Huge Rocket Recovery Strides Accomplished, SpaceX Drone Ship Back in Port

SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl, carrying the Dragon resupply spacecraft to the International Space Station. Credit: John Studwell/AmericaSpace

“Huge strides towards [rocket] reusability” were achieved, says SpaceX CEO Elon Musk, following Saturday morning’s (Jan. 10) flawless launch of his firm’s Falcon 9 rocket on a critical resupply mission to the space station for NASA, which also had a secondary objective of recovering the booster’s first stage via an unprecedented precision-guided landing on an ocean-going “drone.”

Despite making a “hard landing” on the vessel dubbed the “autonomous spaceport drone ship,” the 14 story tall Falcon 9 first stage did make it to the drone ship, positioned some 200 miles offshore of the Florida-Carolina coast, northeast of the launch site in the Atlantic Ocean. The rocket broke into pieces upon hitting the barge.

“Rocket made it to drone spaceport ship, but landed hard. Close, but no cigar this time. Bodes well for the future tho,” Musk tweeted soon after the launch and recovery attempt.

The drone ship, along with pieces of the rocket, was towed back to the Port of Jacksonville, FL, this afternoon, Sunday, Jan. 11. Photos captured by locals, and posted today on Reddit, NASASpaceflight and Spaceflight Now, showed the ship was intact with some damage, as reported by Musk.

The SpaceX ‘autonomous spaceport drone ship’ being towed into the Port of Jacksonville, Fla, on 11 Jan 2015 with possible pieces of the SpaceX Falcon 9 first stage under tarps.
The SpaceX “autonomous spaceport drone ship” being towed into the Port of Jacksonville, FL, on 11 Jan 2015 with possible pieces of the SpaceX Falcon 9 first stage under tarps. Credit: Stephen Clark/Spaceflight Now

The goal of the commercial Falcon 9 rocket was to launch the SpaceX Dragon CRS-5 cargo vessel on a mission bound for the International Space Station (ISS). It lit up the night skies all around the Florida Space Coast following a flawless liftoff at 4:47 a.m. EST from Cape Canaveral Air Force Station.

After a two day chase, Dragon will reach the ISS at about 6:12 a.m. EST on Monday, Jan. 12. NASA TV live coverage starts at 4:30 a.m. EST.

The history-making attempt at recovering the Falcon 9 first stage was a first of its kind experiment to accomplish a pinpoint soft landing of a rocket onto a tiny platform in the middle of a vast ocean using a rocket assisted descent.

“Am super proud of my crew for making huge strides towards reusability on this mission. You guys rock!” Musk declared in a later tweet.

Whereas virtually every other news outlet declared the landing attempt a “failure” in the headline, my assessment as a scientist is the complete opposite – and that the experiment was “a very good first step towards the bold company goal of recovery and re-usability in the future” as I wrote in my post launch report here at Universe Today.

Listen to my live radio interview with BBC 5LIVE conducted Saturday night, discussing SpaceX’s first attempt to land and return their Falcon 9 booster.

This was a daring experiment involving re-lighting one of the first stage Merlin 1D engines three times to act as a retro rocket to slow the stage’s descent and aim for the drone ship.

The drone ship measures only 300 feet by 170 feet. That’s tiny compared to the Atlantic Ocean.

SpaceX achieved virtually all of their objectives in the daunting feat except for a soft landing on the drone ship.

The grid fins and trio of Merlin propulsive burns succeeded in slowing the booster from hypersonic velocity to subsonic.

The first stage was planned to make the soft landing by extending four landing legs to a width of about 70 feet to achieve an upright landing on the platform.

One of the possible outcomes of today. Falcon 9 sits on the barge, ready to go back home. Image Credit: Reddit user zlsa (zlsa.github.io) CC-BY-SA.
Artist’s concept view of Falcon 9 on the barge, ready to go back home. Image Credit: Reddit user zlsa (zlsa.github.io) CC-BY-SA.

The hard landing apparently was caused by a lack of hydraulic fluid in the final stages of the landing

“Grid fins worked extremely well from hypersonic velocity to subsonic, but ran out of hydraulic fluid right before landing,” Musk tweeted.

No one has ever tried such a landing attempt before in the ocean says SpaceX. The company has conducted numerous successful soft landing tests on land, and several soft touchdowns on the ocean’s surface. But never before on a barge in the ocean.

So they will learn and move forward to the next experimental landing, that could come as early as February.

“Upcoming flight already has 50% more hydraulic fluid, so should have plenty of margin for landing attempt next month.”

SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters, including Universe Today, in Cocoa Beach, FL, during prior SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

Musk’s daring vision is to recover, refurbish, and reuse the first stage and dramatically reduce the high cost of access to space by introducing airline like operational concepts.

It remains to be seen whether his vision of reusing rockets can be made economical. Most of the space shuttle systems were reused, except for the huge external fuel tanks, but it was not a cheap proposition.

So this ocean recovery attempt is a critical first step towards that long term effort.

The Dragon CRS-5 spacecraft is loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing, and assorted research gear for the six person crew serving aboard the ISS.

Photo of returning SpaceX ‘autonomous spaceport drone ship’ shows possible damage to onboard gear and possibly a few rocket parts under tarps.  Credit: Reddit
Photo of returning SpaceX “autonomous spaceport drone ship” shows possible damage to onboard gear and possibly a few rocket parts under tarps. Credit: Reddit

The launch marked the first US commercial resupply launch since the catastrophic destruction of an Orbital Sciences Antares rocket and Cygnus Orb-3 spacecraft bound for the ISS which exploded unexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014.

The US supply train to the ISS is now wholly dependent on SpaceX until Cygnus flights are resumed, hopefully by late 2015 on an alternate rocket, the Atlas V.

Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

A SpaceX Falcon 9 Grasshopper reusable rocket undergoing testing. Credit: SpaceX
A SpaceX Falcon 9 Grasshopper reusable rocket undergoing testing.
Credit: SpaceX
A Falcon 9 Grasshopper conducting VTVL testing. Credit: SpaceX
A Falcon 9 Grasshopper conducting VTVL testing. Credit: SpaceX

Last Minute Scrub for SpaceX Dragon Launch; Try Again Friday for Historic 1st Stage Landing

Falcon 9 and Dragon on the launchpad Cape Canaveral Air Force Station in Florida. SpaceX will try again on January 9 to launch and attempt an historic first stage landing on a floating ocean platform. Credit: SpaceX.

An actuator that was “behaving strangely” on the SpaceX Falcon 9’s upper stage caused a last minute scrub for Tuesday’s attempt to launch a Dragon capsule to the International Space Station, as well as the first try at an historic first stage landing on a floating platform in the Atlantic Ocean.


SpaceX will try again on Friday, January 9, 2014 at 5:09 a.m. EST. Like today’s attempt, there will be only an instantaneous launch window available, meaning that the blastoff must proceed at that exact instant. Any delays due to technical issues or weather would force further delays.

This is the commercial space company’s fifth resupply mission to the ISS and the unmanned cargo freighter is loaded with more than 5,108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear for the space station.

The “experiment” that has attracted the most attention, however, is the attempt to land the first stage of the two-stage rocket on a floating platform in the Atlantic Ocean, approximately 320 km (200 miles) off the coast of Florida.

This is the first attempt at such a landing. SpaceX has conducted numerous successful soft landing tests on land, and done several touchdowns on the ocean’s surface.

Elon Musk has estimated the odds of success at the landing attempt at about 50% at best.

“It’s an experiment,” said Hans Koenigsmann, VP of Mission Assurance at SpaceX, speaking at a media briefing on Jan. 5 at the Kennedy Space Center. “There’s a certain likelihood that this will not work out right, that something will go wrong.” He also added that the landing on the off shore barge is just a secondary objective of SpaceX, not NASA.

Many analysts say a successful landing maneuver would mark a significant step toward making rockets more reusable, which would help cut costs. But others caution that even if this first attempt is successful, we shouldn’t expect to see regular airline-like reuse and large cost drops anytime soon.

SpaceX and NASA On Track For Spectacular Predawn Jan. 6 Launch of Critical Cargo Mission to ISS

A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo. Credit: Ken Kremer – kenkremer.com

SpaceX is on track to rollout their Falcon 9 rocket carrying the Dragon cargo freighter this evening, Monday, Jan, 5, 2015 to launch pad 40 on a mission bound for the International Space Station (ISS) to deliver critical supplies.

The Dragon CRS-5 mission is slated to blast off at 6:20 a.m. EST, Tuesday, Jan. 6, 2015, atop the SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

The predawn launch should put on a spectacular sky show for spectators along the Florida space coast.

There is only an instantaneous launch window available, meaning that the blastoff must proceed at that exact instant. Any delays due to technical issues or weather would force a scrub until at least Friday, Jan. 9.

SpaceX Falcon 9 ready for rollout to launch pad for Dragon CRS-5 mission.  Credit: SpaceX
SpaceX Falcon 9 ready for rollout to launch pad for Dragon CRS-5 mission. Credit: SpaceX

The launch has already been postponed several times, most recently from Dec. 19, 2014 when a static fire test of the first stage engines on Dec. 17 shut down prematurely.

A second static fire test of the SpaceX Falcon 9 successfully went the full duration of approximately 3 seconds and cleared the path for a liftoff attempt after the Christmas holidays.

The delay allowed the teams to recoup and recover and enjoy the festive holiday season.

“It was a good decision to postpone the launch until after the holidays,” said Hans Koenigsmann, VP of Mission Assurance, SpaceX, at a media briefing today at the Kennedy Space Center (KSC).

Following the catastrophic failure of the Orbital Sciences Antares rocket and Cygnus cargo freighter on Oct. 28 from NASA’s Wallops Flight Facility in Virginia, officials have been prudently cautious to ensure that all measures were carefully rechecked to maximize the possibilities of a launch success.

SpaceX Falcon 9 rocket completes successful static fire test on Dec. 19 ahead od planned CRS-5 mission for NASA in early January 2015. Credit:  SpaceX
SpaceX Falcon 9 rocket completes successful static fire test on Dec. 19 ahead od planned CRS-5 mission for NASA in early January 2015. Credit: SpaceX

CRS-5 marks the company’s fifth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s Commercial Resupply Services (CRS) contract

The weather odds have improved to 70% GO from 60% GO reported Major Perry Sweat, 45th Weather Squadron rep, USAF, at the briefing today at the Kennedy Space Center.

A frontal boundary has settled in over Central Florida. This front and its associated cloudiness will be very slow to move south of the Space Coast. With the clouds only slowly eroding overhead, the primary weather concern remains thick clouds, according to Sweat.

The unmanned cargo freighter is loaded with more than 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear for the space station.

The Dragon research experiments will support over 256 science and research investigations for the six person space station crews on Expeditions 42 and 43.

Among the payloads is the Cloud-Aerosol Transport System (CATS), a remote-sensing laser instrument to measure clouds and the location and distribution of pollution, dust, smoke, and other particulates and aerosols in the atmosphere.

Commander Barry “Butch” Wilmore on the International Space Station shared this beautiful image of #sunrise earlier today, 1/3/15.  Credit: NASA/Barry ‘Butch’ Wilmore
Commander Barry “Butch” Wilmore on the International Space Station shared this beautiful image of #sunrise earlier today, 1/3/15. Credit: NASA/Barry ‘Butch’ Wilmore

Assuming all goes well, Dragon will rendezvous at the ISS on Thursday, Jan. 8, for grappling and berthing by the ISS astronauts maneuvering the 57 foot-long (17 meter-long) Canadian built robotic arm.

The SpaceX CRS-5 launch is the first cargo launch to the ISS since the doomed Orbital Sciences Antares/Cygnus launch ended in catastrophe on Oct. 28.

With Antares launches on indefinite hold, the US supply train to the ISS is now wholly dependent on SpaceX.

Orbital Sciences has now contracted United Launch Alliance
(ULA) to launch the firms Cygnus cargo freighter to the ISS by late 2015 on an Atlas V rocket.

A secondary objective of SpaceX is to attempt to recover the Falcon 9 first stage on an off shore barge.

NASA Television live launch coverage begins at 5 a.m. EST on Jan. 6.

 SpaceX Falcon 9 rocket is set to soar to ISS after completing  successful static fire test on Dec. 19 ahead of planned CRS-5 mission for NASA in early January 2015. Credit: Ken Kremer – kenkremer.com
SpaceX Falcon 9 rocket is set to soar to ISS after completing successful static fire test on Dec. 19 ahead of replanned CRS-5 mission for NASA launching on Jan. 6, 2015. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014.  Credit: Ken Kremer – kenkremer.com
New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014. Credit: Ken Kremer – kenkremer.com

Successful Engine Test Enables SpaceX Falcon 9 Soar to Space Station in Jan. 2015

SpaceX Falcon 9 rocket is set to soar to ISS after completing successful static fire test on Dec. 19 ahead of planned CRS-5 mission for NASA in early January 2015. Credit: Ken Kremer – kenkremer.com

KENNEDY SPACE CENTER, FL – To ensure the highest possibility of success for the launch of a critical resupply mission to the International Space Station (ISS), SpaceX has announced the successful completion of a second static fire test of the first stage propulsion system of the firms commercial Falcon 9 rocket on Dec. 19.

The successful engine test clears the path towards a liftoff now rescheduled to early January 2015.

The launch of the Falcon 9 had been slated for Dec. 19, but NASA and SpaceX decided just 1 day before liftoff on Dec. 18 to postpone the launch of the CRS-5 resupply mission into the new year, when the first static fire test failed to run for its full duration of approximately three seconds.

“SpaceX completed a successful static fire test of the Falcon 9 rocket [on Dec. 19] in advance of the CRS-5 mission for NASA,” said SpaceX in a statement.

The second test was done because the first test of the Merlin 1D engines did not run for its full duration of about three seconds.

SpaceX Falcon 9 rocket completes successful static fire test on Dec. 19 ahead od planned CRS-5 mission for NASA in early January 2015. Credit:  NASA
SpaceX Falcon 9 rocket completes successful static fire test on Dec. 19 ahead od planned CRS-5 mission for NASA in early January 2015. Credit: SpaceX

“While the Dec. 17 static fire test accomplished nearly all of our goals, the test did not run the full duration, ”SpaceX spokesman John Taylor confirmed to Universe Today.

“The data suggests we could push forward without a second attempt, but out of an abundance of caution, we are opting to execute a second static fire test prior to launch.”

Both tests were conducted at Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

“We opted to execute a second test,” noted SpaceX.

The SpaceX Falcon 9 rocket carrying the Dragon cargo freighter had been slated to liftoff on Dec. 19 on its next unmanned cargo run dubbed CRS-5 to the ISS under NASA’s Commercial Resupply Services (CRS) contract.

New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014.  Credit: Ken Kremer – kenkremer.com
New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014. Credit: Ken Kremer – kenkremer.com

Following the catastrophic failure of the Orbital Sciences Antares rocket and Cygnus cargo freighter on Oct 28 from NASA’s Wallops Flight Facility in Virginia, officials are being prudently cautious to ensure that all measures are being carefully rechecked to maximize the possibilities of a launch success.

The new launch date for CRS-5 is now set for no earlier than Jan. 6, 2015

“Given the extra time needed for data review and testing, coupled with the limited launch date availability due to the holidays and other restrictions, our earliest launch opportunity is now January 6 with January 7 as a backup,” said SpaceX.

The unmanned cargo freighter is loaded with more than 3,700 pounds of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear.

The Dragon research experiments will support over 256 science and research investigations for the six person space station crews on Expeditions 42 and 43.

CRS-5 marks the company’s fifth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.

Among the other mission goals, SpaceX is planning a daring and bold attempt to propulsively land and recover the first stage on an ocean going platform called the “autonomous spaceport drone ship.”

SpaceX Falcon 9 first stage rocket will attempt precision landing on this autonomous spaceport drone ship soon after launch set for Dec. 19, 2014, from Cape Canaveral, Florida. Credit: SpaceX
SpaceX Falcon 9 first stage rocket will attempt precision landing on this autonomous spaceport drone ship soon after launch set for Dec. 19, 2014, from Cape Canaveral, Florida. Credit: SpaceX

Watch for Ken’s ongoing SpaceX launch coverage from onsite at the Kennedy Space Center.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Rocket Issues force SpaceX and NASA to Postpone Falcon 9 Rocket Launch to January 2015

SpaceX Falcon 9 erect at Cape Canaveral launch pad 40 awaiting launch on Sept 20, 2014 on the CRS-4 mission. Credit: Ken Kremer - kenkremer.com

KENNEDY SPACE CENTER, FL – Due to technical problems encountered during a hot fire test of the first stage engines this week with the SpaceX Falcon 9 rocket, the planned Dec. 19 launch of the commercial rocket and NASA contracted Dragon cargo freighter to the International Space Station (ISS) on a critical resupply mission has been postponed a few weeks into the new year to Jan. 6 at the earliest “out of an abundance of caution,” SpaceX officials told Universe Today.

Prior to every launch, SpaceX performs an internally required full countdown dress rehearsal and hot fire test of the first stage propulsion systems.

The hot fire test attempted on Tuesday “did not run for its full duration” of about three seconds, SpaceX spokesman John Taylor confirmed to me.

Therefore SpaceX and NASA managers decided to postpone the launch in order to run another static fire test.

“We are opting to execute a second static fire test prior to launch,” Taylor said.

In light of the catastrophic failure of the Orbital Sciences Antares rocket and Cygnus cargo freighter, everything must be done to ensure a launch success.

Due to the large amount of work required to test and analyze all rocket systems and the impending Christmas holidays, the earliest opportunity to launch is Jan. 6.

SpaceX Falcon 9 first stage rocket will attempt precison landing on this autonomous spaceport drone ship soon after launch set for Dec. 19, 2014 from Cape Canaveral, Florida.  Credit: SpaceX/Elon Musk
SpaceX Falcon 9 first stage rocket will attempt precision landing on this autonomous spaceport drone ship soon after launch now reset for Jan. 6, 2015, from Cape Canaveral, Florida. Credit: SpaceX/Elon Musk

The SpaceX Falcon 9 rocket carrying the Dragon cargo freighter had been slated to liftoff on its next unmanned cargo run dubbed CRS-5 to the ISS under NASA’s Commercial Resupply Services (CRS) contract.

Here is the full update from SpaceX.

“While the recent static fire test accomplished nearly all of our goals, the test did not run the full duration. The data suggests we could push forward without a second attempt, but out of an abundance of caution, we are opting to execute a second static fire test prior to launch.”

“Given the extra time needed for data review and testing, coupled with the limited launch date availability due to the holidays and other restrictions, our earliest launch opportunity is now Jan. 6 with Jan. 7 as a backup.

New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014.  Credit: Ken Kremer – kenkremer.com
New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014. Credit: Ken Kremer – kenkremer.com

“The ISS orbits through a high beta angle period a few times a year. This is where the angle between the ISS orbital plane and the sun is high, resulting in the ISS’ being in almost constant sunlight for a 10 day period.

“During this time, there are thermal and operational constraints that prohibit Dragon from being allowed to berth with the ISS. This high beta period runs from 12/28/14-1/7/15”

“Note that for a launch on 1/6 , Dragon berths on 1/8.”

“Both Falcon 9 and Dragon remain in good health, and our teams are looking forward to launch just after the New Year.”

Watch for Ken’s ongoing SpaceX launch coverage from onsite at the Kennedy Space Center.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 Rocket to Attempt Daring Ocean Platform Landing with Next Launch

SpaceX Falcon 9 first stage rocket will attempt precison landing on this autonomous spaceport drone ship soon after launch set for Dec. 19, 2014 from Cape Canaveral, Florida. Credit: SpaceX/Elon Musk

KENNEDY SPACE CENTER, FL – In a key test of rocket reusability, SpaceX will attempt a daring landing of their Falcon 9 first stage rocket on an ocean platform known as the “autonomous spaceport drone ship” following the planned Friday, Dec. 19, blastoff on a high stakes mission to the International Space Station (ISS).

The SpaceX Falcon 9 rocket carrying the Dragon cargo freighter is slated to liftoff on its next unmanned cargo run, dubbed CRS-5, to the ISS under NASA’s Commercial Resupply Services (CRS) contract. In a late development, there is a possibility the launch could be postponed to January 2015.

The instantaneous launch window for the Falcon 9/Dragon is slated for 1:20 p.m from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

As the Dragon proceeds to orbit, SpaceX engineers will attempt to recover the Falcon 9 first stage via a precision landing for the first time “on a custom-built ocean platform known as the autonomous spaceport drone ship,” according to a SpaceX statement.

Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5.   Credit: SpaceX/Elon Musk
Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5. Credit: SpaceX/Elon Musk

“While SpaceX has already demonstrated two successful soft water landings, executing a precision landing on an unanchored ocean platform is significantly more challenging.”

SpaceX rates the chances of success at “perhaps 50% at best.”

Of course since this has never been attempted before, tons of planning is involved and lots can go wrong.

But this is space exploration, and it’s not for the meek and mild.

It’s time to go boldly where no one has gone before and expand the envelope if we hope to achieve great things.

SpaceX Falcon 9 erect at Cape Canaveral launch pad 40  awaiting launch on Sept 20, 2014 on the CRS-4 mission. Credit: Ken Kremer - kenkremer.com
A SpaceX Falcon 9 erect at Cape Canaveral launch pad 40 prior to launch on Sept 20, 2014, on the CRS-4 mission. Credit: Ken Kremer – kenkremer.com

The 14 story Falcon 9 will be zooming upwards at 1300 m/s (nearly 1 mi/s). Engineers will then relight the Merlin 1D first stage engines to stabilize and lower the rocket.

Four hypersonic grid fins had been added to the first stage and placed in an X-wing configuration. They will be deployed only during the reentry attempt and will be used to roll, pitch, and yaw the rocket in concert with gimballing of the engines.

Here’s a description from SpaceX:

“To help stabilize the stage and to reduce its speed, SpaceX relights the engines for a series of three burns. The first burn—the boostback burn—adjusts the impact point of the vehicle and is followed by the supersonic retro propulsion burn that, along with the drag of the atmosphere, slows the vehicle’s speed from 1300 m/s to about 250 m/s. The final burn is the landing burn, during which the legs deploy and the vehicle’s speed is further.”

“To complicate matters further, the landing site is limited in size and not entirely stationary. The autonomous spaceport drone ship is 300 by 100 feet, with wings that extend its width to 170 feet. While that may sound huge at first, to a Falcon 9 first stage coming from space, it seems very small. The legspan of the Falcon 9 first stage is about 70 feet and while the ship is equipped with powerful thrusters to help it stay in place, it is not actually anchored, so finding the bullseye becomes particularly tricky. During previous attempts, we could only expect a landing accuracy of within 10km. For this attempt, we’re targeting a landing accuracy of within 10 meters.”

Watch for Ken’s ongoing SpaceX launch coverage from onsite at the Kennedy Space Center.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, Orion, Antares, NASA missions and more at Ken’s upcoming outreach events:

Dec 18: “SpaceX CRS-5, Orion EFT-1, Antares Orb-3 launch, Curiosity Explores Mars,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Antares Orb-3 Rocket Explosion and Frightening Incineration Captured by Up Close Launch Pad Videos/Photos: Pt. 2

Antares destruction after the first stage propulsion system at the base of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com

Video Caption: This up close launch pad camera view is a time lapse sequence of images showing the sudden catastrophic explosion of Orbital Sciences Antares Orb 3 rocket seconds after blastoff and destructive incineration as it plummets into a hellish inferno at NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com/Universe Today/AmericaSpace/Zero-G News.
Story and images expanded

NASA WALLOPS FLIGHT FACILITY, VA – Moments after a seemingly glorious liftoff on Oct. 28, 2014, the Orbital Sciences Corp. commercial Antares rocket suffered a catastrophic failure as one of the Soviet-era first stage engines exploded and cascaded into a spectacular aerial fireball just above the launch pad at NASA’s Wallops Flight Facility on the doomed Orb-3 mission to the International Space Station (ISS).

Although I witnessed and photographed the launch failure from the media viewing area on site at NASA Wallops from a distance of about 1.8 miles away, myself and a small group of space journalists working together from Universe Today, AmericaSpace, and Zero-G News had also placed sound activated cameras directly at the launch pad to capture the most spectacular up close views for what we all expected to be a “nominal” launch. Our imagery had been impounded by accident investigators – until being released to us now.

Now in part 2 of this exclusive series of video and photos our team can show you the terrible fate suffered by Antares after its destructive descent and frightening incineration as it was consumed by a hellish inferno.

My time lapse video above clearly shows the explosion and incendiary descent of Antares into a mammoth fireball.

As I reported in Part 1, all of our team’s cameras and image cards were impounded for nearly a month by Orbital’s official and independent Accident Investigation Board (AIB) that was assembled quickly in the aftermath of the Antares launch failure disaster and charged with determining the root cause of the launch failure.

The videos and photos captured on our image cards were used as evidence and scrutinized by the investigators searching for clues as to the cause and have only just been returned to us in the past few days.

One image clearly shows that the south side engine nozzle of the AJ26 first stage engine was intact and had shut down after the initial explosion and during the plummet. Therefore it was the north side engine that blew up and led to the launch failure. See my up close AJ26 engine photo below.

Video Caption: AmericaSpace and Zero-G News video compilation of four cameras surrounding the launch pad to capture liftoff. The video runs through each at full speed before slowing down to give viewers a slow motion replay of the explosion. One of the cameras was right in the middle of the fireball, with chunks of broken rocket showering down around. CREDITS: Mike Barrett / Jeff Seibert / Matthew Travis / Elliot Severn / Peter Greenwood for www.ZeroGNews.com and www.AmericaSpace.com

Similar launch pad photos taken by NASA and Orbital Sciences cameras have not been publicly released and may not be released for some time to come.

The videos and images collected here are the work of my colleagues Matthew Travis, Elliot Severn, Alex Polimeni, Charles Twine, Jeff Seibert, Mike Barrett, and myself, and show exquisite, heretofore unreleased, views of the explosion, fireball, and wreckage from various positions all around the launch pad.

Our remote cameras were placed all around the Antares pad OA at the Mid-Atlantic Regional Spaceport (MARS) on Wallops Island, VA, and somehow miraculously survived the rocket’s destruction as it plunged to the ground very near and just north of the seaside launch pad.

A turbopump failure in one of the rocket’s Soviet-era first stage engines has been identified as the most likely cause of the Antares’ destruction according to official statements from David Thompson, Orbital’s Chairman and Chief Executive Officer.

The AJ26 engines were originally manufactured some 40 years ago in the then Soviet Union as the NK-33.

They were refurbished and “Americanized” by Aerojet Rocketdyne.

“While still preliminary and subject to change, current evidence strongly suggests that one of the two AJ26 main engines that powered Antares’ first stage failed about 15 seconds after ignition. At this time, we believe the failure likely originated in, or directly affected, the turbopump machinery of this engine, but I want to stress that more analysis will be required to confirm that this finding is correct,” said Thompson.

Antares loses thrust after rocket explosion and begins falling back  after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Antares loses thrust after rocket explosion and begins falling back after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Close up view of Antares descent into hellish inferno shows south side first stage engine intact after north side engine at base of Orbital Sciences Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com
Close up view of Antares’ descent into a hellish inferno shows the south side first stage engine intact after the north side engine at the base of Orbital Sciences’ Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com

Overall this was the 5th Antares launch using the AJ26 engines.

Antares was carrying Orbital’s privately developed Cygnus pressurized cargo freighter loaded with nearly 5000 pounds (2200 kg) of science experiments, research instruments, crew provisions, spare parts, spacewalk and computer equipment and gear on a critical resupply mission dubbed Orb-3 bound for the International Space Station (ISS).

Antares doomed descent to incendiary destruction after first stage propulsion system of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com
Antares doomed descent to incendiary destruction after first stage propulsion system of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com

IMG_1127_3a_Antares Orb 3_Ken Kremer

It was the heaviest cargo load yet lofted by a Cygnus. Some 800 pounds additional cargo was loaded on board compared to earlier flights. That was enabled by using the more powerful ATK CASTOR 30XL engine to power the second stage for the first time.

The astronauts and cosmonauts depend on a regular supply train from the ISS partners to kept it afloat and productive on a 24/7 basis.

IMG_6400_lzn

IMG_6454_lzn

The Orbital-3, or Orb-3, mission was to be the third of eight cargo resupply missions to the ISS through 2016 under the NASA Commercial Resupply Services (CRS) contract award valued at $1.9 Billion.

Orbital Sciences is under contract to deliver 20,000 kilograms of research experiments, crew provisions, spare parts, and hardware for the eight ISS flights.

Examine the video and photo gallery herein.

Orbital Sciences Antares rocket explodes into a fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes into a fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Watch here for Ken’s ongoing reporting about Antares and NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

_7SC1510C

Pre-launch seaside panorama of Orbital Sciences Corporation Antares rocket at the NASA's Wallops Flight Facility launch pad on Oct 26 - 2 days before the ??Orb-3? launch failure on Oct 28, 2014.  Credit: Ken Kremer - kenkremer.com
Pre-launch seaside panorama of Orbital Sciences Corporation Antares rocket at the NASA’s Wallops Flight Facility launch pad on Oct 26 – 2 days before the Orb-3 launch failure on Oct 28, 2014. Credit: Ken Kremer – kenkremer.com
Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS.  Credit: Ken Kremer - kenkremer.com
Soviet era NK-33 engines refurbished as the AJ26 exactly like pictured here probably caused Antares’ rocket failure on Oct. 28, 2014. Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com
Remote cameras set up around launch pad 0A at the Mid-Atlantic Regional Spaceport at NASA’s Wallops Flight Facility in Virginia captured incredible up-close views of an Orbital Sciences Corporation Antares rocket exploding seconds after liftoff several weeks ago. The mission was to deliver the company’s Orb-3 Cygnus spacecraft to deliver supplies and experiments to the orbiting International Space Station. Photo Credits: Elliot Severn / Matthew Travis / Mike Barrett / Jeff Seibert for Zero-G News and AmericaSpace
Remote cameras set up around launch pad 0A at the Mid-Atlantic Regional Spaceport at NASA’s Wallops Flight Facility in Virginia captured incredible up-close views of an Orbital Sciences Corporation Antares rocket exploding seconds after liftoff several weeks ago. The mission was to deliver the company’s Orb-3 Cygnus spacecraft to deliver supplies and experiments to the orbiting International Space Station. Photo Credits: Elliot Severn / Matthew Travis / Mike Barrett / Jeff Seibert for Zero-G News and AmericaSpace
Up Close Launch Pad remote camera photographers during prelaunch setup for Orb-3 mission at NASA Wallops launch pad. Credit: Ken Kremer - kenkremer.com Antares priuor to
Up Close Launch Pad remote camera photographers during prelaunch setup for Orb-3 mission at NASA Wallops launch pad. Credit: Ken Kremer – kenkremer.com

Antares’ Doomed Descent into Hellish Inferno – Up Close Launch Pad Photo Exclusive: Pt. 1

Antares descended into hellish inferno after first stage propulsion system at base of Orbital Sciences Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Up close launch pad camera view as Antares descended into a hellish inferno after the first stage propulsion system at the base of Orbital Sciences’ Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. The south side engine nozzle is clearly intact in this image. Credit: Ken Kremer – kenkremer.com
Story and photos expanded[/caption]

NASA WALLOPS FLIGHT FACILITY, VA – All was calm, the air was crisp with hope, and the skies were clear as far as the eye could see as the clock ticked down to T MINUS Zero for the Oct. 28, 2014, blastoff of an Orbital Sciences commercial Antares rocket from NASA’s Wallops Flight Facility, VA, on a mission of critical importance bound for the International Space Station and stocked with science and life support supplies for the six humans living and working aboard.

Tragically it was not to be – as I reported live from the NASA Wallops press site on that fateful October day. The 133 foot tall rocket’s base exploded violently and unexpectedly just seconds after a beautiful evening liftoff due to the failure of one of the refurbished AJ26 first stage “Americanized” Soviet-era engines built four decades ago.

And now for the first time, I can show you precisely what the terrible incendiary view was like through exclusive, up close launch pad photos and videos from myself and a group of space journalists working together from Universe Today, AmericaSpace, and Zero-G news.

Antares descended into hellish inferno after first stage propulsion system at base of Orbital Sciences Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Antares descended to doom after the first stage propulsion system at the base of Orbital Sciences’ Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

I was an eyewitness to the awful devastation suffered by the Antares/Cygnus Orb-3 mission from the press viewing site at NASA Wallops located at a distance of about 1.8 miles away from the launch complex.

Our remote cameras were placed directly adjacent to the Antares pad OA at the Mid-Atlantic Regional Spaceport (MARS) on Wallops Island, VA, and miraculously survived the rocket’s destruction as it plunged to the ground very near and just north of the seaside launch pad.

Matt 4

All of our team’s cameras and image cards were impounded by Orbital’s Accident Investigation Board (AIB) that was assembled quickly in the aftermath of the disaster and charged with determining the root cause of the launch failure.

The photos captured on our image cards were used as evidence and scrutinized by the investigators searching for clues as to the cause, and have only just been returned to us in the past two days. Similar NASA and Orbital Sciences photos have not been publicly released.

Collected here in Part 1 is a gallery of images from our combined journalist team of Universe Today, AmericaSpace, and Zero-G news. Part 2 will follow shortly and focus on our up close launch pad videos.

Close up view of Antares descent into hellish inferno shows south side first stage engine intact after north side engine at base of Orbital Sciences Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com
Close up view of Antares’ destruction shows the south side first stage engine intact after the north side engine at the base of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com
Antares descended into hellish inferno after first stage propulsion system at base of Orbital Sciences Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Antares descended into a hellish inferno after the first stage propulsion system at the base of Orbital Sciences’ Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

My lead image shows Antares’ descent into a hellish inferno. And more below clearly show that the south side engine nozzle was intact after the explosion. Thus it was the north side engine that blew up. See my up close AJ26 engine photo below.

Images from my colleagues Matthew Travis, Elliot Severn, Alex Polimeni, Charles Twine, and Jeff Seibert also show exquisite views of the explosion, fireball, and wreckage from various positions around the launch pad.

Antares descended into hellish inferno after first stage propulsion system at base of Orbital Sciences Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com
Antares destruction after the first stage propulsion system at the base of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com

 

Close up view of Antares descent into hellish inferno shows south side first stage engine intact after north side engine at base of Orbital Sciences Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com
Close up view of Antares’ destructive fall shows the south side first stage engine intact after the north side engine at the base of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com

Moments after liftoff, the highly anticipated Antares launch suddenly devolved into utter catastrophe and a doomed descent into a hellish inferno of bloodcurdling terror – falling as a flaming incinerating carcass of unspeakable horror that ended in a mammoth deafening explosion as the pitiful wreckage smashed into the ground and blew back upwards as a raging fireball and hurtling debris that was visible across a wide swath of the sky.

The awful scene was seen by hordes of expectant spectators for miles around the Wallops area.

matt 2

The disaster’s cause has almost certainly been traced to a turbopump failure in one of the rocket’s Soviet-era first stage engines, according to official statements from David Thompson, Orbital’s Chairman and Chief Executive Officer.

The AJ26 engines were originally manufactured some 40 years ago in the then Soviet Union as the NK-33.
They were refurbished and “Americanized” by Aerojet Rocketdyne.

“While still preliminary and subject to change, current evidence strongly suggests that one of the two AJ26 main engines that powered Antares first stage failed about 15 seconds after ignition. At this time, we believe the failure likely originated in or directly affected the turbopump machinery of this engine, but I want to stress that more analysis will be required to confirm that this finding is correct,” said Thompson.

Overall this was the 5th Antares launch using the AJ26 engines.

The 14 story Antares rocket is a two stage vehicle.

The liquid fueled first stage is filled with about 550,000 pounds (250,000 kg) of Liquid Oxygen and Refined Petroleum (LOX/RP) and powered by a pair of AJ26 engines that generate a combined 734,000 pounds (3,265kN) of sea level thrust.

The Oct. 28 launch disaster was just the latest in a string of serious problems with the AJ-26/NK-33 engines.

Earlier this year an AJ26 engine failed and exploded during pre launch acceptance testing on a test stand on May 22, 2014 at NASA’s Stennis Space Center in Mississippi.

Besides completely destroying the AJ26 engine, the explosion during engine testing also severely damaged the Stennis test stand. It has taken months of hard work to rebuild and restore the test stand and place it back into service.

Matt 5

Antares was carrying Orbital’s privately developed Cygnus pressurized cargo freighter loaded with nearly 5000 pounds (2200 kg) of science experiments, research instruments, crew provisions, spare parts, spacewalk and computer equipment and gear on a critical resupply mission dubbed Orb-3 bound for the International Space Station (ISS).

It was the heaviest cargo load yet lofted by a Cygnus. Some 800 pounds additional cargo was loaded on board compared to earlier flights. That was enabled by using the more powerful ATK CASTOR 30XL engine to power the second stage for the first time.

Ellio 3
The astronauts and cosmonauts depend on a regular supply train from the ISS partners to kept it afloat and productive on a 24/7 basis.

The Orbital-3, or Orb-3, mission was to be the third of eight cargo resupply missions to the ISS through 2016 under the NASA Commercial Resupply Services (CRS) contract award valued at $1.9 Billion.

Orbital Sciences is under contract to deliver 20,000 kilograms of research experiments, crew provisions, spare parts, and hardware for the eight ISS flights.

Enjoy the photo gallery herein.

And watch for Part 2 shortly with exquisite videos, more photos, and personal reflections from our team.

Antares descended into hellish inferno after first stage propulsion system at base of Orbital Sciences Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Antares descended into a hellish inferno after the first stage propulsion system at the base of Orbital Sciences’ Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Antares rocket stand erect, reflecting off the calm waters the night before their first night launch from NASA’s Wallops Flight Facility, VA, targeted for Oct. 27 at 6:45 p.m.  Credit: Ken Kremer – kenkremer.com
Antares rocket stand erect, reflecting off the calm waters the night before the planned first night launch from NASA’s Wallops Flight Facility, VA, that ended in tragic failure on Oct. 28. Credit: Ken Kremer – kenkremer.com

Watch here for Ken’s ongoing reporting about Antares and NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Elliot 2

Elliot 4

_MG_3036_lzn

_MG_3019

_7SC1506C

Orbital Sciences Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS.  Credit: Ken Kremer - kenkremer.com
Soviet era NK-33 engines refurbished as the AJ26 exactly like pictured here probably caused Antares’ rocket failure on Oct. 28, 2014. Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallops. These engines powered the successful Antares liftoff on Jan. 9, 2014, at NASA Wallops, Virginia, bound for the ISS. Credit: Ken Kremer – kenkremer.com
Up Close Launch Pad remote camera photographers during prelaunch setup for Orb-3 mission at NASA Wallops launch pad. Credit: Ken Kremer - kenkremer.com
Up Close Launch Pad remote camera photographers during prelaunch setup for Orb-3 mission at NASA Wallops launch pad. Credit: Ken Kremer – kenkremer.com

Soviet Era Engines Likely Caused Antares Catastrophic Rocket Failure

Soviet era NK-33 engines refurbished as the AJ26 exactly like pictured here probably caused Antares’ rocket failure on Oct. 28, 2014. Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com

NASA WALLOPS FLIGHT FACILITY, VA – Investigators probing last week’s catastrophic failure of an Antares commercial rocket moments after liftoff, are pointing the finger at the rocket’s Soviet-era built engines as the probable cause of the huge explosion that destroyed the booster and its NASA payload in a raging fireball after liftoff from NASA’s Wallops Flight Facility, VA, according to Orbital Sciences managers.

The Orbital Sciences privately developed Antares rocket was doomed by a sudden mid-air explosion some 15 seconds after liftoff from NASA’s Wallops Flight Facility, VA, at 6:22 p.m. EDT on Tuesday, October 28.

Antares’ first stage is powered by a pair of refurbished Aerojet Rocketdyne AJ26 engines originally manufactured some 40 years ago in the then Soviet Union and originally designated as the NK-33. Overall this was the 5th Antares launch using the AJ26 engines.

See my exclusive photos above and below showing the AJ26 engines with their original NK-33 stencil, during prelaunch processing and mating to the first stage inside Orbital’s Horizontal Integration Facility (HIF) at NASA Wallops.

The NK-33 was originally designed and manufactured in the 1960s by the Kuznetsov Design Bureau for the Soviet Union’s planned N1 rocket to propel cosmonauts to the moon during the space race with NASA’s hugely successful Apollo Moon Landing program.

First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
First stage propulsion system at base of Orbital Sciences’ Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Rocket developer Orbital Sciences Corp. said today, Nov. 5, that the launch mishap was probably due to “a failure in one of the two Aerojet Rocketdyne AJ26 stage one main engines.”

Engineers assisting Orbital’s Accident Investigation Board (AIB) say that failure in the AJ26 turbopump is the likely cause. The AIB is chaired by David Steffy, Chief Engineer of Orbital’s Advanced Programs Group.

“While the work of the AIB continues, preliminary evidence and analysis conducted to date points to a probable turbopump-related failure in one of the two Aerojet Rocketdyne AJ26 stage one main engines,” Orbital said in a statement.

“As a result, the use of these engines for the Antares vehicle likely will be discontinued,” said Orbital.

“We will likely discontinue the use of AJ26 rocket engines that had been used on the first five Antares launch vehicles unless and until those engines can be conclusively shown to be flight worthy,” noted David Thompson, Orbital’s Chairman and Chief Executive Officer, during an investor conference call.

Orbital’s options for the way forward will be outlined in a separate story.

Side view of two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia.  Credit: Ken Kremer - kenkremer.com
Side view of two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today. These engines powered the successful Antares liftoff on Jan. 9, 2014, at NASA Wallops, Virginia. Credit: Ken Kremer – kenkremer.com

The Oct. 28 launch disaster was just the latest in a string of serious problems with the AJ-26/NK-33 engines.

Earlier this year an AJ26 engine failed and exploded during pre launch acceptance testing on a test stand on May 22, 2014, at NASA’s Stennis Space Center in Mississippi.

Besides completely destroying the AJ26 engine, the explosion during engine testing also severely damaged the Stennis test stand. It has taken months of hard work to rebuild and restore the test stand and place it back into service.

An extensive engine analysis, recheck and test stand firings by Aerojet Rocketdyne and Orbital Sciences engineers was conducted to clear this new pair of engines for flight.

Aerojet Rocketdyne purchased approximately 40 NK-33 engines in the mid-1990s and ‘Americanized’ them with multiple modifications including a gimbal steering mechanism.

AJ26 engine failure was immediately suspected, though by no means certain, based on an inspection of numerous photos and videos from myself and many others that clearly showed a violent explosion emanating from the base of the two stage rocket.

Up close view of two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Universe Today.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia.  Credit: Ken Kremer - kenkremer.com
Up close view of two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Universe Today. These engines powered the successful Antares liftoff on Jan. 9, 2014, at NASA Wallops, Virginia. Credit: Ken Kremer – kenkremer.com

The remainder of the first stage and Antares entire upper stage was clearly intact at the moment of the explosion in all the imagery.

Antares was carrying the unmanned Cygnus cargo freighter on a mission dubbed Orb-3 to resupply the six person crew living aboard the International Space Station (ISS) with science experiments and needed equipment.

The AIB is making rapid progress in assessing the accident’s cause based on an analysis of the rocket’s telemetry as well as the substantial amounts of debris collected from the rocket and the Cygnus cargo freighter at the Wallops launch site.

A preliminary review of telemetry and video data has been conducted and substantial debris from the Antares rocket and its Cygnus payload has been collected and examined.

Antares rocket begins rollout atop transporter erector to Launch Pad 0A at NASA Wallops Island Facility, VA., on Sept. 13, 2013.  Credit: Ken Kremer (kenkremer.com)
Antares rocket begins rollout atop transporter erector to Launch Pad 0A at NASA Wallops Island Facility, VA., on Sept. 13, 2013. Credit: Ken Kremer (kenkremer.com)

The 14 story Antares rocket is a two stage vehicle.

The liquid fueled first stage is filled with about 550,000 pounds (250,000 kg) of Liquid Oxygen and Refined Petroleum (LOX/RP) and powered by a pair of AJ26 engines that generate a combined 734,000 pounds (3,265kN) of sea level thrust.

The doomed mission was bound for the International Space Station (ISS) on a flight to bring up some 5000 pounds of (2200 kg) of science experiments, research instruments, crew provisions, spare parts, spacewalk and computer equipment and gear on a critical resupply mission in the Cygnus resupply ship.

Antares rocket stand erect, reflecting off the calm waters the night before their first night launch from NASA’s Wallops Flight Facility, VA, targeted for Oct. 27 at 6:45 p.m.  Credit: Ken Kremer – kenkremer.com
Antares rocket stands erect, reflecting off the calm waters the night before the first night launch planned from NASA’s Wallops Flight Facility, VA, on Oct. 28, which ended in disaster. Credit: Ken Kremer – kenkremer.com

The Orbital-3, or Orb-3, mission was to be the third of eight cargo resupply missions to the ISS through 2016 under the NASA Commercial Resupply Services (CRS) contract award valued at $1.9 Billion.

Orbital Sciences is under contract to deliver 20,000 kilograms of research experiments, crew provisions, spare parts, and hardware for the eight ISS flights.

I was an eyewitness to the awful devastation suffered by the Orb-3 mission from the press viewing site at NASA Wallops located at a distance of about 1.8 miles away from the launch complex.

I was interviewed by NBC News and you can watch the entire story and see my Antares explosion photos featured at NBC Nightly News on Oct. 29 here.

Watch the Antares launch disaster unfold into a raging inferno in this dramatic sequence of my photos shot on site here.

Check out my raw video of the launch here.

Read my first hand account here.

Watch my interview at Universe Today’s Weekly Space Hangout on Oct 31, 2014, here.

Watch here for Ken’s onsite reporting direct from NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Orbital Sciences Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences’ Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Antares Explosion Investigation Focuses on First Stage Propulsion Failure

First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

NASA WALLOPS FLIGHT FACILITY, VA – Investigators probing the Antares launch disaster are focusing on clues pointing to a failure in the first stage propulsion system that resulted in a loss of thrust and explosive mid-air destruction of the commercial rocket moments after liftoff from NASA’s Wallops Flight Facility, VA, at 6:22 p.m. EDT on Tuesday, October 28.

The highly anticipated first night launch of the Orbital Sciences Corp. privately developed Antares rocket blasted off nominally and ascended for about 15 seconds until a rapid fire series of sudden and totally unexpected loud explosions sent shock waves reverberating all around the launch site and surroundings for miles and the rocket was quickly consumed in a raging fireball.

Antares was carrying the unmanned Cygnus cargo freighter on a mission dubbed Orb-3 to resupply the six person crew living aboard the International Space Station (ISS) with science experiments and needed equipment.

The 14 story Antares rocket is a two stage vehicle. The liquid fueled first stage is filled with about 550,000 pounds (250,000 kg) of Liquid Oxygen and Refined Petroleum (LOX/RP) and powered by a pair of AJ26 engines originally manufactured some 40 years ago in the then Soviet Union and designated as the NK-33.

Earlier this year an AJ26 engine failed and exploded during acceptance testing on May 22, 2014, at NASA’s Stennis Space Center in Mississippi. An extensive analysis and recheck by Orbital Sciences was conducted to clear this pair for flight.

I was an eyewitness to the awful devastation suffered by the Orb-3 mission from the press viewing site at NASA Wallops located at a distance of about 1.8 miles away from the launch complex.

Numerous photos and videos from myself (see herein) and many others clearly show a violent explosion emanating from the base of the two stage rocket. The remainder of the first stage and the entire upper stage was clearly intact at that point.

Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallops. These engines powered the successful Antares liftoff on Jan. 9, 2014, at NASA Wallops, Virginia, bound for the ISS. Credit: Ken Kremer – kenkremer.com

NASA announced that Orbital Sciences is leading the investigation into the rocket failure and quickly appointed an Accident Investigation Board (AIB) chaired by David Steffy, Chief Engineer of Orbital’s Advanced Programs Group.

The AIB is working under the oversight of the Federal Aviation Administration (FAA).

“Evidence suggests the failure initiated in the first stage after which the vehicle lost its propulsive capability and fell back to the ground impacting near, but not on, the launch pad,” Orbital said in a statement.

At the post launch disaster briefing at NASA Wallops, I asked Frank Culbertson, Orbital’s Executive Vice President and General Manager of its Advanced Programs Group, to provide any specifics of the sequence of events and failure, a timeline of events, and whether the engines failed.

“The ascent stopped, there was disassembly of the first stage, and then it fell to Earth. The way the accident investigation proceeds is we lock down all the data [after the accident]. Then we go through a very methodical process to recreate the data and evaluate it. We need time to look at what failed from both a video and telemetry standpoint,” Culbertson told Universe Today.

Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Orbital Sciences’ Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

The rocket telemetry has now been released to the accident investigation board.

“Our engineers presented a very quick look assessment to the Accident Investigation Board at the end of the day. It appears the Antares vehicle had a nominal pre-launch and launch sequence with no issues noted,” Orbital said in a statement.

“All systems appeared to be performing nominally until approximately T+15 seconds at which point the failure occurred.”

Blastoff of the 14 story Antares rocket took place from the beachside Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops situated on the eastern shore of Virginia.

After the failure occurred the rocket fell back to the ground near, but not on top of, the launch pad.

“Prior to impacting the ground, the rocket’s Flight Termination System was engaged by the designated official in the Wallops Range Control Center,” said Orbital.

Technicians processing Antares rocket on Oct 26 to prepare for first night launch from NASA’s Wallops Flight Facility, VA, on Oct. 27 at 6:45 p.m.  Credit: Ken Kremer – kenkremer.com
Technicians processing Antares rocket on Oct 26 to prepare for first night launch from NASA’s Wallops Flight Facility, VA. Credit: Ken Kremer – kenkremer.com

Since the rocket impacted just north of the pad, that damage was not as bad as initially feared.

From a public viewing area about two miles away, I captured some side views of the pad complex and damage it sustained.

Check out the details of my assessment in my prior article and exclusive photos showing some clearly discernible damage to the Antares rocket launch pad – here.

Damage is visible to Launch Pad 0A following catastrophic failure of Orbital Sciences Antares rocket moments after liftoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Damage is visible to Launch Pad 0A following catastrophic failure of Orbital Sciences’ Antares rocket moments after liftoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

The doomed mission was bound for the International Space Station (ISS) on a flight to bring up some 5000 pounds of (2200 kg) of science experiments, research instruments, crew provisions, spare parts, and spacewalk and computer equipment and gear on a critical resupply mission in the Cygnus resupply ship bound for the International Space Station (ISS).

Among the top tasks of the AIB are “developing a ‘fault tree’ and a timeline of the important events during the launch sequence,” using the large volume of data available.

“We will analyze the telemetry. We have reams of data and telemetry that come down during launch and we will be analyzing that carefully to see if we can determine exactly the sequence of events, what went wrong, and then what we can do to fix it,” said Culbertson.

The accident team is also gathering and evaluating launch site debris.

“Over the weekend, Orbital’s Wallops-based Antares personnel continued to identify, catalogue, secure, and geolocate debris found at the launch site in order to preserve physical evidence and provide a record of the launch site following the mishap that will be useful for the AIB’s analysis and determination of what caused the Antares launch failure,” said Orbital.

Culberston expressed Orbital’s regret for the launch failure.

“We are disappointed we could not fulfill our obligation to the International Space Station program and deliver this load of cargo. And especially to the researchers who had science on board as well as to the people who had hardware and components on board for going to the station.”

“It’s a tough time to lose a launch vehicle and payload like this. Our team worked very hard to prepare it, with a lot of testing and analysis to get ready for this mission.”

Culbertson emphasized that Orbital will fix the problem and move forward.

“Something went wrong and we will find out what that is. We will determine the root cause and we will correct that. And we will come back and fly here at Wallops again. We will do all the things that are necessary to make sure it is as safe as we can make it, and that we solve the immediate problem of this particular mission.”

Cygnus pressurized cargo module - side view - during prelaunch processing by Orbital Sciences at NASA Wallops, VA.  Credit: Ken Kremer - kenkremer.com
Cygnus pressurized cargo module – side view – during prelaunch processing by Orbital Sciences at NASA Wallops, VA. Credit: Ken Kremer – kenkremer.com

Culbertson noted that the public should not touch any rocket debris found.

“The investigation will include evaluating the debris around the launch pad. The rocket had a lot of hazardous equipment and materials on board that people should not be looking for or wanting to collect souvenirs. If you find anything that washes ashore or landed you should call the local authorities and definitely not touch it.”

The Orbital-3, or Orb-3, mission was to be the third of eight cargo resupply missions to the ISS through 2016 under the NASA Commercial Resupply Services (CRS) contract award valued at $1.9 Billion.

Orbital Sciences is under contract to deliver 20,000 kilograms of research experiments, crew provisions, spare parts, and hardware for the eight ISS flights.

At this point the future is unclear.

Watch here for Ken’s onsite reporting direct from NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer