Reminiscent of Apollo, Australian Facilities Will Receive First Signals of Curiosity Rover Landing

The movie “The Dish” tells the wonderful story of how Australian radio communication dishes saved the day as Apollo 11 landed on the Moon, allowing the world to watch in wonder. While the movie isn’t entirely accurate, Australia does have a marvelous history of providing tracking and communication with spacecraft on historic missions. The tradition continues with the upcoming landing of the Mars Science Laboratory Curiosity rover when it sets down on Mars on August 5/6 after a nail-biting entry, descent and landing.

The Canberra Deep Space Communication Complex (CDSCC) will be the main tracking station for the landing activities. Its 70-m and two 34-m antennas will receive signals from the spacecraft both directly and then relayed through another NASA spacecraft, Mars Odyssey, in orbit around the Red Planet.

The 64-m Parkes telescope – the one featured in “The Dish” — will record signals directly from the spacecraft as a backup in case there is a problem with the relaying. But as the spacecraft descends, it will drop below the Martian horizon (and out of direct sight of Earth-based antennas) about two minutes before touchdown, and Parkes will cease receiving its signals.

A third, smaller, antenna managed by the European Space Agency (ESA) at New Norcia near Perth in WA will provide extra redundancy. It will receive signals from the spacecraft recorded and re-sent through ESA’s Mars Express satellite, which is in orbit around Mars.

Signals from the Canberra station will be sent directly to mission scientists at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California. Data from Parkes and New Norcia will be sent later for analysis.

While the landing is not controlled from Earth, as the lag-time in radio signals (13.8 minutes one way) makes any input from Earth impossible, tracking the spacecraft as it approaches Mars is very important.

Astrophoto: Tracking Curiosity by Glen James Nagle
Tracking Curiosity. Image Credit: Glen James Nagle

“We are looking forward to receiving and sending that touchdown signal from MSL, so we can help end those ‘7 minutes of terror’ for the amazing scientists and engineers waiting at JPL,” said Glen Nagle, Education and Public Outreach Officer at Canberra Deep Space Communication Complex, via email. Nagle took this panoramic image, above, early in December 2011 in Canberra while the dishes were getting their first data from MSL after its launch, so the facility has been an integral part of guiding the spacecraft during its entire journey to Mars.

The last opportunity to send the spacecraft any commands will be two hours before it enters the atmosphere. “After that, it’s on its own,” said Nagle.

NASA engineers also want to know exactly where the spacecraft enters the atmosphere so they can locate the rover when it lands, and of course, the hopeful rover fans back on Earth will want to find out as soon as possible to know if the landing succeeded or not.

The spacecraft will slam into the atmosphere at 20,000 km per hour. Over the next seven minutes the craft and then its payload must be slowed to essentially zero.

The landing has several stages: cruise, deployment of the entry capsule and then the parachute, separation of the heat shield, and finally the operation of the “skycrane” that will lower the 900-kg rover, Curiosity, onto the Martian surface.

As each stage is successfully completed the spacecraft will send a unique tone indicating that it has occurred.

During the landing, the mission scientists can only watch and wait. They call this time the “seven minutes of terror”.

The exact landing time for the spacecraft is determined by several factors, including descent time on the parachute, Martian winds, and any variation how the spacecraft flies under power before the landing. Confirmation of a touchdown signal could be received on Earth at 05:31 UTC on Aug. 6 (10:31 p.m. PDT on Aug. 5 and 1:31 a.m. EDT Aug. 6, 3.31 pm AEST Aug. 6) plus or minus a minute.

Winds could mean that descent time on the parachute is longer, but at this time of year on Mars the weather is very stable and is not expected to cause any problems.

If the final set of tones is not heard, Mars Odyssey will listen for them again when it orbits over the landing site 1.5 hours later.

“The expertise of Australian personnel in space communications and CSIRO’s partnership with NASA will be showcased during this critical event in the Mars Science Laboratory’s mission,” says Chief of CSIRO Astronomy and Space Science, Dr. Phil Diamond. “All of our technology and our people are ready.”

And so are all the rover fans back on Earth!

Read more about what it has taken to navigate MSL all the way to Mars at our previous article, “How Will MSL Navigate to Mars? Very Precisely.”

And here’s another previous article about how we *really* watched the footage from the Apollo 11 Moon landing, thanks to the Australian radio dishes.

Lead image caption: The 70-m antenna at the Canberra Deep Space Communication Complex. (Credit: CDSCC)

source: CSIRO

4 Days to Mars: Curiosity activates Entry, Descent and Landing Timeline – EDL Infographic

It’s 4 Days to Mars – and NASA’s Curiosity Mars Science Lab (MSL) spacecraft is now flying under the control of the crafts autonomous entry, descent and landing timeline and picking up speed as she plunges ever faster to the Red Planet and her Rendezvous with Destiny.

“Timeline activated. Bleep-bop. I’m running entry, descent & landing flight software all on my own. Countdown to Mars: 5 days,” Curiosity tweeted Tuesday night.

See below an EDL explanatory infographic timeline outlining the critical sequence of events which must unfold perfectly for Curiosity to safely survive the “7 Minutes of Terror” set to begin on the evening of August 5/6.

Aug. 1 TV Viewing Alert – 11:30 PM EDT – see NASA Science Chief John Grunsfeld tonight (Wed, Aug. 1) on the Colbert Report


Image Caption: Curiosity EDL infographic – – click to enlarge

And the excitement is building rapidly for NASA’s biggest, boldest mission ever to the Red Planet as the flight team continues to monitor Curiosity’s onboard systems and flight trajectory. Yesterday, the flight team successfully carried out a memory test on the software for the mechanical assembly that controls MSL’s descent motor, configured the spacecraft for its transition to entry, descent and landing approach mode, and they enabled the spacecraft’s hardware pyrotechnic devices.

Curiosity remains healthy and on course. If fine tuning for the targeted landing ellipse is needed, the next chance to fire on board thrusters to adjust the trajectory is Friday, Aug. 3.

The 4th of 6 possible Trajectory Correction Maneuver (TCM) firings was just accomplished on Sunday, July 29 – details here.

The car sized Curiosity rover is scheduled to touchdown on Mars at about 1:31 a.m. EDT (531 GMT) early on Aug. 6 (10:31 p.m. PDT on Aug. 5) inside Gale Crater and next to a 3 mile (5 km) mountain taller that the tallest in the US.

Gale Crater is 154 km (96 mi) in diameter and dominated by a layered mountain rising some 5 km (3 mi) above the crater floor which exhibits exposures of minerals that may have preserved evidence of past or present Martian life.

Curiosity is packed with 10 state-of-the-art science experiments that will search for organic molecules and clay minerals, potential markers for signs of Martian microbial life and habitable zones.

Watch NASA TV online for live coverage of the Curiosity landing on Aug 5/6:
mars.jpl.nasa.gov or www.nasa.gov

Ken Kremer

Quick and Curious Facts About the Mars Science Laboratory Mission

Since launching in November 2011, NASA’s Mars Science Laboratory (MSL) has been on a 560 million-kilometer (350 million-mile) journey to the Red Planet, with landing scheduled for late Sunday August 5 or early Monday August 6, depending on where you live on Earth. The Curiosity rover has been tucked away cozily into a spacecraft for safekeeping during flight, but when it reaches Mars’ surface it will encounter tough and frigid conditions, all in the name of science. This is NASA’s fourth rover mission to Mars, and its goal is to determine the planet’s past — and present — potential for habitability. Want to know more? Here are some facts about Curiosity and the mission:

When will it land on Mars?
For us Earthlings, the Curiosity rover will land on Mars at 05:31 UTC on Aug. 6 (10:31 p.m. PDT on Aug. 5, 1:31 a.m. EDT Aug. 6) plus or minus a minute. This is Earth-received time, which includes one-way light time (13.8 minutes) for radio signal to reach Earth from Mars. The landing will be at about 3 p.m. local time at the Mars landing site.

How long does it take for the rover to get to Mars’ surface after it reaches the outer atmosphere?
About 7 minutes. Dubbed the “seven minutes of terror” by NASA, MSL will employ a parachute, landing rockets, a hovering sky crane, and other complicated mechanisms to help lower the rover to the surface of Mars.

Watch this video to learn more about the seven minutes of terror:

How big is the parachute?
The diameter of the parachute is 15 meters (51 feet). It is a supersonic parachute, the largest ever deployed on another world. The parachute can withstand 65,000 lbs of pressure, which is critical, as in the Martian atmosphere, once the parachute deploys, it will still be forced to cope with 9Gs of pressure. It is orange and white (the school colors of Caltech, home of the Jet Propulsion Laboratory)

How big are the spacecraft and the rover?
Cruise vehicle dimensions (cruise stage and aeroshell with rover and descent stage inside): Diameter: 4.5 meters (14 feet, 9 inches); height: 3 meters (9 feet, 8 inches)

Curiosity Rover dimensions: Length: 3 meters (9 feet, 10 inches) — (not counting arm); width: 2.8 meters (9 feet, 1 inch).

Height at top of mast: 2.1 meters (7 feet)

Arm length: 2.1 meters (7 feet). The arm is capable of collecting powdered samples from rocks, scooping soil, preparing and delivering samples for analytic instruments, and brushing surfaces on the planet.

Wheel diameter: 0.5 meter (20 inches)

Mass: 3,893 kilograms (8,463 pounds) total at launch, consisting of 899-kilogram (1,982-pound) rover; 2,401-kilogram (5,293-pound) entry, descent and landing system (aeroshell plus fueled descent stage); and 539-kilogram (1,188-pound) fueled cruise stage.

How does the rover get its power for roving?
Multi-mission radioisotope thermoelectric generator and lithium-ion batteries

What are the science instruments on board Curiosity?
10 instruments weighing a total of 75 kilograms (165 pounds), to do many of the tasks scientists do in a lab. Instead of sending samples back to Earth for humans to analyze, the Curiosity rover will thus be able to do laboratory tests right from the Martian surface. The instruments are:
Alpha Particle X-ray Spectrometer, Chemistry and Camera, Chemistry and Mineralogy, Dynamic Albedo of Neutrons, Mars Descent Imager, Mars Hand Lens Imager, Mast Camera, Radiation Assessment Detector, Rover Environmental Monitoring Station, and Sample Analysis at Mars

How many cameras are on Curiosity?
17 (some of which are part of the 10 science instruments)

When did Curiosity launch?
Nov. 26, 2011, 10:02 a.m. EST, from Launch Complex 41, Cape Canaveral Air Force Station, Fla.
Launch Vehicle: Atlas V 541 provided by United Launch Alliance

How far is Mars away from Earth?
Earth–Mars distance at launch: 204 million kilometers (127 million miles)
Earth–Mars distance on landing day: 248 million kilometers (154 million miles)
Total distance of travel, from Earth to Mars: About 567 kilometers (352 million miles)

How fast can Curiosity rove?
On average, the rover is expected to travel across the surface of Mars at about 30 meters (98 feet) per hour, based on power levels, slippage, steepness of the terrain, visibility, and other variables.

Where is Curiosity’s landing site?
Landing site: 4.6 degrees south latitude, 137.4 degrees east longitude, near base of Mount Sharp inside Gale Crater, a layered mountain that rises 4.8 kilometers (3 miles). The mountain was named after planetary geologist Bob Sharp.

What will the weather be like at Gale Crater?
Expected near-surface atmospheric temperatures at landing site during primary mission: minus 90 C to zero C (minus 130 F to 32 F ). Basically, cold and windy with wind gusts of up to 144 km/h (90 mph) —as strong as some hurricane winds on Earth. Mars is home to dust storms and quickly moving whirlwinds known as dust devils.

How many possible landing sites did scientists considered before deciding on Gale Crater?
60. Gale Crater was chosen because it is thought to contain elements that are important to the search for the ingredients of life.

How long is the primary mission?
One Martian year. Because a day on Mars is longer than one on Earth—39 minutes and 35.244 seconds longer, to be exact—a Martian year is equal to 98 weeks, or 687 days, on Earth.

How much does this mission cost?
$2.5 billion, including $1.8 billion for spacecraft development and science investigations and addition amounts for launch and operations.

Lead image caption: Curiosity completes Biggest Interplanetary Rocket Firing to Mars. Illustrations show (left) the Mars Science Laboratory spacecraft during its voyage from Earth to Mars and (right) the mission’s rover, Curiosity, working on Mars after landing. Credit: NASA/JPL/Caltech

Second image caption: This computer-generated view based on multiple orbital observations shows Mars’ Gale crater as if seen from an aircraft northwest of the crater. Image Credit: NASA/JPL-Caltech/ASU/UA

sources: NASA, Caltech

Curious About Curiosity’s Chemistry Mission?

The Mars Science Laboratory will be seeking clues to the planetary puzzle about life on Mars, the Curiosity rover is one of the best-outfitted chemistry missions ever. Scientists say Curiosity is the next best thing to launching a team of trained chemists to Mars’ surface.

“The Mars Science Laboratory mission has the goal of understanding whether its landing site on Mars was ever a habitable environment, a place that could have supported microbial life,” says MSL Deputy Project Scientist, Ashwin Vasavada, who provides a look “under the hood” in this informative video from the American Chemical Society.

“Curiosity is really a geochemical experiment, and a whole laboratory of chemical equipment is on the rover,” says Vasavada. “It will drill into rocks, and analyze material from those rocks with sophisticated instruments.”

Curiosity will drive around the landing site at Gale Crater and sample the soil, layer by layer, to piece together the history of Mars, trying to determine if and when the planet went from a wetter, warmer world to its current cold and dry conditions.

The payload includes mast-mounted instruments to survey the surroundings and assess potential sampling targets from a distance, and there are also instruments on Curiosity’s robotic arm for close-up inspections. Laboratory instruments inside the rover will analyze samples from rocks, soils and the atmosphere.

The two instruments on the mast are a high-definition imaging system, and a laser-equipped, spectrum-reading camera called ChemCam that can hit a rock with a special laser beam, and using Laser Induced Breakdown Spectroscopy, can observe the light emitted from the laser’s spark and analyze it with the spectrometer to understand the chemical composition of the soil and rock on Mars.

The tools on the turret at the end of Curiosity’s 2.1-meter-long (7-foot-long) robotic arm include a radiation-emitting instrument that reads X-ray clues to targets’ composition and a magnifying-lens camera. The arm can deliver soil and powdered-rock samples to an instrument that uses X-ray analysis to identify minerals in the sample and to an instrument that uses three laboratory methods for assessing carbon compounds and other chemicals important to life and indicative of past and present processes.

The three methods are an evolved gas experiment, which uses a mass spectrometer to look for potential long chain organic molecules on Mars; CheMin, an X-ray diffraction experiment to determine mineralogy; and an Alpha Particle X-Ray Spectrometer (APXS) on Curiosity’s robotic arm, like its predecessors on the arms of all previous Mars rovers, will identify chemical elements in rocks and soils.

In total Curiosity has 10 different instruments on board the roving laboratory, and test results from these instruments will pave the way for future Mars missions, and may provide insight in the search for life on other planets.

Image caption: Artist depiction of the Curiosity rover on Mars. Credit: NASA

Sources: NASA, ACS

Join Universe Today’s Live Webcast of the Curiosity Rover Landing

The NASA team threw in every bit of data they could to model the Mars Curiosity landing. Credit: NASA

Want to be part of the Mars Science Laboratory landing event and join thousands of others in watching it live? Universe Today is teaming up with Google, the SETI Institute and CosmoQuest to provide unprecedented, live coverage of the historic landing of the Curiosity rover on Mars. Starting at 8 pm PDT on August 5th (03:00 UTC August 6th) a live, 4-hour webcast will highlight the landing of the car-sized robotic roving laboratory. During the webcast, via a Google+ Hangout on Air, scientists, engineers and other experts will provide unique insight into the rover and the landing, and viewers will have the chance to interact and ask questions.

Hosted by Universe Today’s Fraser Cain, along with Dr. Pamela Gay and Dr. Phil Plait, the webcast will feature interviews with special guests, a live video feed from NASA of the landing, and live coverage from the Jet Propulsion Laboratory (JPL) and the Planetary Society’s PlanetFest by reporters Scott Lewis and Amy Shira Teitel, who will be on location to interview members of the MSL team, as well as and other scientists and NASA officials that will be on hand.

The landing itself is scheduled for 10:31 p.m. PDT Aug. 5 (05:31 UTC Aug. 6). Curiosity’s landing will mark the start of a two-year mission to investigate whether one of the most intriguing places on Mars ever has offered an environment favorable for microbial life.

As you know, Universe Today, in collaboration with CosmoQuest hosts weekly virtual star parties and science conversations via Google+ Hangouts on Air, and for the Transit of Venus, hosted a special Hangout event that was watched by nearly 7,000 viewers.

Those interested in watching Universe Today’s MSL landing event can find more information and also sign up to “attend” the Hangout on Air here.

The feed will also be available on Universe Today’s YouTube live feed.

You can also follow the action via Twitter from Universe Today (@universetoday) and CosmoQuest (@CosmoQuestX ) by using the hashtag #marshangout

We also have the event listed on Facebook.

Curiosity’s Grand Entrance with Star Trek’s William Shatner and Wil Wheaton – Video Duet

Video Caption: Star Trek’s Captain Kirk, actor William Shatner, guides viewers through the video titled, “Grand Entrance,” showing NASA’s Curiosity Mars Science Lab mission from atmospheroic entry through descent, and after landing on the Red Planet on August 6 2012.

As NASA engineers and scientists make final preparations for the Red Planet landing of NASA’s most difficult planetary science mission to date – the Curiosity Mars Science Lab – inside Gale Crater on the night of August 5/6, Star Trek actors William Shatner and Wil Wheaton lend their voices to a pair of new mission videos titled “Grand Entrance”

The video duet describes the thrilling story of how Curiosity will touch down on Mars and guides viewers through the nail biting “7 Minutes of Terror” – from entry into the Martian atmosphere at over 13,000 MPH and then how the rover must slow down through descent, set down for a soft and safe landing and ultimately how Curiosity will search for signs of life. Continue reading “Curiosity’s Grand Entrance with Star Trek’s William Shatner and Wil Wheaton – Video Duet”

Curiosity Completes Crucial Course Correction – 1 Week from Mars !

Image Caption: Course correcting thruster firings on July 29 successfully placed Curiosity on target to touchdown beside Mount Sharp inside Gale Crater on Mars on Aug 6 in search of signs of a habitable environment. Credit: NASA

Now just 1 week out from landing beside a 3 mile high (5 km) layered Martian mountain in search of life’s ingredients, aiming thrusters aboard the cruise stage of NASA’s car sized Curiosity Mars Science Lab successfully fired to set the rover precisely on course for a touchdown on Mars at about 1:31 a.m. EDT (531 GMT) early on Aug. 6 (10:31 p.m. PDT on Aug. 5).

Two precise and brief thruster bursts lasting about 7 seconds were successfully carried out just hours ago earlier today at 1 a.m. on July 29, EDT (10 p.m. PDT on July 28). The effect was to change the spacecraft’s velocity by about 1/40 MPH or 1 cm/sec as it smashes into Mars at about 13,200 mph (5,900 meters per second).

This was the fourth and possibly last of 6 interplanetary Trajectory Correction Manuevers (TCM’s) planned by mission engineers to steer Curiosity since departing Earth for the Red Planet.

If necessary, 2 additional TCM’s could be implemented in the final 48 hours next Saturday and Sunday before Curiosity begins plunging into the Martian atmosphere late Sunday night on a do or die mission to land inside the 100 mile wide Gale Crater with a huge mountain in the middle. All 6 TCM maneuvers were preplanned long before the Nov 26, 2011 liftoff from Cape Canaveral, Florida.

Without this course correction firing, MSL would have hit a point at the top of the Martian atmosphere about 13 miles (21 kilometers) east of the target entry point. During the preprogrammed Entry, Descent and Landing (EDL) sequence the vehicle can steer itself in the upper atmosphere to correct for an error amounting to a few miles.

On landing day, MSL can steer enough during its flight through the upper atmosphere to correct for missing the target entry aim point by a few miles and still land on the intended patch of Mars real estate. The mission’s engineers and managers rated the projected 13-mile miss big enough to warrant a correction maneuver.

“The purpose of this maneuver is to move the point at which Curiosity enters the atmosphere by about 13 miles,” said Tomas Martin-Mur of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., chief of the mission’s navigation team. “The first look at telemetry and tracking data afterwards indicates the maneuver succeeded as planned.”


Image Cation: Curiosity Mars Science Laboratory Rover – inside the Cleanroom at KSC, with robotic arm extended prior to encapsulation and Nov. 26, 2011 liftoff. Credit: Ken Kremer/kenkremer.com

As of today (July 30), Curiosity has traveled about 97% of the overall journey to Mars or about 343 million miles (555 million kilometers) of its 352-million-mile (567-million-kilometer) total flight distance.

“I will not be surprised if this was our last trajectory correction maneuver,” Martin Mur said of the TCM-4 firing. “We will be monitoring the trajectory using the antennas of the Deep Space Network to be sure Curiosity is staying on the right path for a successful entry, descent and landing.”

Curiosity will use an unprecedented rocket powered descent stage and a helicopter like sky crane to set down astride the sedimentary layers of Mount Sharp.

She will then conduct a minimum 2 year prime mission with the most sophisticated science instrument package ever dispatched to Mars to determine if a habitable zone ever existed on this region of Mars.

Curiosity will search for the ingredients of life in the form of organic molecules – the carbon based molecules which are the building blocks of life as we know it. The one-ton behemoth is packed to the gills with 10 state of the art science instruments including a 7 foot long robotic arm, scoop, drill and laser rock zapper.

As Curiosity dives down to Mars surface on Aug. 6, 3 spacecraft from NASA and ESA are now positioned in orbit around the Red Planet and are ready to relay and record signals from the “7 Minutes of Terror” – Read the details in my article – here

Watch NASA TV online for live coverage of the Curiosity landing on Aug 5/6:
mars.jpl.nasa.gov or www.nasa.gov

Ken Kremer

T Minus 9 Days – Mars Orbiters Now in Place to Relay Critical Curiosity Landing Signals

Image Caption: NASA’s Mars Odyssey will relay near real time signals of this artist’s concept depicting the moment that NASA’s Curiosity rover touches down onto the Martian surface. NASA’s Mars Reconnaissance Orbiter (MRO) and ESA’s Mars Express (MEX) orbiter will also record signals from Curiosity for later playback, not in real time. Credit: NASA

It’s now just T minus 9 Days to the most difficult and complex Planetary science mission NASA has ever attempted ! The potential payoff is huge – Curiosity will search for signs of Martian life

The key NASA orbiter at Mars required to transmit radio signals of a near real-time confirmation of the August 5/6 Sunday night landing of NASA’s car sized Curiosity Mars Science Lab (MSL) rover is now successfully in place, and just in the nick of time, following a successful thruster firing on July 24.

Odyssey will transmit the key signals from Curiosity as she plunges into the Martian atmosphere at over 13,000 MPH (21,000 KPH) to begin the harrowing “7 Minutes of Terror” known as “Entry, Descent and Landing” or EDL – all of which is preprogrammed !

Engines aboard NASA’s long lived Mars Odyssey spacecraft fired for about 6 seconds to adjust the orbiters location about 6 minutes ahead in its orbit. This will allow Odyssey to provide a prompt confirmation of Curiosity’s landing inside Gale crater at about 1:31 a.m. EDT (531 GMT) early on Aug. 6 (10:31 p.m. PDT on Aug. 5) – as NASA had originally planned.

Without the orbital nudge, Odyssey would have arrived over the landing site about 2 minutes after Curiosity landed and the signals from Curiosity would have been delayed.

A monkey wrench was recently thrown into NASA relay signal plans when Odyssey unexpectedly went into safe mode on July 11 and engineers weren’t certain how long recovery operations would take.

“Information we are receiving indicates the maneuver has completed as planned,” said Mars Odyssey Project Manager Gaylon McSmith of NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “Odyssey has been working at Mars longer than any other spacecraft, so it is appropriate that it has a special role in supporting the newest arrival.”

Odyssey has been in orbit at Mars since 2001 conducting orbital science investigations.

Read my review article on Odyssey’s science discoveries – here

Odyssey serves as the primary communications relay for NASA’s other recent surface explorers – Opportunity, Spirit and Phoenix. Opportunity recently passed 3000 Sols of continuous operations.

Two other Mars orbiters, NASA’s Mars Reconnaissance Orbiter and the European Space Agency’s Mars Express, also will be in position to receive radio transmissions from the Mars Science Laboratory during its descent. However, they will be recording information for later playback, not relaying it immediately, as only Odyssey can.

“We began optimising our orbit several months ago, so that Mars Express will have an orbit that is properly “phased” and provides good visibility of MSL’s planned trajectory,” says Michel Denis, Mars Express Spacecraft Operations Manager.

Mars Express has been orbiting the planet since December 2003.


Image Caption: Mars Express supports Curiosity MSL. Credit: ESA

“NASA supported the arrival of Mars Express at Mars in 2003, and, in the past few years, we have relayed data from the rovers Spirit and Opportunity,” says ESA’s Manfred Warhaut, Head of Mission Operations.

“Mars Express also tracked the descent of NASA’s Phoenix lander in 2008 and we routinely share our deep space networks.

“Technical and scientific cooperation at Mars between ESA and NASA is a long-standing and mutually beneficial activity that helps us both to reduce risk and increase the return of scientific results.”

Watch NASA TV online for live coverage of Curiosity landing: mars.jpl.nasa.gov or www.nasa.gov

Ken Kremer

Problems with Mars Odyssey Could Impact Telemetry for Curiosity Rover’s Landing

Caption: NASA’s Mars Odyssey spacecraft passes above Mars’ south pole in this artist’s illustration. The spacecraft has been orbiting Mars since October 24, 2001. Image credit: NASA/JPL

The “seven minutes of terror” could stretch into a longer time of trepidation for the hopeful Mars rover team and fans waiting back on Earth to find out if the Curiosity rover has landed safely. A problem with the Mars Odyssey orbiter means there could be a delay in the telemetry relayed to Earth as the Mars Science Laboratory descends and lands on Mars on August 5/6, 2012.

“There’s no impact to landing itself,” said NASA’s Mars exploration program chief Doug McCuistion at a press briefing on Monday. “It’s simply how that data gets returned to us and how timely that data is.”

McCuistion said the Odyssey team is assessing why the orbiter has gone into safe mode several times since early June, as well as having problems with its attitude control system. The glitches possibly could mean the spacecraft may not be in position to track and relay real-time data from MSL as it descends through Mars’ atmosphere and lands, possibly delaying the telemetry to Earth by several hours.

Curiosity’s automated landing sequence won’t be affected; it’s just that the data won’t be sent immediately – and the 14-minute communications lag between Earth and Mars means that the MSL team won’t be getting real-time updates about the rover’s perilous journey anyway; however, now it might be an even longer delay.

Caption: This artist’s concept from an animation depicts Curiosity, the rover to be launched in 2011 by NASA’s Mars Science Laboratory, as it is being lowered by the mission’s rocket-powered descent stage during a critical moment of the “sky crane” landing in 2012. Image Credit: NASA/JPL-Caltech

The rover is scheduled to land at 10:31 p.m. PDT on Aug. 5 (05:31 UTC, 1:31 a.m. EDT on Aug. 6).

Under normal circumstances, it’s a challenge for the orbiters to get in position to welcome another spacecraft to Mars, and provide tracking data and telemetry relay.

“If we were not to do anything, the Mars’ orbiting spacecraft may be on the other side of the planet,” said MSL navigation team chief Tomas Martin-Mur, during a previous interview with UT. “So as soon as we launch, we tell the other spacecraft where we are going to be by the time of entry so they can change their orbits over time, so they will be flying overhead as MSL approaches the planet.”

The orbiters – which also includes NASA’s Mars Reconnaissance Orbiter and ESA’s Mars Express – have been doing special maneuvers to be aligned in just the right place, nearby to MSL’s point of entry into Mars’ atmosphere.

But the glitches for Odyssey means it may not be in the right place.

MRO will be attempting to image the rover as it descends and lands — with possible hopes of catching the rover as it is descending on the “sky-crane” landing system — but MRO can only record data for later playback, whereas Odyssey could provide immediate relay. Mars Express won’t be aligned to see the last minute of flight, McCuistion said.

The Odyssey orbiter put itself in the precautionary, Earth-pointed status called safe mode on July 11, as it finished a maneuver adjusting, or trimming, its orbit. Odyssey’s computer did not reboot, so diagnostic information was subsequently available from the spacecraft’s onboard memory. Based on analysis of that information, the mission’s controllers sent commands yesterday morning taking Odyssey out of safe mode and reorienting it to point downward at Mars.

“We are on a cautious path to resume Odyssey’s science and relay operations soon,” said Gaylon McSmith, Odyssey project manager. “We will also be assessing whether another orbit trim maneuver is warranted.”

The landing is one of the most perilous times for a rover. “Those seven minutes are the most challenging part of this entire mission,” said Pete Theisinger, MSL’s project manager. “For the landing to succeed, hundreds of events will need to go right, many with split-second timing and all controlled autonomously by the spacecraft. We’ve done all we can think of to succeed. We expect to get Curiosity safely onto the ground, but there is no guarantee. The risks are real.”

We’ll provide updates as to Odyssey’s status. Here’s a look at the seven minutes of terror MSL will experience:

Sources: JPL, NASA