Ceres Bizarre Bright Spot Now Has a Companion

This image was taken by NASA's Dawn spacecraft of dwarf planet Ceres on Feb. 19 from a distance of nearly 29,000 miles (46,000 km). It shows that the brightest spot on Ceres has a dimmer companion, which apparently lies in the same basin. See below for the wide view. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Aliens making dinner with a solar cooker? Laser beams aimed at hapless earthlings? Whatever can that – now those – bright spots on Ceres be? The most recent images taken by the Dawn spacecraft now reveal that the bright pimple has a companion spot. Both are tucked inside a substantial crater and seem to glow with an intensity out of proportion to the otherwise dark and dusky surrounding landscape.“The brightest spot continues to be too small to resolve with our camera, but despite its size it is brighter than anything else on Ceres,” said Andreas Nathues, lead investigator for the framing camera team at the Max Planck Institute for Solar System Research, Gottingen, Germany. “This is truly unexpected and still a mystery to us.”

Tight crop of the two bright spots. Could they be ice? Volcano-related? Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Tight crop of the two bright spots. Could they be ice? Volcano-related? Credit:

It’s a mystery bound to stir fresh waves of online speculative pseudoscience. The hucksters better get moving. Dawn is fewer than 29,000 miles (46,000 km) away and closing fast. On March 6 it will be captured by Ceres gravity and begin orbiting the dwarf planet for a year or more. Like waking up and rubbing the sleep from your eyes, our view of Ceres and its enigmatic “twin glows” will become increasingly clear in about six weeks.

Dawn's approaches Ceres from the left (direction of the Sun) and gets captured by its gravity. The craft first gets closer as it approaches but then recedes (moves off to right) before closing in again and ultimately orbiting the asteroid. The solid lines show where Dawn is thrusting with its ion engine. As it swings to the right of Ceres, photos will show it as a crescent. Credit: NASA/Marc Rayman
Dawn approaches Ceres from the left (direction of the Sun) and gets captured by its gravity. The craft first gets closer as it approaches but then recedes (moves off to right) before closing in again and ultimately settling into orbit around the asteroid. The solid lines show where Dawn is thrusting with its ion engine. As it swings to the right, photos will show Ceres as a crescent. Credit: NASA/Marc Rayman

Why not March 6th when it enters orbit? Momentum is temporarily carrying the probe beyond Ceres. Only after a series of balletic moves to reshape its orbit to match that of Ceres will it be able to return more detailed images. You’ll recall that Rosetta did the same before finally settling into orbit around Comet 67P.

Closest approach occurred on Feb. 23 at 24,000 miles (38,600 km); at the moment the spacecraft is moving beyond Ceres at the very relaxed rate of 35 mph (55 kph).

This and the photo below were taken on Feb. 19, 2015 and processed to enhance clarity. Notice the very large but shallow crater below center. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This and the photo below were taken on Feb. 19, 2015 and processed to enhance clarity. Notice the very large but shallow crater below center. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

We do know that unlike Dawn’s first target, the asteroid Vesta, Ceres is rich in water ice. It’s thought that it possesses a mantle of ice and possibly even ice on its surface. In January 2014, ESA’s orbiting Herschel infrared observatory detected water vapor given off by the dwarf planet. Clays have been identified in its crust as well, making Ceres unique compared to many asteroids in the main belt that orbit between Mars and Jupiter.

Given the evidence for H20,  we could be seeing ice reflecting sunlight possibly from a recent impact that exposed new material beneath the asteroid’s space-weathered skin. If so, it’s odd that the spot should be almost perfectly centered in the crater.

This and the photo below were taken on Feb. 19, 2015 and processed to enhance clarity. Notice the very large but shallow crater below center. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
A different hemisphere of Ceres photographed on Feb. 19. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Chris Russell, principal investigator for the Dawn mission, offers another possible scenario, where the bright spots “may be pointing to a volcano-like origin.” Might icy volcanism in the form of cryovolcanoes have created the dual white spots? Or is the white material fresh, pale-colored rock either erupted from below or exposed by a recent impact? Ceres is a very dark world with an albedo or reflectivity even less than our asphalt-dark Moon. Freshly exposed rock or ice might stand out starkly.

An 8.8g part slice of the eucrite meteorite NWA 3147. Most eucrites are derived from lava flows on the asteroid Vesta. Credit: Bob King
A part slice of the eucrite meteorite NWA 3147. Most eucrites are derived from lava flows on the asteroid Vesta and are rich in light-toned minerals. Credit: Bob King

One of the more common forms of asteroid lava found on Earth are the eucrite achondrite meteorites. Many are rich in plagioclase and other pale minerals that are good reflectors of light. Of course, these are all speculations, but the striking contrast of bright and dark certainly piques our curiosity.

Artist’s concept of Dawn in its survey orbit at dwarf planet Ceres. Credit: NASA/JPL-Caltech
Artist’s concept of Dawn in its survey orbit at dwarf planet Ceres. Credit: NASA/JPL-Caltech

Additional higher resolutions photos streamed back by Dawn show a fascinating array of crater types from small and deep to large and shallow. On icy worlds, ancient impact craters gradually “relax” and lose relief over time, flattening as it were. We’ve seen this on the icy Galilean moons of Jupiter and perhaps the largest impact basins on Ceres are examples of same.

Questions, speculations. Our investigation of any new world seen up close for the first time always begins with questions … and often ends with them, too.

An Even Closer View of Ceres Shows Multiple White Spots Now

One several images NASA's Dawn spacecraft took on approach to Ceres on Feb. 4, 2015 at a distance of about 90,000 miles (145,000 kilometers) from the dwarf planet. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

NASA’s Dawn spacecraft has acquired its latest and closest-yet snapshot of the mysterious dwarf planet world Ceres. These latest images, taken on Feb. 4, from a distance of about 90,000 miles (145,000 km) clearly show craters – including a couple with central peaks –  and a clearer though still ambiguous view of that wild white spot that has so many of us scratching our heads as to its nature.

Get ready to scratch some more. The mystery spot has plenty of company.

Take a look at some still images I grabbed from the video which NASA made available today. In several of the photos, the white spot clearly looks like a depression, possibly an impact site. In others, it appears more like a rise or mountaintop. But perhaps the most amazing thing is that there appear to be not one but many white dabs and splashes on Ceres’ 590-mile-wide globe. I’ve toned the images to bring out more details:

Here the spot appears more like a depression. Frost? Ice? Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Here the spot appears more like a depression. Frost? Ice? Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Here the white spot is at the asteroid's left limb. You can also see additional smaller spots that remind me of rayed lunar craters. Credit:
Here the white spot is at the asteroid’s left limb. You can also see lots of additional smaller spots that remind me of rayed lunar craters. Of course, they may be something else entirely.  Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Look down along the lower limb to spot a crater with a cool central peak. Credit:
Look down along the lower limb to spot a crater with a cool central peak. Note also how many white spots are now visible on Ceres. The mystery spot is a little right of center in this view. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Our mystery white spot is further right of center. Is it a rise or a hole? Credit:
Our mystery white spot is further right of center. Is it a rise or a hole?Are the streaks rays for fresh material from an impact the way the lunar crater Tycho appears from Earth?  Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Yet another view of the mystery spot. Credit:
Yet another view of the mystery spot. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

 

Animation made from images taken by Dawn on Feb. 4. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Animation made from images taken by Dawn on Feb. 4. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Now let’s take a look at an additional NASA animation of Ceres made using processed images. As the spot first rounds the limb it looks like a depression. But just before it disappears around the backside a pointed peak seems to appear. Intriguing, isn’t it?

The Solar System’s ‘Yearbook’ is About to Get Filled In

The 33 largest objects in our Solar System, ordered by mean radius, using the best images available as of January, 2015. Credit and copyright: Radu Stoicescu.

Lined up like familiar faces in your high school yearbook, here are images of the 33 largest objects in the Solar System, ordered in size by mean radius. Engineer Radu Stoicescu put this great graphic together, using the highest resolution images available for each body. Nine of these objects have not yet been visited by a spacecraft. Later this year, we’ll visit three of them and be able to add better images of Ceres, Pluto and Charon. It might be a while until the remaining six get closeups.

“This summer, for the first time since 1989,” Stoicescu noted on reddit, “we will add 3 high resolution pictures to this collection, then, for the rest of our lives, we are not going to see anything larger than 400 km in high definition for the first time. It is sad and exciting at the same time.”

Dawn will enter orbit at Ceres approximately March 6, 2015, four months before New Horizons flies past Pluto and Charon.

But a comprehensive Solar System yearbook might never be completed. Not only will there likely be new dwarf planets discovered in the Kuiper Belt, uUnless things change in the budgetary and planetary missions departments for any of the world’s space agencies, the remaining six unvisited objects in the graphic above will likely remain as “fuzzy dots” for the rest of our lives.

If you like the graphic above, you can see more imagery and space discussions at Stoicescu’s reddit page.

For more Solar System yearbook-like imagery, Emily Lakdawalla has also created some wonderful graphics/montages of our Solar System, like this one:

Every round object in the solar system under 10,000 kilometers in diameter, to scale. Montage by Emily Lakdawalla. Data from NASA / JPL and SSI, processed by Gordan Ugarkovic, Ted Stryk, Bjorn Jonsson, and Emily Lakdawalla.
Every round object in the solar system under 10,000 kilometers in diameter, to scale. Montage by Emily Lakdawalla. Data from NASA / JPL and SSI, processed by Gordan Ugarkovic, Ted Stryk, Bjorn Jonsson, and Emily Lakdawalla.

As Emily wrote in the accompanying blog post, “Just look at all of these worlds, and think about how much of the solar system we have yet to explore. Think about how much we have to learn by orbiting, and maybe even landing on, those planet-sized moons. Think about how Pluto isn’t the end of the planets, it’s the start of a whole new part of the solar system that we’ve never seen before, and how seeing Charon is going to clue us in to what’s happening on a dozen other similar-sized, unvisitably far worlds.”

Dawn Captures Best Images Ever of “Hipster Planet” Ceres

Animation of Ceres made from images acquired by Dawn on Jan. 25, 2015. (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

This is the second animation from Dawn this year showing Ceres rotating, and at 43 pixels across the images are officially the best ever obtained!

NASA’s Dawn spacecraft is now on final approach to the 950 km (590 mile) dwarf planet Ceres, the largest world in the main asteroid belt and the biggest object in the inner Solar System that has yet to be explored closely. And, based on what one Dawn mission scientist has said, Ceres could very well be called the Solar System’s “hipster planet.”

“Ceres is a ‘planet’ that you’ve probably never heard of,” said Robert Mase, Dawn project manager at NASA’s Jet Propulsion Laboratory in Pasadena, California. “We’re excited to learn all about it with Dawn and share our discoveries with the world.”

Originally classified as a planet, Ceres was later categorized as an asteroid and then reclassified as a dwarf planet in 2006 (controversially along with far-flung Pluto.) Ceres was first observed in 1801 by astronomer Giuseppe Piazzi who named the object after the Roman goddess of agriculture, grain crops, fertility and motherly relationships. (Its orbit would later be calculated by German mathematician Carl Gauss.)

“You may not realize that the word ‘cereal’ comes from the name Ceres,” said Marc Rayman, mission director and chief engineer of the Dawn mission at JPL. “Perhaps you already connected with the dwarf planet at breakfast today.”

Ceres: part of this nutritionally-balanced Solar System!

Comparison of HST and Dawn FC images of Ceres taken nearly 11 years apart. Credit: NASA.
Comparison of HST and Dawn FC images of Ceres taken nearly 11 years apart. Credit: NASA.

The animation above was made from images taken by Dawn framing camera on January 25, 2015 from a distance of about 237,000 km (147,000 miles). These are now the highest-resolution views to date of the dwarf planet, 30% more detailed than those obtained by Hubble in January 2004.

And there’s that northern white spot again too… seen in observations from earlier this month and in the 2003-04 HST images, scientists still aren’t quite sure what it is. A crater wall? An exposed ice deposit? Something else entirely? We will soon find out.

“We are already seeing areas and details on Ceres popping out that had not been seen before. For instance, there are several dark features in the southern hemisphere that might be craters within a region that is darker overall,” said Carol Raymond, Dawn deputy principal investigator at JPL.

Full-frame image from Dawn of Ceres on approach, acquired Jan. 25, 2015. (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)
Full-frame image from Dawn of Ceres on approach, acquired Jan. 25, 2015. (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

From now on, every observation of Ceres by Dawn will be the best we’ve ever seen! This new chapter of the spacecraft’s adventure has only just begun.

Dawn is scheduled to arrive at Ceres on March 6. Follow the progress of the Dawn mission here.

Source: NASA/JPL

*(Does this mean that Ceres has now gone “mainstream?” Hmm… oh well, it’s still cool.)

First Hubble and Now Dawn Have Seen This White Spot on Ceres. What is it?

Comparison of HST and Dawn FC images of Ceres taken nearly 11 years apart. Credit: NASA.

There’s a big white spot on Ceres and we don’t know what it is. We’ve known about the white spot since the Hubble Space Telescope first captured images of it in 2003 and 2004, and in subsequent images taken by Hubble, the spot remains visible. Now, in images released yesterday from the Dawn spacecraft, currently on approach to Ceres, the spot remains. In the animated image, below, the spot almost seems to glint in the sunlight.

What is it?

Animation of Ceres made from Dawn images acquired on Jan. 13, 2015 (Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI)
Animation of Ceres made from Dawn images acquired on Jan. 13, 2015 (Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI)

One of the most anticipated aspects the Dawn spacecraft being in orbit around Ceres HAS to be finding out what this spot is. It could be ice, it could be a cryovolcano or geysers, or it could be something else. But we do know fairly certain that it is a real feature and not an image artifact, since it shows up in most of the recent Hubble images and now the Dawn images.

Planetary scientists have long suspected that water ice may be buried under Cere’s crust. A few things point to subsurface ice: the density of Ceres is less than that of the Earth’s crust, and because the surface bears spectral evidence of water-bearing minerals. Scientists estimate that if Ceres were composed of 25 percent water, it may have more water than all the fresh water on Earth. Ceres’ water, unlike Earth’s, would be in the form of water ice and located in the mantle, which wraps around the asteroid’s solid core.

And then last year, the Herschel space telescope discovered water vapor around Ceres, and the vapor could be emanating from water plumes — much like those that are on Saturn’s moon Enceladus – or it could be from cryovolcanism from geysers or icy volcanoes. Without huge a planet or satellite nearby tugging on it, the mechanism for how Ceres is active is also intriguing.

Images from the Hubble Space Telescope in 2004 of Ceres. Credit: NASA/Hubble.
Images from the Hubble Space Telescope in 2004 of Ceres. Credit: NASA/Hubble.

Some scientists also think Ceres may have an ocean and possibly an atmosphere.

As we discussed in our article yesterday, with all that water potentially at Ceres, could it theoretically host microbial life? Some scientists have hinted that Ceres and other icy bodies could be a possible source for life on Earth, another intriguing proposition.

Yesterday, I asked Dawn scientist Paul Schenk what other factors would have to be present in order for microbial life to have arisen on Ceres.

“The presence of carbon molecules is often regarded as necessary for life,” he replied, “and we think we see that on the surface spectroscopically in the form of carbonates and clays. So, I think the questions will be, whether there is actually liquid water of any kind, whether the carbon compounds are just a surface coating or in the interior, and whether Ceres has ever been warm. If those are true then some sort of prebiotic or biotic activity is in play.”

And we’ll soon find out more about this intriguing dwarf planet.

This processed image, taken Jan. 13, 2015, shows the dwarf planet Ceres as seen from the Dawn spacecraft. The image hints at craters on the surface of Ceres. Dawn's framing camera took this image at 238,000 miles (383,000 kilometers) from Ceres. Credit:  NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This processed image, taken Jan. 13, 2015, shows the dwarf planet Ceres as seen from the Dawn spacecraft. The image hints at craters on the surface of Ceres. Dawn’s framing camera took this image at 238,000 miles (383,000 kilometers) from Ceres. Credit:
NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

As the deputy principal investigator for Dawn, Carol Raymond said following the Herschel water vapor discovery, “We’ve got a spacecraft on the way to Ceres, so we don’t have to wait long before getting more context on this intriguing result, right from the source itself.”

NASA says that Dawn’s images will surpass Hubble’s resolution at the next imaging opportunity, which will be at the end of January.

The spacecraft arrives at Ceres on March 6, when it will be captured into orbit. The images will continue to improve as the spacecraft spirals closer to the surface during its 16-month study of the dwarf planet. Dawn will eventually be about 1,000 times closer to Ceres than it was for the images released yesterday and therefore will provide 1,000 times as much detail. Dawn at Ceres is primarily a mapping mission, so it will map the geology and chemistry of the surface in high resolution.

It should reveal the processes that drive the outgassing activity, and it should reveal how much water this dwarf planet holds.

And it should reveal the mystery of that white spot.

Here’s Ceres Compared to All the Other Asteroids We’ve Visited

Ceres compared to asteroids visited to date, including Vesta, Dawn's mapping target in 2011. Image by NASA/ESA. Compiled by Paul Schenck.

When the Dawn mission was in its planning stages, Ceres was considered an asteroid. But in 2006, a year before the mission launched, the International Astronomical Union formed a new class of solar system objects known as dwarf planets, and since by definition a dwarf planet is spherical and travels in an orbit around the Sun, Ceres fit that definition perfectly.

But since it’s located in the Asteroid Belt, we still tend to think of Ceres as an asteroid. So, how does Ceres compare to other asteroids?

Dr. Paul Schenk, who is a participating scientist on the Dawn mission, recently put together some graphics on his website and the one above compares Ceres to other asteroids that we’ve visited with spacecraft.

Of course, Ceres is bigger (it’s the biggest object in the Asteroid Belt) and more spherical than the other asteroids. When it comes right down to it, Ceres doesn’t look much like an asteroid at all!

“Ceres is most similar in size to several of Saturn’s icy moons and may be similar internally as well, being composed of 25% water ice by mass,” Schenk noted on his website.

 Comparisons of Ceres with other prominent icy objects.  Dione is Ceres' closest twin in size and mass. Image credit: NASA/ESA. Compiled by Paul Schenk.
Comparisons of Ceres with other prominent icy objects. Dione is Ceres’ closest twin in size and mass. Image credit: NASA/ESA. Compiled by Paul Schenk.

And water is one of the most interesting and mysterious aspects of Ceres. A year ago, the Herschel space telescope discovered water vapor around Ceres, and the vapor could be emanating from water plumes — much like those that are on Saturn’s moon Enceladus – or it could be from cryovolcanism from geysers or icy volcano.

“The water vapor question is one of the most interesting things we will look for,” Schenk told Universe Today. “What is its source, what does it indicate about the interior and activity level within Ceres? Is Ceres active, very ancient, or both? Does it go back to the earliest Solar System? Those are the questions we hope to answer with Dawn.”

Some scientists also think Ceres may have an ocean and possibly an atmosphere, which makes Dawn’s arrival at Ceres in March one of the most exciting planetary events of 2015, in addition to New Horizon’s arrival at Pluto.

“Since we don’t know why the water vapor venting has happened, or even if it continues, it’s hard to say much more than that,” Schenk said via email, “but it is theoretically possible that some liquid water still exists within Ceres. Dawn will try to determine if that is true.”

One of the possibilities that has been discussed is that if the water vapor is confirmed, Ceres could potentially host microbial life. I asked Schenk what other factors would have to be present in order for that to have occurred?

“The presence of carbon molecules is often regarded as necessary for life,” he replied, “and we think we see that on the surface spectroscopically in the form of carbonates and clays. So, I think the questions will be, whether there is actually liquid water of any kind, whether the carbon compounds are just a surface coating or in the interior, and whether Ceres has ever been warm. If those are true then some sort of prebiotic or biotic activity is in play.”

Since we do not know the answer to any of these questions yet, Schenk says Dawn’s visit to Ceres should be interesting!

On thing of note is that Dawn is now closing in on Ceres and just today, the team released the best image we have yet of Ceres, which you can see in our article here.

Read more of Schenk’s article, “Year of the ‘Dwarves’: Ceres and Pluto Get Their Due.”

Keep tabs on the Dawn mission by following Universe Today, or see the Dawn mission website.

Here’s Dawn’s Best View of Ceres Yet

Animation of Ceres made from Dawn images acquired on Jan. 13, 2015 (Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI)

Just sit back and watch the world turn… or should I say, watch the dwarf planet turn in this fascinating animation from Dawn as the spacecraft continues on its ion-powered approach to Ceres!

The images were captured by Dawn’s framing camera over the course on an hour on Jan. 13 at a distance of 238,000 miles (383,000 km) from Ceres. At 590 miles (950 km) wide Ceres is the largest object in the main asteroid belt.

“Already, the [latest] images hint at first surface structures such as craters,” said Andreas Nathues, lead investigator for the framing camera team at the Max Planck Institute for Solar System Research in Gottingen, Germany. “We have identified all of the features seen by Hubble on the side of Ceres we have observed, and there are also suggestions of remarkable structures awaiting us as we move even closer.”

Although these latest 27-pixel images from Dawn aren’t quite yet better than Hubble’s images from Jan. 2004, very soon they will be.

Comparison of HST and Dawn FC images of Ceres taken nearly 11 years apart
Comparison of HST and Dawn FC images of Ceres taken nearly 11 years apart

“The team is very excited to examine the surface of Ceres in never-before-seen detail,” said Chris Russell, principal investigator for the Dawn mission, based at the University of California, Los Angeles. “We look forward to the surprises this mysterious world may bring.”

Launched Sept. 27, 2007, Dawn previously spent over 13 months in orbit around the asteroid/protoplanet Vesta from 2011–12 and is now on final approach to Ceres. On March 6 Dawn will arrive at Ceres, becoming the first spacecraft to enter orbit around two different target worlds.

Read more: Find Out How “Crazy Engineering” is Getting Dawn to Ceres

Learn more at JPL’s Dawn mission site here, and find out where Dawn is right now here.

Also, read more from the Max Planck Institute for Solar System Research here.

Source: NASA/MPI

It Looks Like These Are All the Bright Kuiper Belt Objects We’ll Ever Find

The presently known largest trans-Neptunian objects (TNO) - are likely to be surpassed by future discoveries. Which of these trans-Neptunian objects (TNO) would you call planets and which "dwarf planets"? (Illustration Credit: Larry McNish, Data: M.Brown)

The self-professed “Pluto Killer” is at it again. Dr. Michael Brown is now reminiscing about the good old days when one could scour through sky survey data and discover big bright objects in the Kuiper Belt. In his latest research paper, Brown and his team have concluded that those days are over.

Ten years ago, Brown discovered what is now known as the biggest Kuiper Belt object – Eris. Brown’s team found others that rivaled Pluto in size and altogether, these discoveries led to the demotion of Pluto to dwarf planet. Now, using yet another sky survey data set but with new computer software, Brown says that its time to move on.

Instigators of the big heist - David Rabinowitz, Brown and Chad Trujillo, left to right. The researchers discovered dozens of Kuiper Belt objects (KBO) including six of the eight largest KBOs including the largest, Eris.
Instigators of the big heist – Rabinowitz, Brown and Trujillo, left to right. The researchers co-discovered dozens of Kuiper Belt objects (KBO) including nine of the ten largest KBOs including the largest, Eris.

Like the famous Bugs Bunny cartoon, its no longer Rabbit Season or Duck Season and as Bugs exclaims to Elmer Fudd, there is no more bullets. Analyzing seven years worth of data, Brown and his team has concluded we are fresh out of Pluto or Charon-sized objects to be discovered in the Kuiper Belt. But for Dr. Brown, perhaps it now might be Oort Cloud season.

His latest paper, A Serendipitous All Sky Survey For Bright Objects In The Outer Solar System, in pre-print, describes the completion of analysis of two past sky surveys covering the northern and southern hemisphere down to 20 degrees in Galactic latitude. Using revised computer software, his team scoured through the data sets from the Catalina Sky Survey (CSS) and the Siding Spring Survey (SSS). The surveys are called “fast cadence surveys” and they primarily search for asteroids near Earth and out to the asteroid belt. Instead Brown’s team used the data to look at image frames spaced days and months apart.

Update: In a Twitter communique, Dr. Brown stated, “I would say we’re out of BRIGHT ones, not big ones. Could be big ones lurking far away!” His latest work involved a southern sky survey (SSS) to about magnitude 19 and the northern survey (CSS) to 21. Low albedo (dark) and more distant KBOs might be lurking beyond the detectability of these surveys that are in the range of Charon to Pluto in size.

Animation showing the movement of Eris on the images used to discover it. Eris is indicated by the arrow. The three frames were taken over a period of three hours. (Credit: Brown, et al.)
Animation showing the movement of Eris on the images used to discover it. Eris is indicated by the arrow. The three frames were taken over a period of three hours. More images over several weeks were necessary to determine its orbit.(Credit: Brown, et al.)

Objects at Kuiper Belt distances move very slowly. For example, Pluto orbits the Sun at about 17,000 km/hr (11,000 mph), taking 250 years to complete one orbit. These are speeds that are insufficient to maintain ven a low-Earth orbit. Comparing two image frames spaced just hours apart will find nearby asteroids moving relative to the star fields but not Kuiper belt objects. So using image frames spaced days, weeks or even months apart, they searched again. Their conclusion is that all the big Kuiper belt objects have been found.

The only possibility of finding another large KBO lies in a search of the galactic plane which is difficult due to the density of Milky Way’s stars in the field of view. The vast number of small bodies in the Kuiper belt and Oort Cloud lends itself readily to statistical analysis. Brown states that there is a 32% chance of finding another Pluto-sized object hiding among the stars of the Milky Way.

Artists concept of the view from Eris with Dysnomia  in the background, looking back towards the distant sun. Credit: Robert Hurt (IPAC)
Artists concept of the view from Eris with Dysnomia in the background, looking back towards the distant sun. Credit: Robert Hurt (IPAC)

Dr. Brown also released a blog story in celebration of the discovery of the largest of the Kuiper Belt objects, Eris, ten years ago last week. Ten years of Eris, reminisces about the great slew of small body discoveries by Dr. Brown, Dr. Chad Trujillo of Gemini Observatory and Dr. David Rabinowitz of Yale Observatory.

Brown encourages others to take up this final search right in the galactic plane but apparently his own intentions are to move on. What remains to be seen — that is, to be discovered — are hundreds of large “small” bodies residing in the much larger region of the Oort Cloud. These objects are distributed more uniformly throughout the whole spherical region that the Cloud defines around the Sun.

Furthermore, Dr. Brown maintains that there is a good likelihood that a Mars or Earth-sized object exists in the Oort Cloud.

Small bodies within our Solar System along with exo-planets are perhaps the hottest topics and focuses of study in Planetary Science at the moment. Many graduate students and seasoned researchers alike are gravitating to their study. There are certainly many smaller Kuiper belt objects remaining to be found but more importantly, a better understanding of their makeup and origin are yet to be revealed.

Artist's concept of the Dawn spacecraft at the protoplanet Ceres Illustration of Dawn's approach phase and RC3 orbit This artist’s concept of NASA’s Dawn  spacecraft shows the craft orbiting high above Ceres, where the craft will arrive in early 2015 to begin science investigations. (Image credit: NASA/JPL-Caltech)
Artist’s concept of the Dawn spacecraft at the protoplanet Ceres Illustration of Dawn’s approach phase and RC3 orbit This artist’s concept of NASA’s Dawn spacecraft shows the craft orbiting high above Ceres, where the craft will arrive in early 2015 to begin science investigations. (Image credit: NASA/JPL-Caltech)

Presently, the Dawn spacecraft is making final approach to the dwarf planet Ceres in the Asteroid belt. The first close up images of Ceres are only a few days away as Dawn is now just a couple of 100 thousand miles away approaching at a modest speed. And much farther from our home planet, scientists led by Dr. Alan Stern of SWRI are on final approach to the dwarf planet Pluto with their space probe, New Horizons. The Pluto system is now touted as a binary dwarf planet. Pluto and its moon Charon orbit a common point (barycenter) in space that lies between Pluto and Charon.

So Dr. Brown and team exits stage left. No more dwarf planets – at least not soon and not in the Kuiper belt. Will that upstage what is being called the year of the Dwarf Planet?

But next up for close inspection for the first time are Ceres, Pluto and Charon. It should be a great year.

The relative sizes of the inner Solar System, Kuiper Belt and the Oort Cloud. (Credit: NASA, William Crochot)
The relative sizes of the inner Solar System, Kuiper Belt and the Oort Cloud. (Credit: NASA, William Crochot)

References:

A Serendipitous All Sky Survey For Bright Objects In The Outer Solar System

Ten Years of Eris

2015, NASA’s Year of the Dwarf Planet, Universe Today

What is the Kuiper Belt?, Universe Today

Surprise! Asteroid Crashes And Raindrop Splashes Look Almost Alike

Close-up view of a raindrop falling on a granular surface, which produces effects similar to an asteroid collision (but on a much smaller scale). Credit: Xiang Cheng, University of Minnesota et al./APS Physics/YouTube (screenshot)

It’s hard to study what an asteroid impact does real-time as you’d need to be looking at the right spot at the right time. So simulations are often the way to go. Here’s a fun idea captured on video — throwing drops of water on to granular particles, similar to what you would find on a beach. The results, the researchers say, look surprisingly similar to “crater morphology”.

A quick caution — the similarity isn’t completely perfect. Raindrops are much smaller, and hit the ground at quite a lower speed than you would see an asteroid slam into Earth’s surface. But as the authors explain in a recent abstract, there is enough for them to do high-speed photography and make extrapolations.

Although the mechanism of granular impact cratering by solid spheres is well explored, our knowledge on granular impact cratering by liquid drops is still very limited. Here, by combining high-speed photography with high-precision laser profilometry, we investigate liquid-drop impact dynamics on granular surface and monitor the morphology of resulting impact craters. Surprisingly, we find that despite the enormous energy and length difference, granular impact cratering by liquid drops follows the same energy scaling and reproduces the same crater morphology as that of asteroid impact craters.

There are of course other ways of understanding how craters are formed. A common one is to look at them in “airless” bodies such as the Moon, Vesta or Ceres — and that latter world will be under extensive study in the next year. NASA’s Dawn spacecraft is en route to the dwarf planet right now and will arrive there in 2015 to provide the first high-resolution views of its surface.

Amateurs can even collaborate with professionals in this regard by participating in Cosmoquest, an organization that hosts Moon Mappers, Planet Mappers: Mercury and Asteroid Mappers: Vesta — all examples of bodies in a vacuum with craters on them.

The research was presented at the APS Division of Fluid Dynamics annual meeting and published in the Proceedings of the National Academy of Sciences. It was led by Runchen Zhao at the University of Minnesota.