Super-Earth Conditions Simulated in the Lab to Discover if They’re Habitable

An artist’s conception of the magnetic fields of selected super-Earths as the Z machine, pictured at bottom, mimics the gravitational conditions on other planets. Credits: Eric Lundin; Z photo by Randy Montoya

Deep inside planet Earth, there is a liquid outer core and a solid inner core that counter-rotate with each other. This creates the dynamo effect that is responsible for generating Earth’s planetary magnetic field. Also known as a magnetosphere, this field keeps our climate stable by preventing Earth’s atmosphere from being lost to space. So when studying rocky exoplanets, scientists naturally wonder if they too have magnetospheres.

Unfortunately, until we can measure an exoplanet’s magnetic fields, we are forced to infer their existence from the available evidence. This is precisely what researchers at the Sandia National Laboratories did with its Z Pulsed Power Facility (PPF). Along with their partners at the Carnegie Institution for Science, they were able to replicate the gravitational pressures of “Super-Earths” to see if they could generate magnetic fields.

Continue reading “Super-Earth Conditions Simulated in the Lab to Discover if They’re Habitable”

Astronomers Find 20 – Yes 20 – New Moons for Saturn

A collage of Saturn (bottom left) and some of its moons: Titan, Enceladus, Dione, Rhea and Helene. Credit: NASA/JPL/Space Science Institute

The reign of Jupiter, named after the father of the Olympian gods, has been long and sweet. Aside from being the largest planet in the Solar System, it was this gas giant that demonstrated in the 17th century that planets other than Earth can support a system of moons. Between its size, powerful magnetic field, and system of 79 moons, Jupiter looked set to remain the king of the planets indefinitely.

But it looks like Saturn, named after the father of Jupiter in Greco-Roman mythology, might have just knocked Jupiter off that pedestal. Thanks to a team led by famed astronomer Scott S. Sheppard 20 new moons have been discovered orbiting Saturn. That brings the total number of Saturnian (or Cronian) satellites to 82, putting it ahead of Jupiter’s 79. And the best part? You can help name them!

Continue reading “Astronomers Find 20 – Yes 20 – New Moons for Saturn”

Just discovered! “Farout”, the Farthest Object Ever Seen in the Solar System

Artist concept of 2018 VG18 "Farout". Credit Roberto Molar Candanosa/Carnegie Institution for Science.
Artist concept of 2018 VG18 "Farout". Credit Roberto Molar Candanosa/Carnegie Institution for Science.

Astronomers have discovered a distant body that’s more than 100 times farther from the Sun than Earth is. Its provisional designation is 2018 VG18, but they’ve nicknamed the planet “Farout.” Farout is the most distant body ever observed in our Solar System, at 120 astronomical units (AU) away.

The International Astronomical Union’s Minor Planet Center announced Farout’s discovery on Monday, December 17th, 2018. This newly-discovered object is the result of a team of astronomers’ search for the elusive “Planet X” or “Planet 9,” a ninth major planet thought to exist at the furthest reaches of our Solar System, where its mass would shape the orbit of distant planets like Farout. The team hasn’t determined 2018 VG18’s orbit, so they don’t know if its orbit shows signs of influence from Planet X.

Continue reading “Just discovered! “Farout”, the Farthest Object Ever Seen in the Solar System”

New Supernova Likely Arose From Massive Wolf-Rayet Star

M1-67 is the youngest wind-nebula around a Wolf-Rayet star, called WR124, in our Galaxy. Credit: ESO

They’ve been identified as possible causes for supernovae for a while, but until now, there was a lack of evidence linking massive Wolf-Rayet stars to these star explosions. A new study was able to find a “likely” link between this star type and a supernova called SN 2013cu, however.

“When the supernova exploded, it flash ionized its immediate surroundings, giving the astronomers a direct glimpse of the progenitor star’s chemistry. This opportunity lasts only for a day before the supernovablast wave sweeps the ionization away. So it’s crucial to rapidly respond to a young supernova discovery to get the flash spectrum in the nick of time,” the Carnegie Institution for Science wrote in a statement.

“The observations found evidence of composition and shape that aligns with that of a nitrogen-rich Wolf-Rayet star. What’s more, the progenitor star likely experienced an increased loss of mass shortly before the explosion, which is consistent with model predictions for Wolf-Rayet explosions.”

NGC 3199 - Credit: Ken Crawford
NGC 3199 – Credit: Ken Crawford

The star type is known for lacking hydrogen (in comparison to other stars) — which makes it easy to identify spectrally — and being large (upwards of 20 times more massive than our Sun), hot and breezy, with fierce stellar winds that can reach more than 1,000 kilometres per second. This particular supernova was spotted by the Palomar 48-inch telescope in California, and the “likely progenitor” was found about 15 hours after the explosion.

Researchers also noted that the new technique, called “flash spectroscopy”, allows them to look at stars over a range of about 100 megaparsecs or more than 325 million light years — about five times further than what previous observations with the Hubble Space Telescope revealed.

The research was published in Nature. It was led by Avishay Gal-Yam of the Weizmann Institute of Science in Israel.

Source: Carnegie Institution for Science