Space Robot Fixes Itself, Takes Selfie As Funny Livetweet Happens On The Ground

Dextre, the Canadian Space Agency's robotic handyman aboard the International Space Station. Credit: CSA/NASA

In a thrilling demonstration of space robotics, today the Dextre “hand” replaced a malfunctioning camera on the station’s Canadarm2 robotic arm. And the Canadian Space Agency gleefully tweeted every step of the way, throwing in jokes to describe what was happening above our heads on the International Space Station.

“Dextre’s job is to reduce the risk to astronauts by relieving them of routine chores, freeing their time for science,” the Canadian Space Agency tweeted today (May 27) .

“Spacewalks are thrilling, inspiring, but can potentially be dangerous. They also take a lot of resources and time. So Dextre is riding the end of Canadarm2 today instead of an astronaut. And our inner child is still yelling out ‘Weeeee…!’ ”

The complex maneuvers actually took a few days to accomplish, as the robot removed the broken camera last week and stowed it. Today’s work (performed by ground controllers) was focused on putting in the new camera and starting to test it. You can see some of the most memorable tweets of the day below.

The cookie you see in the first tweet is part of a tradition in Canada’s robotic mission control near Montreal, Que., where controllers have this snack on the day when they are doing robotic work in space.

Incidentally, the Canadian Space Agency bet NASA a box of maple cream cookies in February during a gold-medal Olympic hockey game between the two countries, which Canada won.

Dangling Dextre Digs out Docked Dragon Depot prior to Station Departure

Backdropped against a cloudy portion of Earth, Canada’s Dextre robotic "handyman" and Canadarm2 dig out the trunk of SpaceX’s Dragon cargo vessel docked to the ISS after completing a task 225 miles above the home planet. Credit: NASA

To close out their final week aboard the International Space Station, three of the six Expedition 39 crew members are completing their unloading tasks inside the docked commercial SpaceX Dragon cargo freighter and other duties while teams at Mission Control in Houston conduct delicate robotics work outside with dazzling maneuvers of the Dextre robot to remove the last external experiment from the vessels storage truck.

See a dazzling gallery of photos of Dextre dangling outside the docked Dragon depot – above and below.

On Monday, May 5, the robotics team at NASA Mission Control Center at the Johnson Space Center in Houston carefully guided Canada’s Dextre robotic “handyman” attached to the end of the 57-foot long Canadarm2 to basically dig out the final payload item housed in the unpressurized trunk section at the rear of the SpaceX Dragon cargo vessel docked to the ISS.

Dextre stands for “Special Purpose Dexterous Manipulator” and was contributed to the station by the Canadian Space Agency. It measures 12 feet tall and is outfitted with a pair of arms and an array of finely detailed tools to carry out intricate and complex tasks that would otherwise require spacewalking astronauts.

The Canadarm2 with Dextre in its grasp conducts external cargo transfers from the SpaceX Dragon resupply ship.  Credit: NASA TV
The Canadarm2 with Dextre in its grasp conducts external cargo transfers from the SpaceX Dragon resupply ship. Credit: NASA TV

The massive orbiting outpost was soaring some 225 miles above the home planet as Dextre’s work was in progress to remove the Optical PAyload for Lasercomm Science, or OPALS, from the Dragon’s truck.

The next step is to install OPALS on the Express Logistics Carrier-1 (ELC-1) depot at the end of the station’s port truss on Wednesday.

Monday’s attempt was the second try at grappling OPALS. The initial attempt last Thursday “was unsuccessful due to a problem gripping the payload’s grapple fixture with the Special Purpose Dextrous Manipulator, or Dextre,” NASA reported.

A software patch solved the problem.

Canada’s Dextre manipulator attached to Canadarm2 conducts external cargo transfers from the SpaceX Dragon resupply ship.  Credit: NASA TV
Canada’s Dextre manipulator attached to Canadarm2 conducts external cargo transfers from the SpaceX Dragon resupply ship. Credit: NASA TV

Dragon thundered to orbit atop SpaceX’s powerful new Falcon 9 v1.1 rocket on April 18, from Cape Canaveral, Fla.

This unmanned Dragon delivered about 4600 pounds of cargo to the ISS including over 150 science experiments, a pair of hi tech legs for Robonaut 2, a high definition Earth observing imaging camera suite (HDEV), the laser optical communications experiment (OPALS), the VEGGIE lettuce growing experiment as well as essential gear, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard in low Earth orbit, under NASA’s Commercial Resupply Services (CRS) contract.

OPALS uses laser light instead of radio waves to beam back precisely guided data packages to ground stations. The use of lasers should greatly increase the amount of information transmitted over the same period of time, says NASA.

The science experiments carried aboard Dragon are intended for research to be conducted by the crews of ISS Expeditions 39 and 40.

Robotics teams had already pulled out the other payload item from the truck, namely the HDEV imaging suite. It is already transmitting back breathtaking real time video views of Earth from a quartet of video cameras pointing in different directions mounted on the stations exterior.

The SpaceX CRS-3 mission marks the company’s third resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.

After spending six months in space, Station Commander Koichi Wakata from Japan as well as NASA astronaut Rick Mastracchio and Russian cosmonaut Mikhail Tyurin will be departing the station in a week aboard their Soyuz TMA-11M spacecraft on May 13 at 6:33 p.m. EDT.

They are scheduled to land some 3.5 hours later in the steppes of Kazakhstan at 9:57 p.m. (7:57 a.m. Kazakh time on May 14). The events will be carried live on NASA TV.

SpaceX Falcon 9 rocket and Dragon resupply ship launch from the Cape Canaveral Air Force Station in Florida on April 18, 2014.   Credit:  Jeff Seibert/Wired4Space
SpaceX Falcon 9 rocket and Dragon resupply ship launch from the Cape Canaveral Air Force Station in Florida on April 18, 2014. Credit: Jeff Seibert/Wired4Space
To prepare for the journey home, the trio also completed fit checks on their Russian Sokol launch and entry suits on Monday.

Meanwhile Dragon is also set to depart the station soon on May 18 for a parachute assisted splashdown and recovery by boats in the Pacific Ocean west of Baja California.

Dragon has been docked to the station since arriving on Easter Sunday morning, April 20.

It was grappled using Canadarm 2 and berthed at the Earth facing port of the Harmony module by Commander Wakata and flight engineer Mastracchio while working at the robotics work station inside the seven windowed domed Cupola module.

For the return trip, the Expedition 39 crew is also loading Dragon with precious science samples collected over many months from the crews research activities as well as trash and no longer needed items.

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

Astronaut’s Mission Is To Snatch A Dragon Without Crashing The Canadarm

The robotic Canadarm2 is routinely used to berth spacecraft to the International Space Station, such as SpaceX's Dragon. Credit: NASA

When there’s a Dragon spacecraft coming your way at the International Space Station, you’d better be ready to grapple it with a robotic arm. For if there’s a crash, you will face “a very bad day”, as astronaut David Saint-Jacques points out in this new video (also embedded below the jump).

That’s why the Canadian (along with European Space Agency astronaut Andreas Mogensen) was doing robotics training this month at the Canadian Space Agency headquarters near Montreal. The most terrifying thing for astronauts must be the limited view as they do delicate maneuvers with the multi-million dollar Canadarm2.

“All you’ve got, really, while you’re working, is this workstation,” Saint-Jacques said. “You’ve got a couple of camera views to work from. You’ve got your hand controllers to move the arm, and you’ve got some computer displays, and a bunch of switches here on the left.”

“That’s all you’ve got,” he added. “You’ve really got to think ahead: how you’re going to maneuver this arm without crashing into anything.”

The video is the latest in a training series by Mogensen, who will go to the International Space Station in 2015. Saint-Jacques — a fellow 2009 astronaut class selectee — has not been assigned to a flight yet (at least publicly).

The first Canadarm, which cost about $100 million in late 1970s dollars, flew on the second shuttle flight in 1981. Canadarm2 was constructed for space station construction in the 2000s, and is still used today for spacewalks.

Berthing spacecraft is reportedly not what it was originally designed for, but the robotic arm has proved an able tool to pick up the Dragon spacecraft and other visitors to the station.

Canadian astronaut David Saint-Jacques at the simulator used to train astronauts on Canadarm2, a robotic arm used on the International Space Station. The facility is located at the Canadian Space Agency near Montreal, Canada. Credit: Andreas Mogensen/YouTube (screenshot)
Canadian astronaut David Saint-Jacques at the simulator used to train astronauts on Canadarm2, a robotic arm used on the International Space Station. The facility is located at the Canadian Space Agency near Montreal, Canada. Credit: Andreas Mogensen/YouTube (screenshot)

Robots And Astronauts Feature In First Glimpse of Canada’s New Space Policy

The robotic Canadarm2 is routinely used to berth spacecraft to the International Space Station, such as SpaceX's Dragon. Credit: NASA

About six years ago, the Canadarm — Canada’s iconic robotic arm used in space — was almost sold to a company in the United States, along with other space technology from MacDonald, Dettwiler and Associates. The Canadian government blocked the sale and swiftly came out with a promise: a space policy to better support Canada’s industry.

That promise was made in September 2008. “Time is of the essence,” then-Industry Minister Jim Prentice told reporters upon announcing a space policy would be created. Today, 65 months later, the government released the high-level framework of that policy. Astronauts, telescopes and yes, the Canadarm are all prominently mentioned in there.

A lot has happened in six years. Policy-makers used to cite successor Canadarm2’s role in space station construction. Now the arm also does things that were barely imaginable in 2008 — namely, berthing commercial spacecraft such as SpaceX’s Dragon at the International Space Station. It shows how quickly space technology can change in half a decade.

At 13 pages, there isn’t a lot of information in Canada’s framework yet to talk about, but there are some statements about government priorities. Keep the astronaut program going (which is great news after the success of Chris Hadfield). A heavy emphasis on private sector collaboration. And a promise to keep funding Canada’s contribution to the James Webb Space Telescope, NASA’s next large observatory in space.

Canadian astronaut Chris Hadfield prior to his world-famous Expedition 34/35 mission in 2013. Credit: NASA
Canadian astronaut Chris Hadfield prior to his world-famous Expedition 34/35 mission in 2013. Credit: NASA

These are the Top 5 priorities listed in the plan:

  • Canada First: Serving Canada’s interests of “sovereignty, security and prosperity.” As an example: The country has a huge land-mass that is sparsely populated, so satellites are regularly used to see what ship and other activity is going on in the territories. This is a big reason why the Radarsat Constellation of satellites is launching in 2018.
  • Working together globally: Canada has a tiny space budget ($488.7 million in 2013-14, $435.2 million in 2014-15 and $382.9 million in 2015-16), so it relies on other countries to get its payloads, astronauts and satellites into space. This section also refers to Canada’s commitment to the International Space Station, which (as with other nations) extends to at least 2024. That’s good news for astronauts Jeremy Hansen and David Saint-Jacques, who are waiting for their first trip there.
  • Promoting Canadian innovation: The James Webb Telescope (to which Canada is contributing optics and a guidance system) is specifically cited here along with the Canadarm. Priority areas are Canada’s historic strengths of robotics, optics, satellite communications, and space-based radar, as well as “areas of emerging expertise.”
  • Inspiring Canadians: Basically a statement saying that the government will “recruit, and retain highly qualified personnel,” which in more real terms means that it will need to keep supporting Canadian space companies financially through contracts, for example, to make this happen.

That last point in particular seemed to resonate with at least one industry group.

James Webb Space Telescope. Image credit: NASA/JPL
James Webb Space Telescope. Image credit: NASA/JPL

“A long-term strategic plan for Canada’s space program is critical for our industry. In order to effectively invest in innovation, technology and product development, we rely heavily on knowing what the government’s priorities for the space program are,” stated Jim Quick, president of the Aerospace Industries Association of Canada (a major group that represents the interests of private space companies.)

While we wait for more details to come out, here’s some valuable background reading. The space-based volume of the Emerson Report (the findings of a government-appointed aerospace review board listed in 2012) called for more money for and more stable funding of the Canadian Space Agency, among other recommendations.

And here’s the government’s point-by-point response in late 2013. In response to funding: “The CSA’s total funding will remain unchanged and at current levels. The government will also leverage existing programs to better support the space industry.” Additionally, the CSA’s space technologies development program will be doubled to $20 million annually by 2015-16, which is still below the Emerson report’s recommendation of adding $10 million for each of the next three years.

What are your thoughts on the policy? Let us know in the comments.

Chris Hadfield Launched Into Space One Year Ago Today

Chris Hadfield in the Cupola of the ISS. Credit: NASA

And we have liftoff … for a social media sensation! Canadian astronaut Chris Hadfield rocketed into orbit a year ago today (Dec. 19, 2012) accompanied by NASA astronaut Tom Marshburn and Russian cosmonaut  Roman Romanenko.

Hadfield was a part of the Expedition 34 crew, then took command of the station during Expedition 35 in early 2013. While running an extremely productive science mission, he did tons of public outreach, ranging from singing to humorous space-y how-to videos to chatting with numerous celebrities before landing in May.

The Canadian Space Agency invited folks on Twitter to share their reflections under the hashtag #hadfield1yr, which is already producing a lot of thoughtful responses (a few of which you can see below the jump). What was your favorite part of the mission? Feel free to share in the comments.

While Hadfield is retired as an astronaut, he remains very busy. He’s in the middle of a multi-country book tour and will begin teaching at the University of Waterloo in Ontario, Canada in fall 2014.

hadfield4

hadfield1

 

hadfield2

 

hadfield3

‘You Cannot Press Pause While You’re Flying A Jet’: Why Planes Help Astronauts Prepare For Space

Astronauts use planes to prepare psychologically for the rigors of spaceflight, since they must constantly filter out information to proceed safely. Credit: Canadian Space Agency/Youtube (screenshot)

In between these sweet, sweet video shots of jets in the video above, you’ll find some wisdom about why it’s so important that astronauts climb into these planes for training. Turns out that flying has a lot to do with preparing for very quick-changing situations in spaceflight — whether it’s in a cockpit or in a spacesuit.

“Psychologically, being in an aircraft is very similar to being in a rocket because you are dependent on this machinery,” says astronaut David Saint-Jacques in this new Canadian Space Agency video.

“You are in an uncomfortable cockpit. You’re wearing a helmet, oxygen mask. There’s tens of dials in front of you. You have to monitor all that data; the radio, on many channels talking at the same time. You have to constantly filter out what is important and to make decisions that could have big impacts. You cannot press pause while you’re flying a jet.”

Saint-Jacques and fellow Canadian Jeremy Hansen took part in this video to mark the 110th anniversary of the Wright brothers’ first powered flight, which took place Dec. 17, 1903.

And there’s more to this video than jets — you can see astronauts participating in spacewalks and also the ongoing European Space Agency CAVES expedition series in Sardinia, Italy. There’s even a quick glimpse of the Snowbirds, a famous military flying demonstration team in Canada (which Hansen flew with earlier this year).

For more information on the T-38s used for astronaut training, check out this NASA link.

A T-38 plane parked in front of space shuttle Discovery in this undated photo taken by NASA astronaut Story Musgrave, who flew six times in space in the 1980s and 1990s.
A T-38 plane parked in front of space shuttle Discovery in this undated photo taken by NASA astronaut Story Musgrave, who flew six times in space in the 1980s and 1990s.

This Rover Could Hunt For Lunar Water And Oxygen In 2018

The RESOLVE rover during a 2012 demonstration at the Kennedy Space Center near Orlando, Fla. Credit: NASA/Dmitri Gerondidakis

In 2018, NASA plans to go prospecting at the moon’s south pole with a rover — possibly, a version of the Canadian one in the picture above. The idea is to look for water and similar substances on the lunar surface, with an eye to learn more about living off the land, so to speak.

Launching anything into space is expensive, so if it’s possible to harvest raw materials off a moon or planetary surface, this could make things a bit cheaper. Specifically, NASA is interested in oxygen, water, silicon and light metals such as aluminum and titanium in the moon’s soil or regolith. (This process is called in situ resource utilization capability.)

“The mission, currently planned to launch in early 2018, will demonstrate extraction of oxygen from lunar regolith to validate in situ resource utilization capability,” said NASA spokesperson Trent Perrotto in an e-mail to Universe Today.

“An essential element of this mission is the ability to travel significant distances on the surface to better understand water distribution in the lunar regolith.”

Building a lunar base might be easier if astronauts could harvest local materials for the construction, and life support in general. Credit: NASA/Pat Rawlings
Building a lunar base might be easier if astronauts could harvest local materials for the construction, and life support in general. Credit: NASA/Pat Rawlings

So that’s the background. Where does the rover stand in this? It would carry a payload called RESOLVE (the acronym stands for Regolith & Environment Science, and Oxygen & Lunar Volatile Extraction.) And the rover has already been through some field tests to see how well it performs in environments (fairly) similar to the moon.

In 2009, for example, the Canadian Space Agency did a summer field study with NASA, Perrotto said. “The Canadian rover carried the RESOLVE payload during field tests. The tests helped NASA better understand the requirements of a volatiles-sensing payload, and helped CSA understand tele-operation and rough terrain exploration,” he wrote.

At the time, NASA was working to get the payload ready for flight status in 2011, but the mission design has changed since then. The current design (called Resource Prospector Mission) would have RESOLVE, a Canadian Space Agency rover and drill, and a lander. NASA is now looking for somebody to work on the lander.

The RESOLVE payload and Canadian rover during field testing at the Kennedy Space Center near Orlando, Fla. in 2012. Credit: NASA/Dmitri Gerondidakis
The RESOLVE payload and Canadian rover during field testing at the Kennedy Space Center near Orlando, Fla. in 2012. Credit: NASA/Dmitri Gerondidakis

“A request for information was released in July to identify industry interest in a partnership to develop the lander; and an announcement of opportunity is anticipated to be released in early December,” Perrotto wrote.

This mission design is not a guarantee yet. For one thing, NASA is looking at rover alternatives and possibly getting a drill from a United States source instead. It also would depend on funding and agency priorities in the next few years. That said, however, the mission concept is proceeding right now.

In September, Perrotto added, the CSA and NASA did “initial RESOLVE thermal and vacuum testing in September, including a test in [a] regolith-filled vacuum chamber at the NASA Glenn Research Center (GRC) at lunar temperatures and pressures.” RPM passed a mission concept review on Sept. 17 and is in the midst of a preliminary design review that would conclude in fall 2014.

NASA’s Advanced Exploration Systems office has started to look at alternative options to understand “technical constraints by the mission and to assess affordability,” Perrotto added. Meanwhile, the payload team is assessing and looking to reduce risks, while the CSA and NASA are working to “refine technologies for ISRU.”

Representatives from the Canadian team also discussed the rover concept at the Canadian Space Society annual conference in Ottawa, Canada earlier this month. More information on RESOLVE is available on the CSA website; last year, the agency unveiled several rovers it developed for moon and Mars exploration.

From ‘Doggie-Doo’ To Derring-Do: New Canadian Space Head Stresses Innovation In First Public Outing

New Canadian Space Agency President Walter J. Natynczyk. Credit: CSA.

OTTAWA, CANADA – With a booming voice, Walt Natynczyk — in his first speech after becoming Canadian Space Agency president in September — told delegates that he was happy to give up the “dream of retirement” to take on a challenging position.

“Imagine this picture. February. Saturday morning. 7 in the morning. It’s -25 [Celsius, -13 Fahrenheit] and I’m out there, by my lonesome, walking three dogs. None of which are mine. But their owners, who are family members, who I love, are all headed down south,” Natynczyk said.

“As I’m stooping over to pick up another pile of doggie doo, a neighbor — that I love — sticks her head out the door and says, ‘Hello, how the almighty have fallen.’ ” He paused as the room roared with laughter. “Think about it. That’s when I thought it was time to do something different.”

Natynczyk is best known in Canada for leading a large restructuring of the country’s military. He also was (as an exchange officer) a deputy commanding general in the United States, among other positions, and served in Baghdad at the height of the Iraqi war in 2004. His appointment to the CSA had some worried about the militarization of the agency. Natynczyk, however, focused on how difficult the new vocabulary is to master.

Speaking of a recent conversation with quantum researchers — the field that his predecessor, Steve MacLean, went into after leaving the CSA this year — Natynczyk said to them, “The point at which you start losing me is like talking to my puppy; when I start doing this,” — he tilted his head to one side — “you’re losing me.”

Joking that nanosatellites and microsatellites are equivalent to “milk cartons” and “milk jugs”, Natynczyk said one of his main goals is to make space understandable to the typical Canadian standing in line at Tim Horton’s, a coffee chain that is prolific in the country.

His comments on space policy were few. Last year, the Canadian government asked an external group to do a space development strategy for the country, and little has been mentioned publicly since the strategy was released. Natynczyk said conversations are ongoing with other government departments to address the recommendations.

Throughout, he stressed the importance of Canada’s choice to pursue research and development through the universities (with government support) rather than through government directly.

“It’s what we do with CSA, with the universities and so on, looking for extraordinary concepts that are in a higher-risk category and investing in a modest way — perhaps with other government funding … that allow for exponential jumps.”

To The Moon, Jeremy! Canadian Astronaut Thinks Off-Planet Geology During Arctic Trip

Canadian astronaut Jeremy Hansen after rescuing a rover out of the mud in the Arctic's Haughton Crater. Hansen was participating in a geology expedition in July 2013. Credit: Jeremy Hansen/Twitter

It takes gumption to go knee-deep in mud to save a stranded rover. Or to climb up precarious slopes in search of the perfect rock. Oh, and did we mention the location is best accessible by air, with no towns nearby?

Take these challenging conditions, which Canadian astronaut Jeremy Hansen faced in the Arctic this month, and then imagine doing this on the moon. Or an asteroid. Or Mars. Scary, isn’t it? But that’s what he’s thinking of and training for as he does geology work a few times a year.

“It’s important; it provides an opportunity in a somewhat uncomfortable, risky situation when we’re doing real science,” Hansen told Universe Today of his time in Haughton Crater in Canada’s north. In fact, it’s so important to Hansen that he’s gone on similar geology trips with this Western University group three times.

Geology is now part of the package with basic astronaut training. NASA is hoping to get to the moon or an asteroid in the (relatively) near future, and there have been Congressional questions about the agency’s plans for Mars exploration. No one has firm answers yet. The astronauts, still, are preparing themselves as best as they can if the opportunity arises.

There would be vast differences between Earth exploration and heading to another location, however. Some examples:

While the Haughton Crater expedition is an analog for moon or Mars exploration, certain things will be different from the Earth experience. Here, Canadian astronaut Jeremy Hansen gathers water -- a feat that would be way more difficult off-planet. Credit: Jeremy Hansen/Twitter
While the Haughton Crater expedition is an analog for moon or Mars exploration, certain things will be different from the Earth experience. Here, Canadian astronaut Jeremy Hansen gathers water — a feat that would be way more difficult off-planet. Credit: Jeremy Hansen/Twitter
  • Water and supplies. The team Hansen joined had nine people and 29 checked bags for an expedition that lasted just over a week. They could also get water on site at a spot not too far from their camp, reducing the load of that heavy but important substance. NASA’s long-range planning, meanwhile, envisions scenarios such as a month on the moon, Hansen said. Supplies would be an interesting and heavy challenge in that situation. “The next time we’ll go back, what we’ll really be looking to do is travel much greater distances over a longer period of time,” he said. “We’ll be living in a rover for a month, covering 100 kilometers [62 miles] or more, looking for these important outcrops that tell us the story.”
  • Geology. The Earth is an erosive force on geology: wind, rain, glaciation, water, volcanic activity and more alters the landscape. “Sometimes the rocks look very similar” even when they are different, Hansen pointed out. Other places may have different erosion processes (think micrometeroids), making the rocks look strange to Earth-trained eyes.
  • Location. The landscape itself could be challenging for collecting samples. The moon, for example, has “stuff strewn everywhere and pounded into sand”, Hansen said, meaning that astronauts might have to travel much further to see something besides regolith or moon soil. Where Hansen was in the Arctic, by contrast, the group could get to more than a dozen different outcrops in a day of walking.
  • Gravity. The moon has a sixth of the Earth’s gravity. Mars is at about 38% Earth gravity. This means that the machines would need to be designed to work in that environment. For astronauts, it’s riskier to go up slopes or do heavy work in those conditions because their center of gravity is unfamiliar. As this Apollo 17 clip shows, astronauts sometimes fell over on the moon when doing something as simple as picking up as sample bag.
This stain in the rock showed evidence of hot water flowing for million of years after the impact that created Haughton Crater, said Canadian astronaut Jeremy Hansen. "Could support life? Could crater on Mars? Research may answer," he tweeted. Credit: Jeremy Hansen/Twitter
This stain in the rock showed evidence of hot water flowing for million of years after the impact that created the Arctic’s Haughton Crater, said Canadian astronaut Jeremy Hansen. “Could support life? Could crater on Mars? Research may answer,” he tweeted. Credit: Jeremy Hansen/Twitter

Hansen’s work in Haughton Crater did turn up some similarities to work at off-Earth locations, though. His crew had to work in a compressed time situation, learning how to find representative rocks from a 14-mile (23-kilometer) wide crater. That’s the same challenge you’d find during a moon or asteroid or Mars expedition.

“We explored not the entire crater — it’s a lot of ground to cover — but we explored some key areas,” Hansen said. “What’s important for someone like me, at my stage of geologist eyes, is to see the key aspects of the crater, those being what types of rocks that are formed and where do they end up in the crater.”

When a big rock slams into the Earth, it excavates material that is normally inaccessible to a surface visitor. Hansen was encouraged to seek the oldest or genesis rocks when on his expedition because, as in other locations, they provide clues about how the solar system was formed. The hard evidence firms up our theories on what happened.

"Explored rocks, learned origins of Earth. Want to do this on Mars someday like @MarsCuriosity but with a return ticket," tweeted Canadian astronaut Jeremy Hansen, making a joking reference to the Mars One expedition. Credit: Jeremy Hansen/Twitter
“Explored rocks, learned origins of Earth. Want to do this on Mars someday like @MarsCuriosity but with a return ticket,” tweeted Canadian astronaut Jeremy Hansen, making a joking reference to the Mars One expedition. Credit: Jeremy Hansen/Twitter

It’s not only work in the field that is important, but work in the lab. In past years with Gordon Osinski‘s group at Western, Hansen has gone back to the university to talk with those looking at the rock samples. He asks if the samples were representative, easy to analyze. His goal is to do better with each expedition.

“It’s kind of like learning a fourth lagnguage,” said Hansen, who as a Canadian Space Agency astronaut is expected to speak English, French and Russian at a minimum.

“It’s one of those things — you can cram it all in, but you don’t retain a lot unless you use it repeatedly and continue to practice it. My elegant solution is I spend one, maybe two weeks total a year, working on this. It’s a good use of my time. I keep bringing it back, keep reviewing it and keep going a little further.”

Hansen has a busy summer ahead of him. He’s taking off soon for CF-18 training with the Royal Canadian Air Force, where he got his career start. (Funny enough, in his past career he used to survey the Arctic from the air during Canadian sovereignty operations.)

In September, Hansen is spending about a week underground in Sardinia, Italy as part of the European Space Agency’s ongoing CAVES expedition series. Besides geology, this also provides training in unfamiliar and dangerous environments.

Hansen has not been assigned to a flight yet, but continues to work in the International Space Station operations branch in Houston and to represent the Astronaut Office in operational meetings. Also in training is his colleague David Saint-Jacques. Both astronauts were selected in 2009.

The next Canadian spaceflight is expected to happen around 2018, but could be earlier depending on ongoing negotiations by the Canadian Space Agency.

Chris Hadfield Hangs Up His Astronaut Suit

Canadian Space Agency employees welcomed astronaut Chris Hadfield as he walked in the building. Credit: Canadian Space Agency.

In a somewhat surprise announcement, Canadian astronaut — and social media icon — Chris Hadfield announced his retirement from the astronaut corps, just weeks after he returned home from his highly successful expedition to the International Space Station.

The wildly popular Hadfield made the announcement at the Canadian Space Agency headquarters near Montreal on Monday. He had called a press conference there to share highlights from his five-month mission, but also announced his retirement as well as his plans to return to live in Canada after spending much of his 21-year astronaut career at Johnson Space Center in Houston or Star City in Russia.

“I’m making good on a promise I made my wife nearly 30 years ago — that yes, eventually, we would be moving back to Canada,” Hadfield said during the press conference.

In posting the above image on Twitter, he said that saying “goodbye to these good people today was much harder than I expected.”

The 53-year-old Hadfield sent a nearly constant stream of magnificent images, informative videos and ebullient Tweets during his pre-flight training and his Expedition 34/35, as well as hosting numerous interviews and educational events with school groups via webcasts from the ISS. With over a million followers on Twitter, his words were read – and widely retweeted — by people around the world.

“I am extremely proud to have shared my experience,” Hadfield said in a statement from the CSA. “I will continue to reinforce the importance of space exploration through public speaking and will continue to visit Canadian schools through the CSA.”

“Chris Hadfield made space exploration history by becoming the first Canadian to command the International Space Station, a feat that instilled pride from coast-to-coast-to-coast,” said Candian Parliamentary Secretary Chris Alexander. “His efforts have affirmed our country’s world-renowned space expertise. I would like to personally thank Chris for his commitment to bringing the spirit of discovery not only to all Canadians, but to the world.”

Sources: CSA press release, CBC