Two Years Ago Today: It Was a Clear Day on Pluto When New Horizons Flew By

New Horizon's July 2015 flyby of Pluto captured this iconic image of the heart-shaped region called Tombaugh Regio. Credit: NASA/JHUAPL/SwRI.

It was two years ago this morning that we awoke to see the now iconic image of Pluto that the New Horizons spacecraft had sent to Earth during the night. You, of course, know the picture I’m talking about – the one with a clear view of the giant heart-shaped region on the distant, little world (see above).

This image was taken just 16 hours before the spacecraft would make its closest approach to Pluto. Then, during that seemingly brief flyby (after traveling nine-and-a-half years and 3 billion miles to get there), the spacecraft gathered as much data as possible and we’ve been swooning over the images and pondering the findings from New Horizons ever since.

“This is what we came for – these images, spectra and other data types that are helping us understand the origin and the evolution of the Pluto system for the first time,” New Horizons principal investigator Alan Stern told me last year. “We’re seeing that Pluto is a scientific wonderland. The images have been just magical. It’s breathtaking.”

See a stunning new video created from flbyby footage in honor of the two-year anniversary of the flyby:

All the images have shown us that Pluto is a complex world with incredible diversity, in its geology and also in its atmosphere.

While the iconic “heart” image shows a clear and cloudless view of Pluto, a later image showed incredible detail of Pluto’s hazy atmosphere, with over two dozen concentric layers that stretches more than 200 km high in Pluto’s sky.

With all those layers and all that haze, could there be clouds on Pluto too?

The smooth expanse of the informally named Sputnik Planum (right) is flanked to the west (left) by rugged mountains up to 11,000 feet (3,500 meters) high, including the informally named Norgay Montes in the foreground and Hillary Montes on the skyline. The backlighting highlights more than a dozen layers of haze in Pluto’s tenuous but distended atmosphere. Credit: NASA/JHUAPL/SwRI.

This is a question Stern and his fellow scientists have been asking for a long time, actually, as they have been studying Pluto for decades from afar. Now with data from New Horizons, they’ve been able to look closer. While Stern and his colleagues have been discussing how they found possible clouds on Pluto for a few months, they have now detailed their findings in a paper published last month.

“Numerous planets in our solar system, including Venus, Earth, Mars, Titan, and all four of the giant planets possess atmospheres that contain clouds, i.e., discrete atmospheric condensation structures,” the team wrote in their paper. “This said, it has long been known that Pluto’s current atmosphere is not extensively cloudy at optical or infrared wavelengths.”

They explained that evidence for this came primarily from the “high amplitude and temporal stability of Pluto’s lightcurve,” however, because no high spatial resolution imagery of Pluto was possible before New Horizons, it remained to be seen if clouds occur over a small fraction of Pluto’s surface area.

But now with flyby images in hand, the team set out to do searches for clouds on Pluto, looking at all available imagery from the Long Range Reconnaissance Imager and the Multispectral Visible Imaging Camera, looking at both the disk of Pluto and near and on the limb. Since an automated cloud search was nearly impossible, it was all done by visual inspection of the images by the scientists.

They looked for features in the atmosphere that including brightness, fuzzy or fluffy-looking edges and isolated borders.

Seven Possible Cloud Candidates (PCCs) identified by the New Horizons team. Two of these images (3, 4) were taken by MVIC; the other five (1, 2, 5,
6, 7) were taken by LORRI. Arrows indicate each PCC. Credit: Stern et al, 2017.

In all, they found seven bright, discrete possible cloud candidates. The seven candidates share several different attributes including small size, low altitude, they all were visible either early or late in the day local time, and were only visible at oblique geometry – which is basically a sideways look from the spacecraft.

Also, several cloud candidates also coincided with brighter surface features below, so the team is still pondering the correlation.

“The seven candidates are all similar in that they are very low altitude,” Stern said last fall at the Division of Planetary Sciences meeting, “and they are all low-lying, isolated small features, so no broad cloud decks or fields. When we map them over the surface, they all lie near the terminator, so they occur near dawn or dusk. This is all suggestive they are clouds because low-lying regions and dawn or dusk provide cooler conditions where clouds may occur.”

While haze was detected as high as 220 km, the possible clouds were found at very low altitudes. Stern told Universe Today that these possible, rare condensation clouds could be made of ethane, acetylene, hydrogen cyanide or methane under the right conditions. Stern added these clouds are probably short-lived phenomena – again, likely occurring only at dawn or dusk. A day on Pluto is 6.4 days on Earth.

But all in all, they concluded that at the current time Pluto’s atmosphere is almost entirely free of clouds – in fact the dwarf planet’s sky was 99% cloud free the day that New Horizons whizzed by.

“But if there are clouds, it would mean the weather on Pluto is even more complex than we imagined,” Stern said last year.

The seven cloud candidates cannot be confirmed as clouds because none are in the region where there was stereo imaging or other available ways to cross-check it. They concluded that further modeling would be needed, but specifically a Pluto orbiter mission would be the only way to “search for clouds more thoroughly than time and space and was possible during the brief reconnaissance flyby by New Horizons.”

If you’re dreaming of a Pluto orbiter, you can read about some possibilities of how to do it in our article from May of this year.

Grab Your Smartphone And Become A Citizen Scientist For NASA

NASA's new app, the Globe Observer, will allow users to collect observations of clouds, and engage in a little citizen science. Image: NASA GLOBE Observer
NASA's new app, the Globe Observer, will allow users to collect observations of clouds, and engage in a little citizen science. Image: NASA GLOBE Observer

It’s long been humanity’s dream to do something useful with our smartphones. Sure, we can take selfies, and post pictures of our meals, but true smartphone greatness has eluded us. Until now, that is.

Thanks to NASA, we can now do some citizen science with our ubiquitous devices.

For over 20 years, and in schools in over 110 countries, NASA’s Global Learning and Observations to Benefit the Environment (GLOBE) program has helped students understand their local environment in a global context. Now NASA has released the GLOBE Observer app, which allows users to capture images of clouds in their local environment, and share them with scientists studying the Earth’s climate.

“With the launch of GLOBE Observer, the GLOBE program is expanding beyond the classroom to invite everyone to become a citizen Earth scientist,” said Holli Riebeek Kohl, NASA lead of GLOBE Observer. The app will initially be used to capture cloud observations and images because they’re such an important part of the global climate system. But eventually, GLOBE Observer will also be used to observe land cover, and to identify types of mosquito larvae.

GLOBE has two purposes. One is to collect solid scientific data, the other is to increase users’ awareness of their own environments. “Once you collect environmental observations with the app, they are sent to the GLOBE data and information system for use by scientists and students studying the Earth,” said Kohl. “You can also use these observations for your own investigations and interact with a vibrant community of individuals from around the world who care about Earth system science and our global environment.”

Clouds are a dynamic part of the Earth’s climate system. Depending on their type, their altitude, and even the size of their water droplets, they either trap heat in the atmosphere, or reflect sunlight back into space. We have satellites to observe and study clouds, but they have their limitations. An army of citizen scientists observing their local cloud population will add a lot to the efforts of the satellites.

“Clouds are one of the most important factors in understanding how climate is changing now and how it’s going to change in the future,” Kohl said. “NASA studies clouds from satellites that provide either a top view or a vertical slice of the clouds. The ground-up view from citizen scientists is valuable in validating and understanding the satellite observations. It also provides a more complete picture of clouds around the world.”

The observations collected by GLOBE users could end up as part of NASA's Earth Observatory, which tracks the cloud fraction around the world. Image: NASA/NASA Earth Observation.
The observations collected by GLOBE users could end up as part of NASA’s Earth Observatory, which tracks the cloud fraction around the world. Image: NASA/NASA Earth Observation.

The GLOBE team has issued a challenge to any interested citizen scientists who want to use the app. Over the next two weeks, the team is hoping that users will make ground observations of clouds at the same time as a cloud-observing satellite passes overhead. “We really encourage all citizen scientists to look up in the sky and take observations while the satellites are passing over through Sept. 14,” said Kohl.

The app makes this easy to do. It informs users when a satellite will be passing overhead, so we can do a quick observation at that time. We can also use Facebook or Twitter to view daily maps of the satellite’s path.

“Ground measurements are critical to validate measurements taken from space through remote sensing,” said Erika Podest, an Earth scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California, who is working with GLOBE data. “There are some places in the world where we have no ground data, so citizen scientists can greatly contribute to advancing our knowledge this important part of the Earth system.”

The app itself seems pretty straightforward. I checked for upcoming satellite flyovers and was notified of 6 flyovers that day. It’s pretty quick and easy to step outside and take an observation at one of those times.

I did a quick observation from the street in front of my house and it took about 2 minutes. To identify cloud types, you just match what you see with in-app photos of the different types of clouds. Then you estimate the percentage of cloud cover, or specify if the sky is obscured by blowing snow, or fog, or something else. You can also add pictures, and the app guides you in aiming the camera properly.

The GLOBE Observer app is easy to use, and kind of fun. It’s simple enough to fit a quick cloud observation in between selfies and meal pictures.

Download it and try it out.

You can download the IOS version from the App Store, and the Android version from Google Play.

First Detection of Water Clouds Outside Our Solar System

Artist's conception of how WISE 0855 might appear if viewed close-up in infrared light. Artwork by Joy Pollard, Gemini Observatory/AURA.

Brown dwarfs – those not-quite-a-planet and not-quite-a-star objects – are intriguing oddities that are too low in mass to burn hydrogen, but are more massive than planets. They only emit a faint amount of light, so they are hard to detect, making scientists unsure of how many of them might be out there in our galaxy.

But astronomers have been keeping an eye one particular brown dwarf known called WISE 0855. Just 7.2 light-years from Earth, it is the coldest known object outside of our Solar System and is just barely visible at infrared wavelengths. But with some crafty spectroscopic observing techniques, astronomers have now determined this object has some exciting characteristics: its atmosphere is full of clouds of water vapor. This is the first time water clouds have been detected outside of our Solar System.

“It’s five times fainter than any other object detected with ground-based spectroscopy at this wavelength,” said Andrew Skemer, assistant professor of astronomy and astrophysics at UC Santa Cruz and the first author on a paper on WISE 0855 published in Astrophysical Journal Letters (paper is available on arXiv here). “Now that we have a spectrum, we can really start thinking about what’s going on in this object. Our spectrum shows that WISE 0855 is dominated by water vapor and clouds, with an overall appearance that is strikingly similar to Jupiter.”

This brown dwarf’s full name is WISE J085510.83-071442.5, but we’re among friends, so it’s W0855 for short. It has about five times the mass of Jupiter and is the coldest brown dwarf ever detected, with an average temperature of about 250 degrees Kelvin, or minus 10 degrees F, minus 20 C. That makes it nearly as cold as Jupiter, which is 130 degrees Kelvin.

“WISE 0855 is our first opportunity to study an extrasolar planetary-mass object that is nearly as cold as our own gas giants,” Skemer said.

Skemer and his team used the Gemini-North telescope in Hawaii and the Gemini Near Infrared Spectrograph to observe WISE 0855 over 13 nights for a total of about 14 hours. Skemer was part of a team that studied this object in 2014 found tentative indications of water clouds based on very limited photometric data. Skemer said obtaining a spectrum (which separates the light from an object into its component wavelengths) was the only way to detect this object’s molecular composition.

A video about the 2014 discovery and study of WISE 0855:

WISE 0855 is too faint for conventional spectroscopy at optical or near-infrared wavelengths, but the team took up a challenge and looked at the thermal emissions from the object at wavelengths in a narrow window around 5 microns.

“I think everyone on the research team really believed that we were dreaming to think we could obtain a spectrum of this brown dwarf because its thermal glow is so feeble,” said Skemer. WISE 0855, is so cool and faint that many astronomers thought it would be years before a spectrum could be obtained. “I thought we’d have to wait until the James Webb Space Telescope was operating to do this,” Skemer said.

This spectroscopic view provided a glimpse into the environment of WISE 0855’s atmosphere. With the data in hand, the researchers then developed atmospheric models of the equilibrium chemistry for a brown dwarf at 250 degrees Kelvin and calculated the resulting spectra under different assumptions, including cloudy and cloud-free models. The models predicted a spectrum dominated by features resulting from water vapor, and the cloudy model yielded the best fit to the features in the spectrum of WISE 0855.

While the spectra of this object are strikingly similar to Jupiter, WISE 0855 appears to have a less turbulent atmosphere.

“The spectrum allows us to investigate dynamical and chemical properties that have long been studied in Jupiter’s atmosphere, but this time on an extrasolar world,” Skemer said.

The scientists say WISE 0855 looks more similar to Jupiter than any exoplanet yet discovered, which is especially intriguing since the Juno mission has just begun its exploration at the giant world. Jupiter, along with the other gas planets in our Solar System, all have clouds and storms, although Jupiter’s clouds are mainly made of ammonia with lower level clouds perhaps containing water. One of Juno’s goals is to determine the global water abundance at Jupiter.

Sources: UC Santa Cruz, Gemini

Clouds Seen On Pluto For First Time

Recent images sent by NASA's New Horizons spacecraft show possible clouds floating over the frozen landscape including the streaky patch at right. Credit: NASA/JHUAPL/SwR
Recent images sent by NASA's New Horizons spacecraft show possible clouds floating over the frozen landscape including the streaky patch at right. Credit: NASA/JHUAPL/SwR
Recent images sent by NASA’s New Horizons spacecraft show possible clouds floating over the frozen landscape including the hazy streak right of center. Credit: NASA/JHUAPL/SwRI

I think we were all blown away when the New Horizons spacecraft looked back at Pluto’s dark side and returned the first photos of a surprisingly complex, layered atmosphere. Colorless nitrogen along with a small percentage of methane make up Pluto’s air. Layers of haze are likely created when the two gases react in sunlight to form tiny, soot-like particles called tholins. These can ultimately grow large enough to settle toward the surface and coat and color Pluto’s icy exterior.

Close up of the back side of Pluto taken by New Horizons shows multiple layers of haze in its mostly nitrogen atmosphere. Credit:
Close up of the back side of Pluto taken by New Horizons shows multiple layers of haze in its mostly nitrogen atmosphere. Credit: NASA/JHUAPL/SwRI

Now it seems Pluto’s atmosphere is capable of doing even more — making clouds! In an e-mail exchange with New Scientist, Lowell Observatory astronomer Will Grundy discusses the possibility that streaks and small condensations within the hazes might be individual clouds. Grundy also tracked a feature as it passed over different parts of the Plutonian landscape below, strongly suggesting a cloud.  If confirmed, they’d be the first-ever clouds seen on the dwarf planet, and a sign this small 1,473-mile-wide (2,370 km) orb possesses an even more complex atmosphere than imagined.

Faint arrows along Pluto's limb point to possible clouds in a low altitude haze layer. More distinct possible clouds are arrowed at left. Credit: NASA/JHUAPL/SwR
Faint arrows along Pluto’s limb point to possible clouds in a low altitude haze layer. More distinct possible clouds are arrowed at left. Credit: NASA/JHUAPL/SwRI
The smooth expanse of the informally named Sputnik Planum (right) is flanked to the west (left) by rugged mountains up to 11,000 feet (3,500 meters) high, including the informally named Norgay Montes in the foreground and Hillary Montes on the skyline. The backlighting highlights more than a dozen layers of haze in Pluto's tenuous but distended atmosphere.
15 minutes after its closest approach, New Horizons snapped this image of the smooth expanse of Sputnik Planum (right) flanked to the west (left) by rugged mountains up to 11,000 feet (3,500 meters) high, including the informally named Norgay Montes in the foreground and Hillary Montes on the skyline. The backlighting highlights more than a dozen layers of haze in Pluto’s tenuous but distended atmosphere. Credit: NASA/JHUAPL/SwRI

Given the onion-like layers of haze and potential clouds, perhaps we shouldn’t be surprise that it snows on Pluto. The New Horizons team announced the discovery this week of a chain of exotic snowcapped mountains stretching across the dark expanse of the informally named Cthulhu Regio. Cthulhu, pronounced kuh-THU-lu and named for a character in American horror writer H.P. Lovecraft’s books, stretches nearly halfway around Pluto’s equator, starting from the west of the vast nitrogen ice plain, Sputnik Planum. At 1,850 miles (3,000 km) long and 450 miles (750 km) wide, Cthulhu is a bit larger than the state of Alaska. But ever so much colder!

A section of Cthulhu Regio boasts peaks covered in methane frost or snow.
The upper slopes of Cthulhu’s highest peaks are coated with a bright material that contrasts sharply with the dark red color of the surrounding plains. Scientists think it’s methane ice condensed from Pluto’s atmosphere. The far right panel shows the distribution of methane ice on the surface. Credit: NASA/JHUAPL/SwRI

Cthulhu’s red color probably comes from a covering of dark tholins formed when methane interacts with sunlight. But new close-up images reveal that the region’s highest mountains appear coated with a much brighter material. Scientists think it’s methane, condensed as ice onto the peaks from Pluto’s atmosphere.

“That this material coats only the upper slopes of the peaks suggests methane ice may act like water in Earth’s atmosphere, condensing as frost at high altitude,” said John Stansberry, a New Horizons science team member.

Compositional data from the New Horizon’s Ralph/Multispectral Visible Imaging Camera (MVIC), shown in the right panel in the image above, shows that the location of the bright ice on the mountain peaks correlates almost exactly with the distribution of methane ice, shown in false color as purple.

New Horizons still has plenty of images stored on its hard drive, so we’re likely to see more clouds, frosty peaks and gosh-knows-what-else as the probe speeds ever deeper into space while returning daily postcards from its historic encounter.

What are Those Colorful, Crazy Clouds in the Sky??

Ethereal and stunning sundog-like forms in the clouds over Oxford, England on June 25, 2014. Credit and copyright: Nathanial Burton-Bradford.

My Twitter feed exploded on June 25 with reports of colorful, crazy-looking clouds, sundogs, Sun halos and more. The above image from Nathanial Burton-Bradford is just an example of the type of atmospheric effect called a circumhorizontal arc. These are sometimes referred to as “fire rainbows” but of course are not rainbows, and fire plays no role.

This is an optical phenomenon from sunlight hitting ice crystals in high cirrus clouds. It is actually a rather rare occurrence, but it happens most often during the daytime in summer when the Sun is high in the sky. This creates a rainbow-type effect directly in the ice crystal-filled clouds.

See more examples below.

Wispy clouds and a circumhorizontal arc over Italy. Credit and copyright: Elisabetta Bonora.
Wispy clouds and a circumhorizontal arc over Italy. Credit and copyright: Elisabetta Bonora.
Circumhorizontal Arc over the UK on June 25, 2014. Credit and copyright: Sculptor Lil on Flickr.
Circumhorizontal Arc over the UK on June 25, 2014. Credit and copyright: Sculptor Lil on Flickr.

You can find out more about circumhorizontal arcs from this article from Amusing Planet.

Mountains Soar Above the Appalachians in this Dramatic NASA Photo

Giant storm clouds swirl over North Carolina (Credit: NASA / Stu Broce)

Except these are mountains made of water, not rock! Taken from an altitude of 65,000 feet, the image above shows enormous storm cells swirling high over the mountains of western North Carolina on May 23, 2014. It was captured from one of NASA’s high-altitide ER-2 aircraft during a field research flight as part of the Integrated Precipitation and Hydrology Experiment (IPHEx) campaign.

The photo was NASA’s Image of the Day for June 19, 2014.

Visualization of the GPM Core Observatory satellite (NASA/Britt Griswold)
Visualization of the GPM Core Observatory satellite (NASA/Britt Griswold)

For six weeks the IPHEx campaign team from NASA, NOAA, and Duke University set up ground stations and flew ER-2 missions over the southeastern U.S., collecting data on weather and rainfall that will be used to supplement and calibrate data gathered by the GPM Core Observatory launched in February.

By the time its role in IPHEx was completed on June 16, the Lockheed ER-2 aircraft had flown more than 95 hours during 18 flights over North and South Carolina, Georgia, Florida, and Tennessee. Its high-altitude capabilities allow researchers to safely fly above storm systems, taking measurements like a satellite would.

Learn more about the ER-2 flights here, and read more about the IPHEx campaign on Duke University’s Pratt School of Engineering site here.

Source: NASA

NASA's ER-2 at the Armstrong Flight Research Center's Building 703 in Palmdale, CA (NASA / Tom Tschida)
NASA’s ER-2 at the Armstrong Flight Research Center’s Building 703 in Palmdale, CA (NASA/Tom Tschida)

Earth’s Highest Clouds Shine at the “Top of the Orbit”

Polar mesospheric clouds shine over a midnight sunrise above Alaska on August 4, 2013 (NASA)

Looking for a new desktop background? This might do nicely: a photo of noctilucent “night-shining” clouds seen above a midnight Sun over Alaska, taken from the ISS as it passed over the Aleutian Islands just after midnight local time on Sunday, August 4.

When this photo was taken Space Station was at the “top of the orbit” — 51.6 ºN, the northernmost latitude that it reaches during its travels around the planet.

According to the NASA Earth Observatory site, “some astronauts say these wispy, iridescent clouds are the most beautiful phenomena they see from orbit.” So just what are they? Read on…

Found about 83 km (51 miles) up, noctilucent clouds (also called polar mesospheric clouds, or PMCs) are the highest cloud formations in Earth’s atmosphere. They form when there is just enough water vapor present to freeze into ice crystals. The icy clouds are illuminated by the Sun when it’s just below the horizon, after darkness has fallen or just before sunrise, giving them their eponymous property.

NLCs seen in the southern hemisphere in Jan. 2010 (NASA)
NLCs seen in the southern hemisphere in Jan. 2010 (NASA)

Noctilucent clouds have also been associated with rocket launches, space shuttle re-entries, and meteoroids, due to the added injection of water vapor and upper-atmospheric disturbances associated with each. Also, for some reason this year the clouds appeared a week early.

Read more: Noctilucent Clouds — Electric Blue Visitors from the Twilight Zone

Some data suggest that these clouds are becoming brighter and appearing at lower latitudes, perhaps as an effect of global warming putting more greenhouse gases like methane into the atmosphere.

“When methane makes its way into the upper atmosphere, it is oxidized by a complex series of reactions to form water vapor,” said James Russell, the principal investigator of NASA’s Aeronomy of Ice in the Mesosphere (AIM) project and a professor at Hampton University. “This extra water vapor is then available to grow ice crystals for NLCs.”

A comparison of noctilucent cloud formation from 2012 and 2013 has been compiled using data from the AIM spacecraft. You can see the sequence here.

And for an incredible motion sequence of noctilucent clouds — taken from down on the ground — check out the time-lapse video below by Maciej Winiarczyk, coincidentally made at around the same time as the ISS photo above:

(The video was featured as the Astronomy Picture of the Day (APOD) for August 19, 2013.)

Source: NASA Earth Observatory

New Desktop Image Alert: The Moon Over Earth

hgdfhfhghdhhfhd

If you’re like me, you don’t change your computer’s desktop background nearly often enough… especially not considering all the fantastic space images that get released on an almost daily basis. But this picture, shared a couple of weeks ago by NASA’s Marshall Space Flight Center on their Flickr stream, really should inspire you to fix that. (I know it did for me!)

Captured by an Expedition 28 crew member aboard the International Space Station, this beautiful image shows a crescent-lit Moon seen through the upper layers of Earth’s atmosphere.

As it circles the globe, the ISS travels an equivalent distance to the Moon and back in about a day, making an excellent platform for viewing the Earth and its atmosphere. This photo shows the limb of Earth near the bottom transitioning into the orange-colored troposphere, the lowest and most dense portion of the Earth’s atmosphere. The troposphere ends abruptly at the tropopause, which appears in the image as the sharp boundary between the orange- and blue- colored atmosphere. Silvery-blue noctilucent clouds extend far above the Earth’s troposphere.

Expedition 28 began on May 23, 2011, with a crew consisting of Andrey Borisenko, Ron Garan, Alexander Samokutyaev, Sergei Volkov, Mike Fossum, and Satoshi Furukawa.

Image credit: NASA (Source)

 

Venus’ Winds Are Mysteriously Speeding Up

Over the past six years wind speeds in Venus' atmosphere have been steadily rising (ESA)

High-altitude winds on neighboring Venus have long been known to be quite speedy, whipping sulfuric-acid-laden clouds around the superheated planet at speeds well over 300 km/h (180 mph). And after over six years collecting data from orbit, ESA’s Venus Express has found that the winds there are steadily getting faster… and scientists really don’t know why.

Cloud structures in Venus' atmosphere, seen by Venus Express' Ultraviolet, Visible and Near-Infrared Mapping Spectrometer (VIRTIS) in 2007 (ESA)
Cloud structures in Venus’ atmosphere, seen by Venus Express’ Ultraviolet, Visible and Near-Infrared Mapping Spectrometer (VIRTIS) in 2007 (ESA)

By tracking the movements of distinct features in Venus’ cloud tops at an altitude of 70 km (43 miles) over a period of six years — which is 10 of Venus’ years — scientists have been able to monitor patterns in long-term global wind speeds.

What two separate studies have found is a rising trend in high-altitude wind speeds in a broad swath south of Venus’ equator, from around 300 km/h when Venus Express first entered orbit in 2006 to 400 km/h (250 mph) in 2012. That’s nearly double the wind speeds found in a category 4 hurricane here on Earth!

“This is an enormous increase in the already high wind speeds known in the atmosphere. Such a large variation has never before been observed on Venus, and we do not yet understand why this occurred,” said Igor Khatuntsev from the Space Research Institute in Moscow and lead author of a paper to be published in the journal Icarus.

Long-term studies based on tracking the motions of several hundred thousand cloud features, indicated here with arrows and ovals, reveal that the average wind speeds on Venus have increased from roughly 300 km/h to 400 km/h over the first six years of the mission. (Khatuntsev et al.)
Long-term studies based on tracking the motions of several hundred thousand cloud features, indicated here with arrows and ovals, reveal that the average wind speeds on Venus have increased from roughly 300 km/h to 400 km/h over the first six years of the mission. (Khatuntsev et al.)

A complementary Japanese-led study used a different tracking method to determine cloud motions, which arrived at similar results… as well as found other wind variations at lower altitudes in Venus’ southern hemisphere.

“Our analysis of cloud motions at low latitudes in the southern hemisphere showed that over the six years of study the velocity of the winds changed by up 70 km/h over a time scale of 255 Earth days – slightly longer than a year on Venus,” said Toru Kouyama from Japan’s Information Technology Research Institute. (Their results are to be published in the Journal of Geophysical Research.)

Both teams also identified daily wind speed variations on Venus, along with shifting wave patterns that suggest “upwelling motions in the morning at low latitudes and downwelling flow in the afternoon.” (via Cloud level winds from the Venus Express Monitoring Camera imaging, Khatuntsev et al.)

A day on Venus is longer than its year, as the planet takes 243 Earth days to complete a single rotation on its axis. Its atmosphere spins around it much more quickly than its surface rotates — a curious feature known as super-rotation.

“The atmospheric super-rotation of Venus is one of the great unexplained mysteries of the Solar System,” said ESA’s Venus Express Project Scientist Håkan Svedhem. “These results add more mystery to it, as Venus Express continues to surprise us with its ongoing observations of this dynamic, changing planet.”

Read more here on ESA’s Venus Express page.

An Early Start for Noctilucent Clouds

Noctilucent clouds photographed over Killygordon, Ireland on the morning of June 10. (© Brendan Alexander/Donegal Skies. All rights reserved.)

The season for noctilucent “night-shining” clouds is arriving in the northern hemisphere, when wispy, glowing tendrils of high-altitude ice crystals may be seen around the upper latitudes, shining long after the Sun has set. Found about 83 km (51 miles) up, noctilucent clouds (also called polar mesospheric clouds) are the highest cloud formations in the atmosphere. They’ve been associated with rocket launches and space shuttle re-entries and are now thought to also be associated with meteor activity… and for some reason, this year they showed up a week early.


Noctilucent clouds (NLCs) form between 76 to 85 kilometers (47 to 53 miles) above Earth’s surface when there is just enough water vapor to freeze into ice crystals. The icy clouds are illuminated by the Sun when it is just below the horizon, after darkness has fallen, giving them their night-shining properties. This year NASA’s AIM spacecraft, which is orbiting Earth on a mission to study high-altitude ice, started seeing noctilucent clouds on May 13th.

AIM map of noctilucent clouds over the north pole on June 8 (Credit: LASP/University of Colorado)
AIM map of noctilucent clouds over the north pole on June 8
(Credit: LASP/University of Colorado)

“The 2013 season is remarkable because it started in the northern hemisphere a week earlier than any other season that AIM has observed,” reports Cora Randall of the Laboratory for Atmospheric and Space Physics at the University of Colorado. “This is quite possibly earlier than ever before.”

The early start is extra-puzzling because of the solar cycle. Researchers have long known that NLCs tend to peak during solar minimum and bottom-out during solar maximum — a fairly strong anti-correlation. “If anything, we would have expected a later start this year because the solar cycle is near its maximum,” Randall says. “So much for expectations.”

Read more on the NASA AIM page here, and watch the Science@NASA video below for the full story. (Also, check out some very nice NLC photos taken last week in the UK by Stuart Atkinson at Cumbrian Sky.)

Source: NASA