A Galaxy Seen When the Universe was Only 332 Million Years Old

The second- and fourth-most distant galaxies ever seen (UNCOVER z-13 and UNCOVER z-12) have been confirmed using the James Webb Space Telescope’s Near-Infrared Camera (NIRCam). The galaxies are located in Pandora’s Cluster (Abell 2744), show here as near-infrared wavelengths of light that have been translated to visible-light colors. The scale of the main cluster image is labelled in arcseconds, which is a measure of angular distance in the sky. The circles on the black-and-white images, showing the galaxies in the NIRCam-F277W filter band onboard JWST, indicate an aperture size of 0.32 arcsec.
JWST Deep Field showing the location of the second and fourth most distant galaxies in the Universe (Credit: NASA with Composition: Dani Zemba/Penn State)

It’s wonderful to watch the fascination on people’s faces when you explain to them that studying distant objects in the Universe means looking back in time! Reach out to the furthest corners of the Cosmos and you can see objects so far away that the light left them long before our Solar System even existed. With the commissioning of the JWST the race was on to push the boundaries even further and hunt down the most distant galaxy in the Universe and maybe even the first galaxies to ever have formed.

Continue reading “A Galaxy Seen When the Universe was Only 332 Million Years Old”

More JWST Observations are Finding Fewer Early Massive Galaxies

The first JWST Deep Field Image, showing large distant galaxies. Credit: NASA, ESA, CSA, STScI

There’s a common pattern in science. We develop some new process or tool that allows us to gather all kinds of data we’ve never had before, the data threatens to overturn all we’ve assumed about some long-established theory, and then the dust settles. Unfortunately, the early stage of this process generates a lot of sensationalism in the press. Early results from the JWST are a good example of this.

Continue reading “More JWST Observations are Finding Fewer Early Massive Galaxies”

JWST Sees So Many Galaxies, and It's Just Getting Started

The first of COSMOS-Web NIRCam observations obtained on Jan. 5-6, 2023 cover six visits or pointings of the James Webb Space Telescope. This shows the total area observed as well as specific galaxies selected from the first data. Credit: COSMOS-Web/Kartaltepe, Casey, Franco, Larson, et al./RIT/UT Austin/IAP/CANDIDE

Hubble Space Telescope’s Deep Field revealed thousands of galaxies in a seemingly empty spot in the sky. Now, the James Webb Space Telescope has taken deep field observations to the next level with its COSMOS-Web survey, revealing 25,000 galaxies in just six pictures, the first from this new survey.  

“It’s incredibly exciting to get the first data from the telescope for COSMOS-Web,” said principal investigator Jeyhan Kartaltepe, from the Rochester Institute of Technology’s School of Physics and Astronomy, in press release. “Everything worked beautifully and the data are even better than we expected. We’ve been working really hard to produce science quality images to use for our analysis and this is just a drop in the bucket of what’s to come.”

Continue reading “JWST Sees So Many Galaxies, and It's Just Getting Started”

It Would Take Hubble 85 Years to Match What Nancy Grace Roman Will See in 63 Days

This image, containing millions of simulated galaxies strewn across space and time, shows the areas Hubble (white) and Roman (yellow) can capture in a single snapshot. Credits: NASA/GSFC/A. Yung

Less than a year and a half into its primary mission, the James Webb Space Telescope (JWST) has already revolutionized astronomy as we know it. Using its advanced optics, infrared imaging, and spectrometers, the JWST has provided us with the most detailed and breathtaking images of the cosmos to date. But in the coming years, this telescope and its peers will be joined by another next-generation instrument: the Nancy Grace Roman Space Telescope (RST). Appropriately named after “the Mother of Hubble,” Roman will pick up where Hubble left off by peering back to the beginning of time.

Like Hubble, the RST will have a 2.4-meter (7.9 ft) primary mirror and advanced instruments to capture images in different wavelengths. However, the RST will also have a gigantic 300-megapixel camera – the Wide Field Instrument (WFI) – that will enable a field of view two-hundred times greater than Hubble’s. In a recent study, an international team of NASA-led researchers described a simulation they created that previewed what the RST could see. The resulting data set will enable new experiments and opportunities for the RST once it takes to space in 2027.

Continue reading “It Would Take Hubble 85 Years to Match What Nancy Grace Roman Will See in 63 Days”

Webb Completes its First “Deep Field” With Nine Days of Observing Time. What did it Find?

This image taken by the James Webb Space Telescope highlights the region of study by the JWST Advanced Deep Extragalactic Survey (JADES). This area is in and around the Hubble Space Telescope’s Ultra Deep Field. Image Credit: NASA, ESA, CSA, and M. Zamani (ESA/Webb).

About 13 billion years ago, the stars in the Universe’s earliest galaxies sent photons out into space. Some of those photons ended their epic journey on the James Webb Space Telescope’s gold-plated, beryllium mirrors in the last few months. The JWST gathered these primordial photons over several days to create its first “Deep Field” image.

Continue reading “Webb Completes its First “Deep Field” With Nine Days of Observing Time. What did it Find?”

Webb and Hubble Work Together to Reveal This Spectacular Galaxy Pair — and Several Bonuses!

By combining data from the James Webb Space Telescope and the Hubble Space Telescope, this image of galaxy pair VV 191 includes near-infrared light from Webb, and ultraviolet and visible light from Hubble. Credit: NASA, ESA, CSA, Rogier Windhorst (ASU), William Keel (University of Alabama), Stuart Wyithe (University of Melbourne), JWST PEARLS Team, Alyssa Pagan (STScI).

What’s better than a pair of galaxies observed by a pair of iconic space telescopes? The answer to that, according to researchers using the Hubble and James Webb Space Telescopes, is finding even more galaxies and other remarkable details no one expected in the duo’s observations.

“Galaxies in the foreground, background, deep background, and into the depths,” said astronomer William Keel from Galaxy Zoo, on Twitter.

Continue reading “Webb and Hubble Work Together to Reveal This Spectacular Galaxy Pair — and Several Bonuses!”

Nancy Grace Roman Telescope Will do its Own, Wide-Angle Version of the Hubble Deep Field

This synthetic image visualizes what a Roman ultra-deep field could look like. The 18 squares at the top of this image outline the area Roman can see in a single observation, known as its footprint. The inset at the lower-right zooms into one of the squares of Roman's footprint, and the inset at the lower-left zooms in even further. The image, which contains more than 10 million galaxies, was constructed from a simulation that produced a realistic distribution of the galaxies in the universe. Image Credit: Nicole Drakos, Bruno Villasenor, Brant Robertson, Ryan Hausen, Mark Dickinson, Henry Ferguson, Steven Furlanetto, Jenny Greene, Piero Madau, Alice Shapley, Daniel Stark, Risa Wechsler

Remember the Hubble Space Telescope’s Deep Field and Ultra-Deep Field images?

Those images showed everyone that what appears to be a tiny, empty part of the sky contains thousands of galaxies, some dating back to the Universe’s early days. Each of those galaxies can have hundreds of billions of stars. These early galaxies formed only a few hundred million years after the Big Bang. The images inspired awe in the human minds that took the time to understand them. And they’re part of history now.

The upcoming Nancy Grace Roman Space Telescope (NGRST) will capture its own version of those historical images but in wide-angle. To whet our appetites for the NGRST’s image, a group of astrophysicists have created a simulation to show us what it’ll look like.

Continue reading “Nancy Grace Roman Telescope Will do its Own, Wide-Angle Version of the Hubble Deep Field”

The Roman Space Telescope’s Version of the Hubble Deep Field Will Cover a 100x Larger Area of the Sky

This composite image illustrates the possibility of a Roman Space Telescope “ultra deep field” observation. In a deep field, astronomers collect light from a patch of sky for an extended period of time to reveal the faintest and most distant objects. This view centers on the Hubble Ultra Deep Field (outlined in blue), which represents the deepest portrait of the universe ever achieved by humankind, at visible, ultraviolet and near-infrared wavelengths. Two insets reveal stunning details of the galaxies within the field. Image Credit: NASA, ESA, and A. Koekemoer (STScI) Acknowledgement: Digitized Sky Survey

Remember the Hubble Deep Field? And its successor the Hubble Ultra Deep Field? We sure do here at Universe Today. How could we forget them?

Well, just as the Hubble Space Telescope has successors, so do two of its most famous images. And those successors will come from one of Hubble’s successors, NASA’s Roman Space Telescope.

Continue reading “The Roman Space Telescope’s Version of the Hubble Deep Field Will Cover a 100x Larger Area of the Sky”

An Amazing Deep-Field View of Centaurus A

The Centaurus A Extreme Deep Field. (Image Courtesy of Astrophotography byRolf Oslen. Used with Permision).

Sometimes, you just have to say “Wow!”

The view you’re looking at above is of Centaurus A (NGC 5128), a galaxy about 10-16 million light years distant in the southern hemisphere sky. It’s a favorite of astrophotographers and professional observatories alike.

But what makes this image so special is that it was taken by an amateur astrophotographer.

To construct this amazing image, New Zealand-based astrophotographer Rolf Wahl Olsen exposed the field of view for 120 hours over 43 nights spanning February to May of this year.

Rolf recently shared his motivation to construct this image;

“Over the past few months I have been on a mission to achieve a long time dream of mine: taking a deep sky image with more than 100 hours of exposure.”

Rolf also noted that the stars in the frame are visible down to magnitude +25.45, which “appears to go deeper than the recent ESO release” and believes that it may well be “the deepest view ever obtained of Centaurus A,” As well as “the deepest image ever taken with amateur equipment.”

Not only is the beauty and splendor of the galaxy revealed in this stunning mosaic, but you can see the variations in the populations of stars in the massive regions undergoing an outburst of star formation.

One can also see the numerous globular clusters flocking around the galaxy, as well as the optical counterparts to the radio lobes and the faint trace of the relativistic jets. The extended halo of the outer shell of stars is also visible, along with numerous foreground stars visible in the star rich region of Centaurus.

Finally, we see the dusty lane bisecting the core of this massive galaxy as seen from our Earthly vantage point.

To our knowledge, many of these features have never been captured visually by backyard observers before, much less imaged. Congrats to Rolf Wahl Olsen on a spectacular capture and sharing his view of the universe with us!

Read more on the Centaurus A deep field on Google+.

-Check out the comparison images of the Centaurus A deep field showing the relativistic jet (!) background galaxies and clusters.

-Explore more of Rolf’s outstanding work at his website.