins.

Mercury Topography Northern Hemisphere
The elliptical polar orbit of the MESSENGER spacecraft means that measurements at the North Pole of Mercury are much better than those at the South Pole, or even at the equator. This is evident in the better spatial resolution that can be seen at the high latitudes in this elevation map of the northern hemisphere. Major impact structures are identified by black circles.
Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Interestingly enough, the mascons in Sobkou and Budh basins are not immediately obvious. They only show up when the effects of a regional topographic high are adjusted for. This topographic feature is a large quasi-linear rise that extends over half the circumference of Mercury in the mid-latitudes. The rise even passes through the northern part Caloris basin (which is large enough that its mascon is not overwhelmed by the rise). Studies of this rise by the MESSENGER team suggest that it is relatively young, having formed well after the formation of the basins, after the volcanic flooding of their interiors and exteriors, and even after some of the later impact craters that cover the flooded surfaces.

Dr. Zuber and her team also identified another young topographically elevated region, the Northern Rise, located in the lowlands surrounding the North Pole. They speculate that these young rises represent a buckling of the lithosphere, which happened when the planet’s interior cooled and contracted. This interpretation is supported by the presence of lobate scarps and ridges that can be seen around the planet, and which represent faulting of the crust when it was compressed.

So, it seems that Mercury is unlike the other planets of the Solar System. It appears to have a disproportionately large core that is covered by a thin skin of mantle and lithosphere. Furthermore, this skin seems to have wrinkled like a raisin’s when the huge core of the planet shrunk as it cooled.

Sources
Gravity Field and Internal Structure of Mercury from MESSENGER, Smith et al., Science V336 (6078), 214-217, April 13 2012, DOI:10.1126/science.1218809

Topography of the Northern Hemisphere of Mercury from MESSENGER Laser Altimetry, Zuber et al., Science V336 (6078), 217-220, April 13 2012, DOI:10.1126/science.1218805

Playing With Water… in Space!

Expedition 30 astronaut and chemical engineer Don Pettit continues his ongoing “Science off the Sphere” series with this latest installment, in which he demonstrates some of the peculiar behaviors of thin sheets of water in microgravity. Check it out — you might be surprised how water behaves when freed from the bounds of gravity (and put under the command of a cosmic chemist!)

See more Science off the Sphere episodes here.