The Dwarf Planet Sedna

An artist's conception of Sedna. this assumes that Sedna has a tiny as yet undiscovered moon. Image credit; NASA/JPl-Caltech

There has been quite a bit of buzz about dwarf planets lately. Ever since the discovery of Eris in 2005, and the debate that followed over the proper definition of the word “planet”, this term has been adopted to refer to planets beyond Neptune that rival Pluto in size. Needless to say, it has been a controversial subject, and one which is not likely to be resolved anytime soon.

In the meantime, the category has been used tentatively to describe many Trans-Neptunian objects that were discovered before or since the discovery of Eris. Sedna, which was discovered in the outer reaches of the Solar System in 2003, is most likely a dwarf planet. And as the furthest known object from the Sun, and located within the hypothetical Oort Cloud, it is quite the fascinating find.

Discovery and Naming:

Much like Eris, Haumea and Makemake, Sedna was co-discovered by Mike Brown of Caltech, with assistance from Chad Trujillo of the Gemini Observatory, and David Rabinowitz of Yale University on November 14th, 2003. Initially designated as 2003 VB12, the discovery was part of a survey that commenced in 2001 using the Samuel Oschin Telescope at the Palomar Observatory near San Diego, California.

Observations at the time indicated the presence of an object at a distance of approximately 100 AU from the Sun. Follow-up observations made in November and December of 2003 by the Cerro Tololo Inter-American Observatory in Chile and the W. M. Keck Observatory in Hawaii revealed that the object was moving along a distant highly eccentric orbit.

Comparison of Sedna with the other largest TNOs and with Earth (all to scale). Credit: NASA/Lexicon
Comparison of Sedna with the other largest TNOs and with Earth (all to scale). Credit: NASA/Lexicon

It was later learned that the object had been previously observed by the Samual Oschin telescope as well as the Jet Propulsion Laboratory’s Near Earth Asteroid Tracking (NEAT) consortium. Comparisons with these previous observations have since allowed for a more precise calculation of Sedna’s orbit and orbital arc.

According to Mike Brown’s website, the planet was named Sedna after the Inuit Goddess of the sea. According to legend, Sedna was once mortal but became immortal after drowning in the Arctic Ocean, where she now resides and protects all the creatures of the sea. This name seemed appropriate to Brown and his team because Sedna is currently the farthest (and hence coldest) object from the Sun.

The team made the name public before the object had been officially numbered; and while this represented a breach in IAU protocol, no objections were raised. In 2004, the IAU’s Committee on Small Body Nomenclature formally accepted the name.

Classification:

Astronomers remain somewhat divided when it comes to Sedna’s proper classification. On the one hand, its discovery resurrected the question of which astronomical objects should be considered planets and which ones could not. Under the IAU’s definition of a planet, which was adopted on August 24th, 2006 (in response to the discovery of Eris), a planet needs to have cleared its orbit. Hence, Sedna does not qualify.

However, to be a dwarf planet, a celestial body must be in hydrostatic equilibrium – meaning that it is symmetrically rounded into a spheroid or ellipsoid shape. With a surface albedo of 0.32 ± 0.06 – and an estimated diameter of between 915 and 1800 km (compared to Pluto’s 1186 km) – Sedna is bright enough, and also large enough, to be spheroid in shape.

Therefore, Sedna is believed by many astronomers to be a dwarf planet, and is often referred to confidently as such. One reason why astronomers are reluctant to definitively place it in that category is because it is so far away that it is difficult to observe.

Size, Mass and Orbit:

In 2004, Mike Brown and his team placed an upper limit of 1,800 km on its diameter, but by 2007 this was revised downward to less than 1,600 km after observations were made by the Spitzer Space Telescope. In 2012, measurements from the Herschel Space Observatory suggested that Sedna’s diameter was between 915 and 1075 km, which would make it smaller than Pluto’s moon Charon.

Because Sedna has no known moons, determining its mass is currently impossible without sending a space probe. Nevertheless, many astronomers think that Sedna is the fifth largest trans-Neptunian object (TNO) and dwarf planet – after Eris, Pluto, Makemake, and Haumea, respectively.

Sedna has a highly elliptical orbit around the Sun, which means it ranges in distance from 76 astronomical units (AU) at perihelion (114 billion km/71 billion mi) to 936 AU (140 billion km/87 billion mi) at aphelion.

Sedna's orbit, compared to other bodies in the Solar System and the Kuiper Belt. Credit: web.gps.caltech.edu
Sedna’s orbit, compared to other bodies in the Solar System, the Kuiper Belt and the Oort Cloud. Credit: web.gps.caltech.edu

Estimations on how long it takes Sedna to orbit the Sun vary, although it is known to be more than 10,000 years. Some astronomers calculate the orbital period could be as long as 12,000 years. Although astronomers believed at first that Sedna had a satellite, they have not been able to prove it.

Composition:

At the time of its discovery, Sedna was the intrinsically brightest object found in the Solar System since Pluto in 1930. In terms of color, Sedna appears to be almost as red as Mars, which some astronomers believe is caused by hydrocarbon or tholin.  Its surface is also rather homogeneous in terms of color and spectrum, which may the result of Sedna’s distance from the Sun.

Unlike planets in the Inner Solar System, Sedna experiences very few surface impacts from meteors or stray objects. As a result, it does not have as many exposed bright patches of fresh icy material. Sedna, and the entire Oort Cloud, is freezing at temperatures below 33 Kelvin (-240.2°C).

Models have been constructed of Sedna that place an upper limit of 60% for methane ice and 70% for water ice. This is consistent with the existence of tholins on it’s surface, since they are produced by the irradiation of methane. Meanwhile, M. Antonietta Barucci and colleagues compared Sedna’s spectrum to that of Triton and came up with a model that included 24% Triton-type tholins, 7% amorphous carbon, 10% nitrogen, 26% methanol and 33% methane.

Planetoid Sedna
Artist’s concept of the surface of Sedna. Credit: NASA/ESA/Adolf Schaller

The presence of nitrogen on the surface suggests the possibility that, at least for a short time, Sedna may have a tenuous atmosphere. During a 200-year period near perihelion, the maximum temperature on Sedna would likely exceed 35.6 K (-237.6 °C), which would be just warm enough for some of the nitrogen ice to sublimate. Models of internal heating via radioactive decay suggest that, like many bodies in the Outer Solar System, Sedna might be capable of supporting a subsurface ocean of liquid water.

Origin:

When he and his colleagues first observed Sedna, they claimed that it was part of the Oort Cloud – the hypothetical cloud of comets believed to exist a light-year’s distance from the Sun. This was based on the fact that Sedna’s perihelion (76 AUs) made it too distant to be scattered by the gravitational influence of Neptune.

Because it was also closer to the Sun than was expected from on Oort cloud object, and has an inclination in line with the planets and Kuiper Belt, they described it as being an “inner Oort Cloud object”. Brown and his colleagues have proposed that Sedna’s orbit is best explained by the Sun having formed in an open cluster of several stars that gradually disassociated over time.

In this scenario, Sedna was lifted into its current orbit by a star that was part of this cluster rather than it having been formed in its current location. This hypothesis has also been confirmed by computer simulations that suggest that multiple close passes by young stars in such a cluster would pull many objects into Sedna-like orbits.

The layout of the solar system, including the Oort Cloud, on a logarithmic scale. Credit: NASA
The layout of the solar system, including the Oort Cloud, on a logarithmic scale. Credit: NASA

On the other hand, if Sedna formed in its current location, then it would mean that the Sun’s original protoplanetary disc would have extended farther than previously expected – approximately 75 AUs into space. Also, Sedna’s initial orbit would have been approximately circular, otherwise its formation by the accretion of smaller bodies into a whole would not have been possible.

Therefore, it must have been tugged into its current eccentric orbit by a gravitational interaction with another body – which could have been another planet in the Kuiper Belt, a passing star, or one of the young stars embedded with the Sun in the stellar cluster in which it formed.

Another possibility is the Sedna’s orbit is the result of influence by a large binary companion thousands of AU distant from our Sun. One such hypothetical companion is Nemesis, a dim companion to the Sun. However, to date no direct evidence of Nemesis has been found, and many lines of evidence have thrown its existence into doubt.

More recently, it has also been suggested that Sedna did not originate in the Solar System, but was captured by the Sun from a passing extrasolar planetary system.

Astronomers believe that they will find more objects in the Oort Cloud in years to come, especially as ground-based and space telescopes become more advanced and sensitive. Most likely, we will also see Sedna officially christened a “dwarf planet” by the IAU. As with other astronomical bodies that have been designated as such, we can expect some controversy to follow!

Universe Today has many interesting articles on Sedna, including Sedna probably doesn’t have a moon and Dwarf Planets.

For more information, check out the story of Sedna and Sedna.

Astronomy Cast has an episode on Pluto and the icy outer Solar System, and The Oort Cloud.

Sources:

Mysterious Bright Spots and Pyramidal Mountain Star in Dawn’s Daunting Flyover of Ceres: Video

The intriguing brightest spots on Ceres lie in a crater named Occator, which is about 60 miles (90 kilometers) across and 2 miles (4 kilometers) deep. Vertical relief has been exaggerated by a factor of five. Exaggerating the relief helps scientists understand and visualize the topography much more easily, and highlights features that are sometimes subtle. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/LPI

Video caption: Take a tour of weird Ceres! Visit a 2-mile-deep crater and a 4-mile-tall mountain in the video narrated by mission director Marc Rayman. Get your red/blue glasses ready for the finale – a global view of the dwarf planet in 3D. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/LPI/PSI

Mysterious bright spots and a pyramidal shaped mountain star in a daunting new flyover video of dwarf planet Ceres created from imagery gathered by NASA’s history making Dawn mission – the first ever to visit any dwarf planet which simultaneously ranks as the largest world in the main asteroid belt residing between Mars and Jupiter.

Ceres was nothing more than a fuzzy blob to humankinds most powerful telescopes like the Hubble Space Telescope (HST), until the probe swooped in this year and achieved orbit on March 6, 2015.

The newly released, stunning video takes takes you on a tour like none before for a global cruise over the most fascinating features on Ceres – including the 2-mile-deep (4-km-deep) crater dubbed Occator and a towering 4-mile-tall (6 kilometer-tall) mountain as tall as any in North America.

The spectacular flyover animation was generated from high resolution images taken by Dawn’s framing camera during April and May and is narrated by Marc Rayman, Dawn Chief Engineer and Mission Director of NASA’s Jet Propulsion Laboratory, Pasadena, California.

The video concludes with a 3D view, so you’ll need to whip out your handy red/blue glasses for the finale – a global view of the dwarf planet in 3D.

From the orbital altitude at that time ranging from about 8,400 miles (13,600 kilometers) to 2,700 miles (4,400 kilometers), the highest-resolution regions on Ceres have a resolution of 1,600 feet (480 meters) per pixel.

Pockmarked Ceres is an alien world unlike any other in our solar system, replete with unexplained bright spots and craters of many sizes, large and small.

Occatur has captured popular fascination world-wide because the 60 miles (90 kilometers) diameter crater is rife with a host of the bodies brightest spots and whose nature remains elusive to this day, nearly half a year after Dawn arrived in orbit this past spring.

“Now, after a journey of 3.1 billion miles (4.9 billion kilometers) and 7.5 years, Dawn calls Ceres, home,” says Rayman.

The crater is named after the Roman agriculture deity of harrowing, a method of pulverizing and smoothing soil.

Dawn is an international science mission managed by NASA and equipped with a trio of science instruments from the US, Germany and Italy. The framing camera was provided by the Max Planck Institute for Solar System Research, Göttingen, Germany and the German Aerospace Center (DLR).

The visible and infrared mapping spectrometer (VIR), provided by Italy is an imaging spectrometer that examines Ceres in visible and infrared light.

Dawn’s science team is using the instruments to investigate the light reflecting from Occator at different wavelengths.

From a distance, the crater appeared to be home to a duo of bright spots that looked like a pair of eyes. As Dawn moves ever closer, they became more resolved and now are split into dozens of smaller bright spots.

Global view of Ceres uses data collected by NASA's Dawn mission in April and May 2015.  The highest-resolution parts of the map have a resolution of 1,600 feet (480 meters) per pixel.  Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/LPI/PSI
Global view of Ceres uses data collected by NASA’s Dawn mission in April and May 2015. The highest-resolution parts of the map have a resolution of 1,600 feet (480 meters) per pixel. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/LPI/PSI

Although some early speculation centered on the spots possibly being consistent with water ice or salts, newly gathered data “has not found evidence that is consistent with ice. The spots’ albedo -¬ a measure of the amount of light reflected -¬ is also lower than predictions for concentrations of ice at the surface,” according to the scientists.

“The science team is continuing to evaluate the data and discuss theories about these bright spots at Occator,” said Chris Russell, Dawn’s principal investigator at the University of California, Los Angeles, in a statement.

“We are now comparing the spots with the reflective properties of salt, but we are still puzzled by their source. We look forward to new, higher-resolution data from the mission’s next orbital phase.”
Occator lies in Ceres northern hemisphere.

The huge pyramidal mountain lies farther to the southeast of Occator – at 11 degrees south, 316 degrees east.

Based on the latest calculations, the mountain sits about 4 miles (6 kilometers) high, with respect to the surface around it. That make it roughly the same elevation as Mount McKinley in Denali National Park, Alaska, the highest point in North America.

Among the highest features seen on Ceres so far is a mountain about 4 miles (6 kilometers) high, which is roughly the elevation of Mount McKinley in Alaska's Denali National Park.  Vertical relief has been exaggerated by a factor of five to help understand the topography. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/LPI
Among the highest features seen on Ceres so far is a mountain about 4 miles (6 kilometers) high, which is roughly the elevation of Mount McKinley in Alaska’s Denali National Park. Vertical relief has been exaggerated by a factor of five to help understand the topography. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/LPI

The Texas-sized world is slightly smaller than previously thought. Based on new measurements from Dawn, Ceres’ average diameter to 584 miles (940 kilometers), compared to earlier estimates of 590 miles (950 kilometers).

Dawn made history in March when it simultaneously became the first probe from Earth to reach Ceres as well as the first spacecraft to orbit two extraterrestrial bodies.

It had previously visited Vesta. After achieving orbit in July 2011, Dawn became the first spacecraft from Earth to orbit a body in the main Asteroid Belt.

In sharp contrast to rocky Vesta, Ceres is an icy world.

Scientists believe that Ceres may harbor an ocean of subsurface liquid water as large in volume as the oceans of Earth below a thick icy mantle despite its small size – and thus could be a potential abode for life. Overall Ceres is estimated to be about 25% water by mass.

“We really appreciate the interest in our mission and hope they are as excited as we have been about these scientific surprises,” Russell told Universe Today.

“Since we are only just beginning our investigation, I expect that there will be more surprises. So please stick with us!”

As Dawn spirals down to a lower orbit of about 1,200 miles (1,900 km) above Ceres (and then even lower) using its ion engines, new answers and new mysteries are sure to be forthcoming.

“There are many other features that we are interested in studying further,” said Dawn science team member David O’Brien, with the Planetary Science Institute, Tucson, Arizona.

“These include a pair of large impact basins called Urvara and Yalode in the southern hemisphere, which have numerous cracks extending away from them, and the large impact basin Kerwan, whose center is just south of the equator.”

The mission is expected to last until at least June 2016 depending upon fuel reserves.

Dawn was launched on September 27, 2007 by a United Launch Alliance (ULA) Delta II Heavy rocket from Space Launch Complex-17B (SLC-17B) at Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Eris’ Moon Dysnomia

Tenth planet? Artists concept of the view from Eris with Dysnomia in the background, looking back towards the distant sun. Credit: Robert Hurt (IPAC)
Tenth planet? Artists concept of the view from Eris with Dysnomia in the background, looking back towards the distant sun. Credit: Robert Hurt (IPAC)

Ask a person what Dysnomia refers to, and they might venture that it’s a medical condition. In truth, they would be correct. But in addition to being a condition that affects the memory (where people have a hard time remembering words and names), it is also the only known moon of the distant dwarf planet Eris.

In fact, the same team that discovered Eris a decade ago – a discovery that threw our entire notion of what constitutes a planet into question – also discovered a moon circling it shortly thereafter. As the only satellite that circles one of the most distant objects in our Solar System, much of what we know about this ball of ice is still subject to debate.

Discovery and Naming:

In January of 2005, astronomer Mike Brown and his team discovered Eris using the new laser guide star adaptive optics system at the W. M. Keck Observatory in Hawaii. By September, Brown and his team were conducting observations of the four brightest Kuiper Belt Objects – which at that point included Pluto, Makemake, Haumea, and Eris – and found indications of an object orbiting Eris.

Provisionally, this body was designated S/2005 1 (2003 UB³¹³). However, in keeping with the Xena nickname that his team was already using for Eris, Brown and his colleagues nicknamed the moon “Gabrielle” after Xena’s sidekick. Later, Brown selected the official name of Dysnomia for the moon, which seemed appropriate for a number of reasons.

For one, this name is derived from the daughter of the Greek god Eris – a daemon who represented the spirit of lawlessness – which was in keeping with the tradition of naming moons after lesser gods associated with the primary god. It also seemed appropriate since the “lawless” aspect called to mind actress Lucy Lawless, who portrayed Xena on television. However, it was not until the IAU’s resolution on what defined a planet – passed in August of 2006 – that the planet was officially designated as Dysnomia.

Size, Mass and Orbit:

The actual size of Dysnomia is subject to dispute, and estimates are based largely on the planet’s albedo relative to Eris. For example, the IAU and Johnston’s Asteroids with Satellites Database estimate that it is 4.43 magnitudes fainter than Eris and has an approximate diameter of between 350 and 490 km (217 – 304 miles)

However, Brown and his colleagues have stated that their observations indicate it to be 500 times fainter and between 100 and 250 km (62 – 155 miles) in diameter. Using the Herschel Space Observatory in 2012, Spanish astronomer Pablo Santo Sanz and his team determined that, provided Dysnomia has an albedo five times that of Eris, it is likely to be 685±50 km in diameter.

Forget about Pluto for a moment. Should Eris be our tenth Planet? Like Pluto it has a prominent moon- Dysnomia. Human perception and conceptions of the Universe have shaped our view of the Solar System. The Ptolemaic system (Earth centered), Kepler's Harmonic Spheres, even the fact that ten digits reside on our hands impact our impression of the Solar System (Photo Credits:NASA/ESA and M. Brown / Caltech)
Eris and its moon, Dysnomia, as imaged by the W.M. Keck Observatory in Hawaii. Credits:NASA/ESA and M. Brown/Caltech

In 2007, Brown and his team also combined Keck and Hubble observations to determine the mass of Eris, and estimate the orbital parameters of the system. From their calculations, they determined that Dysnomia’s orbital period is approximately 15.77 days. These observations also indicated that Dysnomia has a circular orbit around Eris, with a radius of 37350±140 km. In addition to being a satellite of a dwarf planet, Dysnomia is also a Kuiper Belt Object (KBO) like Eris.

Composition and Origin:

Currently, there is no direct evidence to indicate what Dysnomia is made of. However, based on observations made of other Kuiper Belt Objects, it is widely believed that Dysnomia is composed primarily of ice. This is based largely on infrared observations made of Haumea (2003 EL61), the fourth largest object in the Kuiper Belt (after Eris, Pluto and Makemake) which appears to be made entirely of frozen water.

Astronomers now know that three of the four brightest KBOs – Pluto, Eris and Haumea – have one or more satellites. Meanwhile, of the fainter members, only about 10% are known to have satellites. This is believed to imply that collisions between large KBOs have been frequent in the past. Impacts between bodies of the order of 1000 km across would throw off large amounts of material that would coalesce into a moon.

This is an artist's concept of Kuiper Belt object Eris and its tiny satellite Dysnomia. Eris is the large object at the bottom of the illustration. A portion of its surface is lit by the Sun, located in the upper left corner of the image. Eris's moon, Dysnomia, is located just above and to the left of Eris. The Hubble Space Telescope and Keck Observatory took images of Dysnomia's movement from which astronomer Mike Brown (Caltech) precisely calculated Eris to be 27 percent more massive than Pluto. Artwork Credit: NASA, ESA, Adolph Schaller (for STScI)
Artist’s concept of Kuiper Belt Object Eris and its tiny satellite Dysnomia. The Hubble Space Telescope and Keck Observatory took images of Dysnomia’s movement from which astronomer Mike Brown (Caltech) precisely calculated Eris to be 27 percent more massive than Pluto. Credit: NASA/ESA/Adolph Schaller (for STScI)

This could mean that Dysnomia was the result of a collision between Eris and a large KBO. After the impact, the icy material and other trace elements that made up the object would have evaporated and been ejected into orbit around Eris, where it then re-accumulated to form Dysnomia. A similar mechanism is believed to have led to the formation of the Moon when Earth was struck by a giant impactor early in the history of the Solar System.

Since its discovery, Eris has lived up to its namesake by stirring things up. However, it has also helped astronomers to learn many things about this distant region of the Solar System. As already mentioned, astronomers have used Dysnomia to estimate the mass of Eris, which in turn helped them to compare it to Pluto.

While astronomers already knew that Eris was bigger than Pluto, but they did not know whether it was more massive. This they did by measuring the distance between Dysnomia and how long it takes to orbit Eris. Using this method, astronomers were able to discover that Eris is 27% more massive than Pluto is.

With this knowledge in hand, the IAU then realized that either Eris needed to be classified as a planet, or that the term “planet” itself needed to be refined. Ergo, one could make that case that it was the discovery of Dysnomia more than Eris that led to Pluto no longer being designated a planet.

Universe Today has articles on Xena named Eris and The Dwarf Planet Eris. For more information, check out Dysnomia and dwarf planet outweighs Pluto.

Astronomy Cast has an episode on Pluto’s planetary identity crisis.

Sources:

Ceres Resembles Saturn’s Icy Moons

Topographic elevation map of Ceres showing some newly-named craters. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA.

Ceres’ topography is revealed in full (but false) color in a new map created from elevation data gathered by NASA’s Dawn spacecraft, now nearly five months in orbit around the dwarf planet orbiting the Sun within the main asteroid belt.

With craters 3.7 miles (6 km) deep and mountains rising about the same distance from its surface, Ceres bears a resemblance to some of Saturn’s frozen moons.

“The craters we find on Ceres, in terms of their depth and diameter, are very similar to what we see on Dione and Tethys, two icy satellites of Saturn that are about the same size and density as Ceres,” said Paul Schenk,  Dawn science team member and a geologist at the Lunar and Planetary Institute (LPI) in Houston, TX. “The features are pretty consistent with an ice-rich crust.”

Check out a rotation video of Ceres’ topography below:

In addition to elevation mapping Ceres has also had some of its more prominent craters named. No longer just “bright spot crater” and “Spot 1,” these ancient impact scars now have official IAU monikers… from the Roman Occator to the Hawaiian Haulani to the Hopi Kerwan, craters on Ceres are named after agriculture-related gods and goddesses of mythologies from around the world.

Ceres' "bright spot" crater is now named Occator, after the Roman god of harrowing. (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)
Ceres’ famous “bright spot” crater is now named Occator, after the Roman god of harrowing. (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

See a full list of Ceres’ named features here.

Dawn is currently moving closer toward Ceres into its third mapping orbit. By mid-August it will be 900 miles (1448 km) above Ceres’ surface and will proceed with acquiring data from this lower altitude, three times closer than it has been previously.

At 584 miles (940 km) in diameter Ceres is about 40 percent the size of Pluto.

NASA’s Dawn spacecraft is the first to successfully enter orbit around two different mission targets and the first to orbit a dwarf planet. Its first target was the asteroid Vesta, which it orbited from July 2011 to September 2012. Dawn arrived in orbit at Ceres on March 6, 2015 and there it will remain during its primary science phase and beyond; Ceres is now Dawn’s permanent home.

Learn more about the Dawn mission here and find out where Dawn and Ceres are now here.

Ceres (left, Dawn image) compared to Tethys (right, Cassini image) at comparative scale sizes. (Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA and NASA/JPL-Caltech/SSI. Comparison by J. Major.)
Ceres (left, Dawn image) compared to Tethys (right, Cassini image) at comparative scale sizes. (Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA and NASA/JPL-Caltech/SSI. Comparison by J. Major.)

Source: NASA

The Dwarf Planet Pluto

Pluto was re-classified as a dwarf planet based on our growing understanding of its nature. Will Schlaufman's new study help us more accurately classify gas giants and brown dwarfs? NASA's New Horizons spacecraft captured this high-resolution enhanced color view of Pluto on July 14, 2015. Credit: NASA/JHUAPL/SwRI
Pluto was re-classified as a dwarf planet based on our growing understanding of its nature. Will Schlaufman's new study help us more accurately classify gas giants and brown dwarfs? NASA's New Horizons spacecraft captured this high-resolution enhanced color view of Pluto on July 14, 2015. Credit: NASA/JHUAPL/SwRI

After being officially discovered by Clyde Tombaugh in 1930, Pluto spent close to a century being thought of as the ninth planet of our Solar System. In 2006, it was reclassified as a “dwarf planet” due to the discovery of other Trans-Neptunian Objects (TNOs) of comparable size. However, that does not change its significance in our galaxy. In addition to being the largest TNO, it is the largest and second-most massive dwarf planet of our Solar System.

As a result, a great deal of time and study has been devoted to this former planet. And with the successful flyby of the New Horizons mission this month, we finally have a clear picture of what it looks like. As scientists pour over the voluminous amounts of data being sent back, our understanding of this world at the edge of our Solar System has grown by leaps and bounds.

Discovery:

The existence of Pluto was predicted before it was observed. In the 1840s, French mathematician Ubrain Le Verrier used Newtonian mechanics to predict the position of Neptune (which had not yet been discovered) based on the perturbation of Uranus. By the late 19th century, subsequent observations of Neptune led astronomers to believe that a planet was perturbing its orbit as well.

In 1906, Percival Lowell – an American mathematician and astronomer who founded the Lowell Observatory in Flagstaff, Arizona, in 1894 – initiated a project to locate “Planet X”, the possible ninth planet of the Solar System. Unfortunately, Lowell died in 1916 before a confirmed discovery was made. But unbeknownst to him, his surveys had captured two faint images of Pluto (March 19th and April 7th, 1915), which were not recognized for what they were.

The discovery photographs of Pluto, dated January 23rd and 29th , 1930. Credit: Lowell Observatory Archives
The discovery photographs of Pluto, dated January 23rd and 29th , 1930. Credit: Lowell Observatory Archives

After Lowell’s death, the search did not resume until 1929, at which point the director of the Lowell Observatory (Vesto Melvin Slipher) entrusted the job of locating Planet X to Clyde Tombaugh. A 23 year-old astronomer from Kansas, Tombaugh spent the next year photographing sections of the night sky and then analyzing the photographs to determine if any objects had shifted position.

On February 18th, 1930, Tombaugh discovered a possible moving object on photographic plates taken in January of that year. After the observatory obtained further photographs to confirm the existence of the object, news of the discovery was telegraphed to the Harvard College Observatory on March 13th, 1930. The mysterious Planet X had finally been discovered.

Naming:

After the discovery was announced, the Lowell Observatory was flooded with suggestions for names. The name Pluto, based on the Roman god of the underworld, was proposed by Venetia Burney (1918–2009), a then eleven-year-old schoolgirl in Oxford, England. She suggested it in a conversation with her grandfather who passed the name on to astronomy professor Herbert Hall Turner, who cabled it to colleagues in the United States.

Pluto's surface as viewed from the Hubble Space Telescope in several pictures taken in 2002 and 2003. Though the telescope is a powerful tool, the dwarf planet is so small that it is difficult to resolve its surface. Astronomers noted a bright spot (180 degrees) with an unusual abundance of carbon monoxide frost. Credit: NASA
Pluto’s surface as viewed from the Hubble Space Telescope in several pictures taken in 2002 and 2003. Credit: NASA/Hubble

The object was officially named on March 24th, 1930, and it came down to a vote between three possibilities – Minerva, Cronus, and Pluto. Every member of the Lowell Observatory voted for Pluto, and the name was announced on May 1st, 1930. The choice was based on part on the fact that the first two letters of Pluto – P and L – corresponded to the initials of Percival Lowell.

The name quickly caught on with the general public. In 1930, Walt Disney was apparently inspired by it when he introduced a canine companion for Mickey Mouse named Pluto. In 1941, Glenn T. Seaborg named the newly created element plutonium after Pluto. This was in keeping with the tradition of naming elements after newly discovered planets – such as uranium, which was named after Uranus; and neptunium, which was named after Neptune.

Size, Mass and Orbit:

With a mass of 1.305±0.007 x 1o²² kg – which is the equivalent of 0.00218 Earths and 0.178 Moons – Pluto is the second most-massive dwarf planet and the tenth-most-massive known object directly orbiting the Sun. It has a surface area of 1.765×107 km, and a volume of 6.97×109 km3.

Map of Pluto, with (informal) names for some of the largest surface features. Credit: NASA/JHUAPL
Map of Pluto’s surface features, with (informal) names for some of the largest surface features. Credit: NASA/JHUAPL

Pluto has a moderately eccentric and inclined orbit, which ranges from 29.657 AU (4.4 billion km) at perihelion to 48.871 AU (7.3 billion km) at aphelion. This means that Pluto periodically comes closer to the Sun than Neptune, but a stable orbital resonance with Neptune prevents them from colliding.

Pluto has an orbital period of 247.68 Earth years, meaning it takes almost 250 years to complete a single orbit of the Sun. Meanwhile, its rotation period (a single day) is equal to 6.39 Earth days. Like Uranus, Pluto rotates on its side, with an axial tilt of 120° relative to its orbital plane, which results in extreme seasonal variations. At its solstices, one-fourth of its surface is in continuous daylight, whereas another fourth is in continuous darkness.

Composition and Atmosphere:

With a mean density of 1.87 g/cm3, Pluto’s composition is differentiated between an icy mantle and a rocky core. The surface is composed of more than 98% nitrogen ice, with traces of methane and carbon monoxide. The surface is very varied, with large differences in both brightness and color. A  notable feature is a large, pale area nicknamed the “Heart”.

The Theoretical structure of Pluto, consisting of 1. Frozen nitrogen 2. Water ice 3. Rock. Credit: NASA/Pat Rawlings
The theoretical structure of Pluto, consisting of 1. Frozen nitrogen 2. Water ice 3. Rock. Credit: NASA/Pat Rawlings

Scientists also suspect that Pluto’s internal structure is differentiated, with the rocky material having settled into a dense core surrounded by a mantle of water ice. The diameter of the core is believed to be approximately 1700 km, 70% of Pluto’s diameter. Thanks to the decay of radioactive elements, it is possible that Pluto contains a subsurface ocean layer that is 100 to 180 km thick at the core–mantle boundary.

Pluto has a thin atmosphere consisting of nitrogen (N2), methane (CH4), and carbon monoxide (CO), which are in equilibrium with their ices on Pluto’s surface. However, the planet is so cold that during part of its orbit, the atmosphere congeals and falls to the surface. The average surface temperature is 44 K (-229 °C), ranging from 33 K (-240 °C) at aphelion to 55 K (-218 °C) at perihelion.

Satellites:

Pluto has five known satellites. The largest, and closest in orbit to Pluto, is Charon. This moon was first identified in 1978 by astronomer James Christy using photographic plates from the United States Naval Observatory (USNO) in Washington, D.C. Beyond Charon lies the four other circumbinary moons – Styx, Nix, Kerberos, and Hydra, respectively.

Nix and Hydra were discovered simultaneously in 2005 by the Pluto Companion Search Team using the Hubble Space Telescope. The same team discovered Kerberos in 2011. The fifth and final satellite, Styx, was discovered by the New Horizons spacecraft in 2012 while capturing images of Pluto and Charon.

Artist's concept comparing the scale and brightness of the moons of Pluto. Credit: NASA/ESA/M. Showalter
Artist’s concept comparing the scale and brightness of the moons of Pluto. Credit: NASA/ESA/M. Showalter

Charon, Styx and Kerberos are all massive enough to have collapsed into a spheroid shape under their own gravity. Nix and Hydra, meanwhile, are oblong in shape. The Pluto-Charon system is unusual, since it is one of the few systems in the Solar System whose barycenter lies above the primary’s surface. In short, Pluto and Charon orbit each other, causing some scientists to claim that it is a “double-dwarf system” instead of a dwarf planet and an orbiting moon.

In addition, it is unusual in that each body is tidally locked to the other. Charon and Pluto always present the same face to each other; and from any position on either body, the other is always at the same position in the sky, or always obscured. This also means that the rotation period of each is equal to the time it takes the entire system to rotate around its common center of gravity.

In 2007, observations by the Gemini Observatory of patches of ammonia hydrates and water crystals on the surface of Charon suggested the presence of active cryo-geysers. This would seem indicate that Pluto does have a subsurface ocean that is warm in temperature, and that the core is geologically active. Pluto’s moons are believed to have been formed by a collision between Pluto and a similar-sized body early in the history of the Solar System. The collision released material that consolidated into the moons around Pluto.

Classification:

From 1992 onward, many bodies were discovered orbiting in the same area as Pluto, showing that Pluto is part of a population of objects called the Kuiper Belt. This placed its official status as a planet in question, with many asking whether Pluto should be considered separately or as part of its surrounding population – much as Ceres, Pallas, Juno and Vesta, which lost their planet status after the discovery of the Asteroid Belt.

On July 29h, 2005, the discovery of a new Trans-Neptunian Object (TNO), Eris, was announced, which was thought to be substantially larger than Pluto. Initially referred to the as the Solar System’s “tenth planet”, there was no consensus on whether or not Eris constituted the planet. What’s more, others in the astronomic community considered its discovery the strongest argument for reclassifying Pluto as a minor planet.

The debate came to a head on August 24th, 2006 with an IAU resolution that created an official definition for the term “planet”. According to the XXVI General Assembly of the International Astronomical Union, a planet must meet three criteria: it needs to be in orbit around the Sun, it needs to have enough gravity to pull itself into a spherical shape, and it needs to have cleared its orbit of other objects.

Pluto fails to meet the third condition, because its mass is only 0.07 times that of the mass of the other objects in its orbit. The IAU further decided that bodies that do not meet criterion 3 would be called dwarf planets. On September 13th, 2006, the IAU included Pluto, and Eris and its moon Dysnomia, in their Minor Planet Catalog.

The IAUs decision was met with mixed reactions, especially from within the scientific community. For instance, Alan Stern, the principal investigator with NASA’s New Horizons mission to Pluto, and Marc W. Buie – an astronomer with the Lowell Observatory – have both openly voiced dissatisfaction with the reclassification. Others, such as Mike Brown – the astronomer who discovered Eris – have voiced their support.

Our evolving understanding of Pluto, represented by images taken by Hubble in 2002-3 (left), and images taken by New Horizons in 2015 (right). Credit: theguardian.com
Our evolving understanding of Pluto, represented by images taken by Hubble in 2002-3 (left), and images taken by New Horizons in 2015 (right). Credit: theguardian.com

On August 14th – 16th, 2008, in what came to be known as “The Great Planet Debate“, researchers on both sides of the issue gathered at Johns Hopkins University Applied Physics Laboratory. Unfortunately, no scientific consensus was reached; but on June 11th 2008, the IAU announced in a press release that the term “plutoid” would henceforth be used to refer to Pluto and other similar objects.

Exploration:

Pluto presents significant challenges for spacecraft because of its small mass and great distance from Earth. In 1980, NASA began to contemplate sending the Voyager 1 spacecraft on a flyby of Pluto. However, the controllers opted instead for a close flyby of Saturn’s moon Titan, resulting in a trajectory incompatible with a Pluto flyby.

Voyager 2 never had a plausible trajectory for reaching Pluto, but it’s flyby Neptune and Triton in 1989 led scientists to once again begin contemplating a mission that would take a spacecraft to Pluto for the sake of studying the Kuiper Belt and Kuiper Belt Objects (KBOs). This led to the formation of the Pluto Kuiper Express mission proposal, and NASA instructing the JPL to being planning for a Pluto, Kuiper Belt flyby.

By 2000, the program had been scrapped due to apparent budget concerns. After much pressure had been brought to bear by the scientific community, a revised mission to Pluto, dubbed New Horizons, was finally granted funding from the US government in 2003. New Horizons was launched successfully on January 19th, 2006.

From September 21st-24th, 2006, New Horizons managed to capture its first images of Pluto while testing the LORRI instruments. These images, which were taken from a distance of approximately 4,200,000,000 km (2.6×109 mi) or 28.07 AU and released on November 28th, confirmed the spacecraft’s ability to track distant targets.

Distant-encounter operations at Pluto began on January 4th, 2015. Between January 25th to 31st, the approaching probe took several images of Pluto, which were released by NASA on February 12th. These photos, which were taken at a distance of more than 203,000,000 km (126,000,000 mi) showed Pluto and its largest moon, Charon.

Pluto
Pluto and Charon, captured by the New Horizons spacecraft from January 25th to 31st. Credit: NASA

The New Horizons spacecraft made its closest approach to Pluto at 07:49:57 EDT (11:49:57 UTC) on July 14th, 2015, and then Charon at 08:03:50 EDT (12:03:50 UTC). Telemetries confirming a successful flyby and the health of the spacecraft reached Earth on 20:52:37 EDT (00:52:37 UTC).

During the flyby, the probe captured the clearest pictures of Pluto to date, and full analyses of the data obtained is expected to take years to process. The spacecraft is currently traveling at a speed of 14.52 km/s (9.02 mi/s) relative to the Sun and at 13.77 km/s (8.56 mi/s) relative to Pluto.

Though the New Horizons mission has shown us much about Pluto – and will continue to do so as scientists pour over all the data collected by the probe’s instruments – we still have much to learn about this distant and mysterious world. In time, and with more missions to the outer Solar System, we may eventually be able to unlock some of its deeper mysteries.

Artist's impression of the New Horizons spacecraft in orbit around Pluto (Charon is seen in the background). Credit: NASA/JPL
Artist’s impression of the New Horizons spacecraft in orbit around Pluto (Charon is seen in the background). Credit: NASA/JPL

Until then, we offer all information that is currently available on Pluto. We hope that you find what you are looking for in the links below and, as always, enjoy your research!

Characteristics of Pluto:

Movement and Location of Pluto:

Moons of Pluto:

History of Pluto:

Features of Pluto:

Other Pluto Articles:

Ceres Bright Spots Sharpen But Questions Remain

Latest image released by NASA of the spatter of white spots in the 57-mile-wide crater on the dwarf planet Ceres. Scientists with the Dawn mission believe they're highly reflective material, likely ice. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The latest views of Ceres’ enigmatic white spots are sharper and clearer, but it’s obvious that Dawn will have to descend much lower before we’ll see crucial details hidden in this overexposed splatter of white dots. Still, there are hints of interesting things going on here.

Comparison of the most recent photos of the white spots taken Dawn's current 4,500 miles vs. 8,400 miles on May 3. Credit:
Comparison of the most recent photos of the white spots taken Dawn’s current 4,500 miles vs. 8,400 miles on May 4. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The latest photo is part of a sequence of images shot for navigation purposes on May 16, when the spacecraft orbited 4,500 miles (7,200 km) over the dwarf planet. Of special interest are a series of troughs or cracks in Ceres crust that appear on either side of the crater housing the spots.

While the exact nature of the spots continues to baffle scientists, Christopher Russell, principal investigator for the Dawn mission, has narrowed the possibilities: “Dawn scientists can now conclude that the intense brightness of these spots is due to the reflection of sunlight by highly reflective material on the surface, possibly ice.”

Two views of an impact exposing water ice on Mars. The bright material conspicuous in this image was excavated from below the surface and deposited nearby by a 2008 impact that dug a crater about 8 meters (26 feet) in diameter. The extent of the bright patch was large enough for the Compact Reconnaissance Imaging Spectrometer for Mars, an instrument on NASA's Mars Reconnaissance Orbiter, to obtain information confirming the material to be water ice. Credit: NASA/JPL-Caltech/University of Arizona
The bright material in both photos was excavated from below the surface and deposited nearby by a 2008 impact that dug a crater about 26 feet (8 meters) in diameter. The extent of the bright patch was large enough for the Compact Reconnaissance Imaging Spectrometer for Mars, an instrument on NASA’s Mars Reconnaissance Orbiter, to obtain information confirming it as water ice. Credit: NASA/JPL-Caltech/University of Arizona

We’ve seen ice exposed by meteorite / asteroid impact before on Mars where recent impacts have exposed fresh ice below the surface long hidden by dust. In most cases the ice gradually sublimates away or covered by dust over time. But if Ceres’ white spots are ice, then we can reasonably assume they must be relatively new features otherwise they would have vaporized or sublimated into space like the Martian variety.

NASA's Hubble Space Telescope took these images of the asteroid 1 Ceres over a 2-hour and 20-minute span, the time it takes the Texas-sized object to complete one quarter of a rotation.
NASA’s Hubble Space Telescope took these images of the asteroid 1 Ceres over a 2-hour and 20-minute span, the time it takes the Texas-sized object to complete one quarter of a rotation. The observations were made in visible and in ultraviolet light. Hubble took the snapshots between December 2003 and January 2004. Credit: NASA, ESA, J. Parker, P. Thomas and L. McFadden

Much has been written – including here – that these spots are the same as those photographed in much lower resolution by the Hubble Space Telescope in 2004. But according the Phil Plait, who writes the Bad Astronomy blog, that’s false. He spoke to Joe Parker, who was part of the team that made the 2004 photos, and Parker says the Dawn spots and Hubble spots are not the same.

Could the spots have formed post-2004 or were they simply too small for Hubble to resolve them? That seems unlikely. The chances are slim we’d just happen to be there shortly after such a rare event occurred? And what happened to Hubble’s spot – did it sublimate away?


Video compiled from Dawn’s still frames of Ceres by Tom Ruen. Watch as the spots continue to reflect light even at local sunset.

Watching the still images of Ceres during rotation, it’s clear that sunlight still reflects from the spots when the crater fills with shadow at sunset and sunrise. This implies they’re elevated, and as far as I can tell from the sunrise photo (see below), the brightest spots appear to shine from along the the side of  a hill or mountain. Could we be seeing relatively fresh ice or salts after recent landslides related to impact or tectonic forces exposed them to view?

 The crater with white spots shortly after sunrise. The bright spots appear to be on a central mountain. It's unclear if the pair of spots below the bright pair are situated on a rise or the flat floor. Credit: NASA
Single from from the video shows the white spots shortly after sunrise. The brightest appear to be located on a central mountain peak.  It’s unclear if the pair of spots below the bright pair are situated on a rise or the flat floor. Credit: NASA

Let’s visit another place in the Solar System with an enigmatic white spot, or should I say, white arc. It’s Wunda Crater on Uranus’ crater-blasted moon Umbriel. The 131-mile-wide crater, situated on the moon’s equator, is named for Wunda, a dark spirit in Aboriginal mythology. But on its floor is a bright feature about 6 miles (10 km) wide. We still don’t know what that one is either!

The moon Umbriel,  727 miles in diameter, with Wunda Crater and its bright internal ring of unknown origin. The moon's equator is vertical in this photo. Credit: NASA
The moon Umbriel, 727 miles in diameter, with Wunda Crater and its bright internal ring of unknown origin. The moon’s equator is vertical in this photo. Credit: NASA

Dawn Rises Over Ceres North Pole

Dawn's framing camera took these images of Ceres on April 10, 2015 which were combined into a short animation. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Brand new images taken on April 10 by NASA’s Dawn probe show the dwarf planet from high above its north pole. Photographed at a distance of just 21,000 miles (33,000 km) — less than 1/10 the Earth-moon distance — they’re our sharpest views to date. The crispness combined with the low-angled sunlight gives Ceres a stark, lunar-like appearance.

Artist's concept of Dawn above Ceres around the time it was captured into orbit by the dwarf planet in early March. Since its arrival, the spacecraft turned around to point the blue glow of its ion engine in the opposite direction. Image credit: NASA/JPL
Artist’s concept of Dawn above Ceres around the time it was captured into orbit by the dwarf planet in early March. Since its arrival, the spacecraft turned around to point the blue glow of its ion engine in the opposite direction. Because it’s been facing the Sun while lowering its orbit, the new images of Ceres show it as a crescent. Credit: NASA/JPL

Images will only get better. Dawn arrived at Ceres on March 6 and immediately got to work using its ion thrusters in conjunction with the dwarf planet’s gravity to gradually lower itself into a circular orbit. Once the spacecraft settles into its first science orbit on April 23 at a distance of 8,400 miles from the surface, it will begin taking a hard look at this cratered mini-planet.  A little more than two weeks later, the probe will spiral down for an even closer view on May 9.

The map is an enhanced color view that offers an expanded range of the colors visible to human eyes. Pictures were taken using blue, green and infrared filters and combined. Scientists use this technique to highlight subtle color differences across Ceres, which can provide insights into the physical properties and composition of the surface.  Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/ID
The map is an enhanced color view that offers an expanded range of the colors visible to human eyes. Pictures were taken using blue, green and infrared filters and combined. Scientists use this technique to highlight subtle color differences across Ceres, which can provide insights into the physical properties and composition of the surface. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/ID

Dawn’s gravity spiral continues throughout the summer and fall until the probe tiptoes down to just 233 miles (375 km) altitude in late November. From there it will deploy its Gamma Ray and Neutron Detector (GRaND) to map the elements composing Ceres’ surface rocks. We’re in for a great ride!


Simulated Ceres rotation by Tom Ruen using the new color map

Meanwhile, scientists have assembled images taken by Dawn through blue, green and infrared filters to create a new color-enhanced map of the dwarf planet. The variety of landforms in conjunction with the color variations hint that Ceres was once an active body or one with the means to resurface itself from within. Mechanisms might involve internal heating and / or movement of water or ice.

Pictures from Dawn’s VIR instrument highlight two regions on Ceres containing bright spots. The top images show a region scientists labeled “1” and the bottom images show the region labeled “5,” which show the Ceres’ brightest pair of spots. Region 1 is cooler than the rest of Ceres’ surface, but region 5 appears to be located in a region that is similar in temperature to its surroundings. Credit: NASA/JPL-Caltech/UCLA/ASI/INAF
Pictures from Dawn’s VIR instrument highlight two regions on Ceres containing bright spots. The top images show a region scientists labeled “1” and the bottom images show the region labeled “5,” which show the Ceres’ brightest pair of spots. Region 1 is cooler than the rest of Ceres’ surface, but region 5 appears to be located in a region that is similar in temperature to its surroundings. Credit: NASA/JPL-Caltech/UCLA/ASI/INAF

There are still no new close-ups of the pair of enigmatic white spots taunting us from inside that 57-mile-wide crater. But there is a bit of news. Dawn’s visible and infrared mapping spectrometer or VIR has already examined Ceres in visible and infrared or thermal light. Data from VIR indicate that light and darker regions on the dwarf planet have different properties.

A topographic map of Ceres with provisional names given to each quadrangle. Ceres' craters are named for agricultural gods; other features after world agricultural festivals. Credit: NASA / JPL / UCLA / MPS / DLR / IDA / JohnVV / Emily Lakdawalla
A topographic map of Ceres with provisional names given to each quadrangle. Ceres’ craters are named for agricultural gods; other features after world agricultural festivals. Let’s hope the names are made permanent. I mean, you can’t beat Yumyum. Credit: NASA / JPL / UCLA / MPS / DLR / IDA / JohnVV / Emily Lakdawalla

The bright spots are located in a region with a temperature similar to its surroundings. However, a different bright feature appears in a region that’s cooler than the neighboring surface. Exactly what those variations are telling us will hopefully become clear once Dawn returns more detailed images:

“The bright spots continue to fascinate the science team, but we will have to wait until we get closer and are able to resolve them before we can determine their source,” said Chris Russell, principal investigator for the Dawn mission.

A Recipe for Returning Pluto to Full Planethood

ILLUSTRATION IS RESERVED - DO NOT USE. The eight planets of the Solar System and the dwarf planet Pluto. For many astronomers and planetary scientists Pluto's status remains an open question. Redefining what is a planet could return Pluto to the fold - 9 planets and also open the door for many more. Insets from upper left, clockwise: Clyde Tombaugh, Mike Brown, Alan Stern, Gerard Kuiper.(Credit: NASA, Judy Schmidt, Björn Jónsson)

A storm is brewing, a battle of words and a war of the worlds. The Earth is not at risk. It is mostly a civil dispute, but it has the potential to influence the path of careers. In 2014, a Harvard led debate was undertaken on the question: Is Pluto a planet. The impact of the definition of planet and everything else is far reaching – to the ends of the Universe.

It could mean a count of trillions of planets in our galaxy alone or it means leaving the planet Pluto out of the count – designation, just a dwarf planet. This is a question of how to classify non-stellar objects. What is a planet, asteroid, comet, planetoid or dwarf planet? Does our Solar System have 8 planets or some other number? Even the count of planets in our Milky Way galaxy is at stake.

"Dawn arising." The latest image of Ceres - February 12, 2015 -  by the Dawn spacecraft from 80,000 km. With icy deposits pock marking its surface, a possible reservoir of water below its surface, is Ceres a planet, dwarf planet, an asteroid or all three? (Credit: NASA/Dawn)
“Dawn arising.” The latest image of Ceres – February 12, 2015 – by the Dawn spacecraft from 80,000 km. With icy deposits pock marking its surface, a possible reservoir of water below its surface, is Ceres a planet, dwarf planet, an asteroid or all three? (Credit: NASA/Dawn)

Not to dwell on the Harvard debate, let it be known that if given their way, the debates outcome would reset the Solar System to nine planets. For over eight years, the solar system has had eight planets. During the period  1807 to 1845, our Solar System had eleven planets. Neptune was discovered in 1846 and astronomers began to discover many more asteroids. They were eliminated from the club. This is very similar to what is now happening to Pluto-like objects – Plutoids. So from 1846 to 1930, there were 8 planets – the ones as defined today.

The discoverer of Pluto - Clyde Tombaugh in the 1930s and again with homebuilt telescope in the 1990s that earned him an assignment at Lowell Observatory - discover Planet X. Cremated remains of Clyde are attached to the New Horizons space probe now approaching the dwarf planet Pluto.
The discoverer of Pluto – Clyde Tombaugh in the 1930s and again with homebuilt telescope in the 1990s that earned him an assignment at Lowell Observatory – discover Planet X. The cremated remains of Clyde are attached to the New Horizons space probe that is now approaching the dwarf planet Pluto.

In 1930, a Kansas farm boy, Clyde Tombaugh, hired by Lowell Observatory discovered Pluto and for 76 years there were 9 planets. In the year 2006, the International Astronomical Union (IAU) took up a debate using a “democratic process” to accept a new definition of planet, define a new type – dwarf planet and then set everything else as “Small Bodies.” If your head is spinning with planets, you are not alone.

All two body systems have a barycenter, the shared point in space around which they orbit. Pluto and Charon’s happens to be between both bodies due to their proximity and similar mass. (Credit: NASA/New Horizons)

Two NASA missions were launched immediately before and after the IAU announcement took affect. The Dawn mission suddenly was to be launched to an asteroid and a dwarf planet and the New Horizons had rather embarked on a nine year journey to a planet belittled to a dwarf planet – Pluto. Principal Investigator, Dr. Alan Stern was upset. Furthermore, from the discoveries of the Kuiper mission and other discoveries, we now know that there are hundreds of billions of planets in our Milky Way galaxy; possibly trillions. The present definition excludes hundreds of billions of bodies from planethood status.

The presently known largest trans-Neptunian objects (TSO) - are likely to be surpassed by future discoveries. Which of these trans-Neptunian objects (TSO) would you call planets and which "dwarf planets"? (Illustration Credit: Larry McNish, Data: M.Brown)
The presently known largest trans-Neptunian objects (TSO) – are likely to be surpassed by future discoveries. Which of these trans-Neptunian objects (TSO) would you call planets and which “dwarf planets”? (Illustration Credit: Larry McNish, Data: M.Brown)

There are two main camps with de facto leaders. One camp has Dr. Mike Brown of Caltech and the other, Dr. Stern of the Southwest Research Institute (SWRI) as leading figures. A primary focus of Dr. Brown’s research is the study of trans-Neptunian objects while Dr. Sterns’s activities are many but specifically, the New Horizons mission which is 6 months away from its flyby of Pluto. Consider first the IAU Resolution 5A that its members approved:

(1) A “planet” is a celestial body that (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (c) has cleared the neighborhood around its orbit.

(2) A “dwarf planet” is a celestial body that (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape2, (c) has not cleared the neighbourhood around its orbit, and (d) is not a satellite.

(3) All other objects, except satellites, orbiting the Sun shall be referred to collectively as “Small Solar System Bodies”.

This is our starting point – planet, dwarf planet, everything else. Consider “everything else”. This broad category includes meteoroids, asteroids, comets and planetesimals. Perhaps other small body types will arise as we look more closely at the Universe. Within the category, there is now a question of what is an asteroid and what is a comet. NASA’s flybys of comets and now ESA’s Rosetta at 67P/Churyumov–Gerasimenko are making the delineation between the two types difficult. The difference between a meteoroid and an asteroid is simply defined as less than or greater than one meter in size, respectively. So the Chelyabinsk event absolutely involved a small asteroid – about 20 meters in diameter. Planetesimals are small bodies in a solar nebula that are the building blocks of planets but they could lead to the creation of all the other types of small bodies.

Dr. Alan Stern, project scientist for New Horizons and Neil deGrasse Tyson discuss the New Horizons spacecraft in the mission operations center at JHU/APL. The interview was for a NOVA special (12/14/2011), the Pluto Files, about a Kansas farm boy, a missing planet and the 70 years of astronomical discoveries leading to the present day. (Credit: JHU/APL,PBS)
Dr. Alan Stern, project scientist for New Horizons and Neil deGrasse Tyson discuss the New Horizons spacecraft in the mission operations center at JHU/APL. The interview was for a NOVA special (12/14/2011), the Pluto Files, about a Kansas farm boy, a missing planet and the 70 years of astronomical discoveries leading to the present day. (Credit: JHU/APL,PBS)

Putting aside the question of “Small Bodies” and its sub-classes, what should be the definition of planet and dwarf planet? These are the two terms that demoted Pluto and raised Ceres to dwarf planet. It is also interesting to note how Resolution 5A is meant exclusively for our Solar System. In 2006, there were not thousands of exo-planets but just a few dozen extreme cases but nevertheless, the IAU did not choose to extend the definition to “stars” but rather just in reference to our pretty well known star, the Sun.

Recall Tim Allen’s movie, “The Santa Clause”. Clauses can cause a heap of trouble. The IAU has such a clause – Clause C which has caused much of the present controversy around the definition of planets. Clause (c) of Resolution 5A: “has cleared the neighborhood around its orbit.” This is the Pluto killer-clause which demoted it to dwarf planet status and reduced the number of planets in our solar system to eight. In a sense, the IAU chose to cauterize a wound, a weakness in the definitions, that if left unchanged, would have led to who knows how many planets in our Solar System.

The question of what is Pluto is open for public discussion so armed with enough knowledge to be dangerous, the following is my proposed alternative to the IAU’s that are arguably an improvement. The present challenge to Pluto’s status lies in the Kuiper Belt and Oort Cloud. Such belts or clouds are probably not uncommon throughout the galaxy. Plutoids are the 500 lb gorilla in the room.

Two spacecraft, Dawn and New Horizon will reach their final objectives in 2015 - Dwarf Planets - Ceres and Pluto. (Credit: NASA, Illustration - T.Reyes)
Two spacecraft, Dawn and New Horizon will reach their final objectives in 2015 – Dwarf Planets – Ceres and Pluto. (Credit: NASA, Illustration – T.Reyes)

This year, as touted by the likes of Planetary Society, Universe Today and elsewhere, is the year of the dwarf planet. How remarkable and surprising will the study of Ceres, Pluto and Charon by NASA spacecraft be? There is a strong possibility that after the celestial dust clears and data analysis is published, the IAU will take on the challenge again to better define what is a planet and everything else. It is impossible to imagine that the definitions can remain unchanged for long. Even now, there is sufficient information to independently assess the definitions and weigh in on the approaching debate. Anyone or any group – from grade schools to astronomical societies – can take on the challenge.

To encourage a debate and educate the public on the incredible universe that space probes and advanced telescopes are revealing, what follows is one proposed solution to what is a planet and everything else.

planet: is a celestial body that a) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium – nearly round shape, b) has a differentiated interior as a result of its formation c) has insufficient mass to fuse hydrogen in its core, d) does not match the definition of a moon.

minor planet: is a planet with a mass less than one Pluto mass and does not match the definition of a moon.

inter-Stellar (minor) planet: is a (minor) planet that is not gravitationally bound to a stellar object.

binary (minor) planet: is a celestial body that is orbiting another (minor) planet for which the system’s barycenter resides above the surface of both bodies.

These definitions solve some hairy dilemmas. For one, planets orbit around the majority of most stars in the Universe, not just the Sun as Resolution 5A was only intended. Planets can also exist gravitationally not bound to a star –  the result of it own molecular cloud collapse without a star or expulsion from a stellar system. One could specify gravitational expulsion however, it is possible that explosive events occur that cause the disintegration of a star and its binding gravity or creates such an impulse that a planet is thrusted out of a stellar system. Having an atmosphere certainly doesn’t work. Astronomers are already anticipating Mars or Earth-sized objects deep in the Oort cloud that could have no atmosphere – frozen out and also despite their size, not be able to “clear their neighborhood.”

An animation (above) of Kepler mission planet candidates compiled by Jeff Thorpe. Kepler and other exoplanet projects are revealing that the properties of planets – orbits, size, temperature, makeup – are all extreme. Does Pluto represent one of those extremes – the smallest of planets? (Credit: NASA/Kepler, Jeff Thorp)

 

The need to create a lower-end limit to what is a planet reached a near fever pitch with the discovery of a Trans-Nepturnian Object (TNO) in 2005 that is bigger than Pluto – Eris.  Dr. Michael Brown of Caltech and his team led in the discovery of bright large KBOs. There was not just Eris but many of nearly the same size as Pluto. So without clause (c), one would be left with a definition for planet that could allow the count of planets in our Solar System to rise into the hundreds maybe even thousands. This would become a rather unmanageable problem; the number of planets rising year after year and never settled and with no means to make reasonable comparisons between planetary systems throughout our galaxy and even the Universe.

The book that tells the story of discovery - trans-Neptunian objects (TNO) that led to the downfall of Pluto from full planethood to that of a dwarf. The 2006 IAU decision was a pre-emptive strike to stave off a proliferation of planets in our system. It worked but "killed" Pluto. Did it have it coming? Dr. Brown also agrees that the present definition of planet is flawed and incomplete. (Photo Credits: Caltech/M.Brown)
The book that tells the story of discovery – trans-Neptunian objects (TNO) that led to the downfall of Pluto from full planethood to that of a dwarf. The 2006 IAU decision was a pre-emptive strike to stave off a proliferation of planets in our system. It worked but “killed” Pluto. Did it have it coming? Dr. Brown also agrees that the present definition of planet is flawed and incomplete. (Photo Credits: Caltech/M.Brown)

Two more celestial body types follow that are proposed to round out the set.

moon: is a celestial body that a) orbits a (minor) planet and b) for which the barycenter of its orbit is below the surface of its parent (minor) planet.

This creates the possibility of a planet-moon system such that its barycenter is above the surface of the larger body. Pluto and Charon are the most prominent case in our Solar System. In such cases, if one body meets the criteria of a (minor)planet, then the other body can also be assessed to determine if it is also a (minor) planet and the pair as binary (minor) planets. If the primary body was a minor planet, it is possible that the barycenter could be above its surface but the secondary body does not meet all the criteria of a minor planet, specifically “differentiated interior”.

The definition of moon is compounded by the existence of, for example, asteroids with moons. For such objects, the smaller object is defined as a satellite.

Satellite: is a celestial body that a) orbits another celestial body, b) whose parent body is not a (minor) planet.

Another permissible term is moonlet which could be used to describe both very small moons such as those found in the Jovian and Saturn systems or a small body orbiting an asteroid or comet. Moonlet could replace satellite.

The discriminator between planet and moon is not mass but simply whether the celestial body orbits a (minor) planet and the barycenter resides inside the larger body. The definition of moon excludes the possibility of a planet orbiting another planet except in the special case of binary (minor) planet.

Defining a lower size limit to “Planet” is necessary to compare stellar systems and classify. A limit based on the body’s average surface pressure and temperature or the surface gravity could define a limit. While they could, they are not practical because of the extremes and diverse combinations of conditions. Strange objects would fall through the cracks.

Removing clause (c) – “has cleared the neighborhood around its orbit” – will avoid a future conflict such as a very low mass star with a plutoid-sized object or smaller, in a close orbit that has cleared its neighborhood.

Additionally, choosing to declare that Pluto becomes the “standard weight” that differentiates minor planet from planet sets a precedent. In an era in which computers measure and tally the state of our existence, setting this limit to include Pluto and return it as the ninth planet of our Solar System, is, in a small but significant way, a re-declaration of our humanity. Soon we will be challenged by artificial intelligence greater than ours; we are already have. Where will we stand our ground?

Forget about Pluto for a moment. Should Eris be our tenth Planet? Like Pluto it has a prominent moon- Dysnomia. Human perception and conceptions of the Universe have shaped our view of the Solar System. The Ptolemaic system (Earth centered), Kepler's Harmonic Spheres, even the fact that ten digits reside on our hands impact our impression of the Solar System (Photo Credits:NASA/ESA and M. Brown / Caltech)
Forget about Pluto for a moment. Should Eris be our tenth planet? Like Pluto it has a prominent moon- Dysnomia. Human perception and conceptions of the Universe have shaped our view of the Solar System. The Ptolemaic system (Earth centered), Kepler’s Harmonic Spheres, even the fact that ten digits reside on our hands impact our impression of the Solar System (Photo Credits:NASA/ESA and M. Brown / Caltech)

The consequences of this proposed set of definitions, makes Ceres a minor planet and no longer an asteroid. Many trans-Neptunian objects discovered in this century become minor planets. Of the known TNOs only Pluto and Eris meets the criteria of planet.The dwarf planet Eris would become the tenth planet. Makemake, Sedna, Quaoar, Orcus, Haumea would be minor planets. By keeping Pluto a planet and defining it as the standard bearer, only one new planet must be declared. Surely, more will be found, very distant, in odd elliptical and tilted orbits. The count of planets in our solar system could rise by 10, 20 maybe 50 and perhaps this would make the definition untenable but maybe not. So be it. New Horizons will fly by a dwarf planet in July but this should mark the beginning of the end of the present set of definitions.

Three perspectives of a ten planet Solar System. No longer Earth centered, or with harmonic spheres but now with planets outside the ecliptic plane and growing. How many planets would be too many? (Credits: Wikimedia, T.Reyes)
Three perspectives of a ten planet Solar System. No longer Earth centered, or with harmonic spheres but now with planets outside the ecliptic plane and growing. How many planets would be too many? (Credits: Wikimedia, T.Reyes)

This set of definitions defines a set of celestial bodies that consistently covers the spectrum of known bodies. There is the potential of exotic celestial objects that are spawned from cataclysmic events or from the unique conditions during the early epochs of the Universe or from remnants of old or dying stellar objects. Their discovery will likely trigger new or revised definitions but these definitions are a good working set for the time being. Ultimately, it is the decision of the IAU but the sharing of knowledge and the democratic processes that we cherish permits anyone to question and evaluate such definitions or proclamations.To all that share an interest in Pluto as or as not a planet raise your hand and be heard.

A video from 2014 by Kurz Gesagt describing the Pluto-Charon system. Is this a binary planet system or one of the “dwarf” variety?

Further Reading

Learn All About Pluto, The Most Famous Dwarf Planet, E. Howell, Universe Today, 1/17/2015

A synopsis of Pluto facts and figures at Universe Today, compendium of pages on Pluto

What is the Kuiper Belt?, video, Universe Today, 12/30/2013, Fraser Cain asks Mike Brown to explain the Kuiper Belt

Is The Moon A Planet?, E. Howell, Universe Today, 1/27/2015

It Looks Like These Are All the Bright Kuiper Belt Objects We’ll Ever FindUniverse Today, 1/12/2015

2015, NASA’s Year of the Dwarf Planet, Universe Today, 12/14/2014

A Serendipitous All Sky Survey For Bright Objects In The Outer Solar SystemCornell University Library, 1/5/2015

Ten Years of Eris, at Mike Brown’s Planets, 1/5/2015

My condolences to the friends and family of Tammy Plotner, the first regular contributing writer to Universe Today. Can’t we all relate to what drew Tammy to write about the Universe? She wrote outstanding articles for U.T.

me_and_the_dob

New Horizons Now Close Enough to See Pluto’s Smaller Moons

Animation of images acquired by New Horizons on Jan. 27–Feb. 8, 2015. Hydra is in the yellow square, Nix is in the orange. (Credit: NASA/Johns Hopkins APL/Southwest Research Institute.)

Now on the final leg of its journey to distant Pluto the New Horizons spacecraft has been able to spot not only the dwarf planet and its largest moon Charon, but also two of its much smaller moons, Hydra and Nix – the latter for the very first time!

The animation above comprises seven frames made of images acquired by New Horizons from Jan. 27 to Feb. 8, 2015 while the spacecraft was closing in on 115 million miles (186 million km) from Pluto. Hydra is noted by a yellow box and Nix is in the orange. (See a version of the animation with some of the background stars and noise cleared out here.)

What’s more, these images have been released on the 85th anniversary of the first spotting of Pluto by Clyde Tombaugh at the Lowell Observatory in Flagstaff, AZ.

“Professor Tombaugh’s discovery of Pluto was far ahead its time, heralding the discovery of the Kuiper Belt and a new class of planet. The New Horizons team salutes his historic accomplishment.”
– Alan Stern, New Horizons PI, Southwest Research Institute

Launched Jan. 19, 2006, New Horizons will make its closest pass of Pluto and Charon on July 14 of this year. It is currently 32.39 AU from Earth – over 4.84 billion kilometers away.

“It’s thrilling to watch the details of the Pluto system emerge as we close the distance to the spacecraft’s July 14 encounter,” said New Horizons science team member John Spencer from the Southwest Research Institute (SwRI). “This first good view of Nix and Hydra marks another major milestone, and a perfect way to celebrate the anniversary of Pluto’s discovery.”

Along with the distance between Earth and Pluto, New Horizons is also bridging the gap of history: a portion of Mr. Tombaugh’s ashes are being carried aboard the spacecraft, as well as several historic mementos.

Annotated and unannotated versions of the LORRI images (top and bottom); the right side has had Pluto's glare and additional background stars removed. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)
Annotated and unannotated versions of the LORRI images from Feb. 8 (top and bottom); the right side has had Pluto’s glare and additional background stars removed. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)

Each frame in the animation is a combination of five 10-second images taken with New Horizons’ Long-Range Reconnaissance Imager (LORRI) using a special mode that increases sensitivity at the expense of resolution. Celestial north is inclined 28 degrees clockwise from the “up” direction in these images.

The dark streaks are a result of overexposure on the digital camera’s sensitive detector.

Pluto and its moons, most of which were discovered while New Horizons was in development and en route. Charon was found in 1978, Nix and Hydra in 2005, Kerberos in 2011 and Styz in 2012. The New Horizons mission launched in 2007. Picture taken by the Hubble Space Telescope. Credit: NASA
Pluto and its moons, most of which were discovered while New Horizons was in development and en route. Charon was found in 1978, Nix and Hydra in 2005, Kerberos in 2011, and Styz in 2012.  Credit: NASA/HST

Pluto has a total of five known moons: Charon, Hydra, Nix, Styx, and Kerberos. Pluto and Charon are within the glare of the image exposures and can’t be resolved separately, and Styx and Kerberos are too dim to be detected yet. But Hydra and Nix, each around 25–95 miles (40–150 km) in diameter, could be captured on camera.

More precise measurements of these moons’ sizes – and whether or not there may be even more satellites in the Pluto system – will be determined as New Horizons approaches its July flyby date.

Learn more about the New Horizons mission here.

Source: NASA

Dawn Captures Best Images Ever of “Hipster Planet” Ceres

Animation of Ceres made from images acquired by Dawn on Jan. 25, 2015. (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

This is the second animation from Dawn this year showing Ceres rotating, and at 43 pixels across the images are officially the best ever obtained!

NASA’s Dawn spacecraft is now on final approach to the 950 km (590 mile) dwarf planet Ceres, the largest world in the main asteroid belt and the biggest object in the inner Solar System that has yet to be explored closely. And, based on what one Dawn mission scientist has said, Ceres could very well be called the Solar System’s “hipster planet.”

“Ceres is a ‘planet’ that you’ve probably never heard of,” said Robert Mase, Dawn project manager at NASA’s Jet Propulsion Laboratory in Pasadena, California. “We’re excited to learn all about it with Dawn and share our discoveries with the world.”

Originally classified as a planet, Ceres was later categorized as an asteroid and then reclassified as a dwarf planet in 2006 (controversially along with far-flung Pluto.) Ceres was first observed in 1801 by astronomer Giuseppe Piazzi who named the object after the Roman goddess of agriculture, grain crops, fertility and motherly relationships. (Its orbit would later be calculated by German mathematician Carl Gauss.)

“You may not realize that the word ‘cereal’ comes from the name Ceres,” said Marc Rayman, mission director and chief engineer of the Dawn mission at JPL. “Perhaps you already connected with the dwarf planet at breakfast today.”

Ceres: part of this nutritionally-balanced Solar System!

Comparison of HST and Dawn FC images of Ceres taken nearly 11 years apart. Credit: NASA.
Comparison of HST and Dawn FC images of Ceres taken nearly 11 years apart. Credit: NASA.

The animation above was made from images taken by Dawn framing camera on January 25, 2015 from a distance of about 237,000 km (147,000 miles). These are now the highest-resolution views to date of the dwarf planet, 30% more detailed than those obtained by Hubble in January 2004.

And there’s that northern white spot again too… seen in observations from earlier this month and in the 2003-04 HST images, scientists still aren’t quite sure what it is. A crater wall? An exposed ice deposit? Something else entirely? We will soon find out.

“We are already seeing areas and details on Ceres popping out that had not been seen before. For instance, there are several dark features in the southern hemisphere that might be craters within a region that is darker overall,” said Carol Raymond, Dawn deputy principal investigator at JPL.

Full-frame image from Dawn of Ceres on approach, acquired Jan. 25, 2015. (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)
Full-frame image from Dawn of Ceres on approach, acquired Jan. 25, 2015. (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

From now on, every observation of Ceres by Dawn will be the best we’ve ever seen! This new chapter of the spacecraft’s adventure has only just begun.

Dawn is scheduled to arrive at Ceres on March 6. Follow the progress of the Dawn mission here.

Source: NASA/JPL

*(Does this mean that Ceres has now gone “mainstream?” Hmm… oh well, it’s still cool.)