A Black Hole’s Record Breaking Lunch

A trio of X-ray observatories has captured a decade-long eating binge by a black hole almost two billion light years away. Credit: X-ray: NASA/CXC/UNH/D.Lin et al, Optical: CFHT, Illustration: NASA/CXC/M.Weiss.

Does a distant black hole provide a new definition of pain and suffering?

The black hole, named XJ1500+0154, appears to be the real-life equivalent of the Pit of Carkoon, the nesting place of the all-powerful Sarlacc in Star Wars, which slowly digested its victims.

Over ten years ago, this giant black hole ripped apart a star and has since continued a very long lunch, feasting on the stars’ remains. Astronomers have been carefully monitoring this slow ‘digestion,’ because it is so unusual for what are called tidal disruption events (TDEs), where tidal forces from black holes tear stars apart.

“We have witnessed a star’s spectacular and prolonged demise,” said Dacheng Lin from the University of New Hampshire in Durham, New Hampshire, who led the observations of this event. “Dozens of tidal disruption events have been detected since the 1990s, but none that remained bright for nearly as long as this one.”

This artist’s illustration depicts what astronomers call a “tidal disruption event,” or TDE, when an object such as a star wanders too close to a black hole and is destroyed by tidal forces generated from the black hole’s intense gravitational forces. (Credit: NASA/CXC/M.Weiss.

This decade-long feast has gone on ten times longer than any other observed TDE.

XJ1500+0154 is located in a small galaxy about 1.8 billion light years from Earth, and three telescopes have been monitoring this X-ray event: the Chandra X-ray Observatory, the Swift satellite, and the XMM-Newton.

TDEs are different from another, more common black-hole related source of X-rays in the galaxy, active galactic nuclei (AGN). Like the digestion of the Sarlacc, AGNs really can last for thousands of years. These are supermassive black holes at the center of galaxies that pull in surrounding gas and “emit copious amounts of radiation, including X-rays,” explained Lin in a blog post on the Chandra website. “Radiation from AGNs do not vary a lot because the gas surrounding them extends over a large scale and can last for tens of thousands of years.”

In contrast, TDEs are relatively short-lived, lasting only a few months. During a TDE, some of the stellar debris is flung outward at high speeds, while the rest falls toward the black hole. As it travels inwards to be consumed by the black hole, the material heats up to millions of degrees, generating a distinct X-ray flare.

XJ1500+0154 has provided an extraordinarily long, bright phase, spanning over ten years. Lin and his team said one explanation could be the most massive star ever to be completely torn apart during a TDE.

“To have the event last so long at such high luminosity requires full disruption of a relatively massive star, about twice the mass of the sun,” Lin wrote; however, “disruption of such massive stars by the SMBH is very unlikely because stars this massive are rare in most galaxies, unless the galaxy is young and actively forming stars, as in our case.

So, another more likely explanation is that this is the first TDE observed where a smaller star was completely torn apart.

Lin also said this event has broad implications for black hole physics.

An X-ray image of the full field of view by of the region where the ‘tidal disruption event’ is taking place. The purple smudge in the lower right shows the disruption from the black hole XJ1500+0154. Credit: X-ray: NASA/CXC/UNH/D.Lin et al.

“To fully explain the super-long duration of our event requires the application of recent theoretical progress on the study of TDEs,” he wrote. “In the last two years, several groups independently found that it can take a long time after the disruption of the star for the stellar debris to settle onto the accretion disk and into the SMBH. Therefore, the event can evolve much more slowly than previously thought.”

Additionally, the X-ray data also indicate that radiation from material surrounding this black hole has consistently surpassed what is called the Eddington limit, which is defined as a balance between the outward pressure of radiation from the hot gas and the inward pull of the gravity of the black hole.

Seeing evidence of such rapid growth may help astronomers understand how supermassive black holes were able to reach masses about a billion times higher than the sun when the universe was only about a billion years old.

“This event shows that black holes really can grow at extraordinarily high rates,” said co-author Stefanie Komossa of QianNan Normal University for Nationalities in Duyun City, China. “This may help understand how precocious black holes came to be.”

Lin and his team will continue to monitor this event, and they expect the X-ray brightness to fade over the next few years, meaning the supply of ‘food’ for this long lunch will soon be consumed.

For further reading:
Paper: A likely decade-long sustained tidal disruption event
Lin’s blog post on the Chandra website
Chandra press release
Additional images and information from Chandra

Somebody Get This Supermassive Black Hole A Towel

Artist's conception of how the "nearly naked" supermassive black hole originated. On the left panel, the black hole begins its encounter with another, larger black hole. In the middle panel, the stars are stripped away. On the right, the black hole emerges from the encounter with only the remnants of its galaxy intact. Credit: Bill Saxton, NRAO/AUI/NSF.

Most galaxies have a super-massive black hole at their centre. As galaxies collide and merge, the black holes merge too, creating the super-massives we see in the universe today. But one team of astronomers went looking for super-massives that aren’t at the heart of galaxies. They looked at over 1200 galaxies, using the National Science Foundation’s (NSF) Very Long Baseline Array (VLBA), and almost all of them had a black hole right where it should be, in the middle of the galaxy itself.

But they did find one hole, in a cluster of galaxies more than two billion light years away from Earth, that was not at the centre of a galaxy. They were surprised too see that this black hole had been stripped naked of surrounding stars. Once they identified this black hole, now called B3 1715+425, they used the Hubble and the Spitzer to follow up. And what they found tells an unusual story.

“We’ve not seen anything like this before.” – James Condon

The super-massive black hole in question, which we’ll call B3 for short, was a curiosity. It was far brighter than anything near it, and it was also more distant than most of the holes they were studying. But a black hole this bright is typically situated at the heart of a large galaxy. B3 had only a remnant of a galaxy surrounding it. It was naked.

James Condon, of the National Radio Astronomy Observatory (NRAO) described what happened.

“We were looking for orbiting pairs of supermassive black holes, with one offset from the center of a galaxy, as telltale evidence of a previous galaxy merger,” said Condon. “Instead, we found this black hole fleeing from the larger galaxy and leaving a trail of debris behind it,” he added.

“We concluded that our fleeing black hole was incapable of attracting that many stars on the way out to make it look like it does now.” – James Condon

Condon and his team concluded that B3 was once a super-massive black hole at the heart of a large galaxy. B3 collided with another, larger galaxy, one with an even larger black hole. During this collision B3 had most of its stars stripped away, except for the ones closest to it. B3 is still speeding away, at more than 2000 km per second.

Nearly Naked Black Hole from NRAO Outreach on Vimeo.

B3 and what’s left of its stars will continue to move through space, escaping their encounter with the other galaxy. It probably won’t escape from the cluster of galaxies it’s in though.

“What happens to a galaxy when most of its stars have been stripped away, but it still has an active super-massive black hole at the middle?” – James Condon

Condon outlines the likely end for B3. It won’t have enough stars and gas surrounding it to trigger new star birth. It also won’t be able to attract new stars. So eventually, the remnant stars of B3’s original galaxy will travel with it, growing progressively dimmer over time.

B3 itself will also grow dimmer, since it has no new material to “feed” on. It will eventually be nearly impossible to see. Only its gravitational effect will betray its position.

“In a billion years or so, it probably will be invisible.” – James Condon

How many B3s are there? If B3 itself will eventually become invisible, how many other super-massive black holes like it are there, undetectable by our instruments? How often does it happen? And how important is it in understanding the evolution of galaxies, and of clusters of galaxies. Condon asks these questions near the end of the clip. For now, at least, we have no answers.

Condon and his team used the NRAO‘s VLBA to search for these lonely holes. The VLBA is a radio astronomy instrument made up of 10 identical 25m antennae around the world, and controlled at a center in New Mexico. The array provides super sharp detail in the radio wave part of the spectrum.

Their black hole search is a long term project, making use of filler time available at the VLBA. Future telescopes, like the Large Synoptic Survey Telescope being built in Chile, will make Condon’s work easier.

Condon worked with Jeremy Darling of the University of Colorado, Yuri Kovalev of the Astro Space Center of the Lebedev Physical Institute in Moscow, and Leonid Petrov of the Astrogeo Center in Falls Church, Virginia. They will report their findings in the Astrophysical Journal.

6 Million Years Ago The Milky Way’s Supermassive Black Hole Raged

Artist's concept of Sagittarius A, the supermassive black hole at the center of our galaxy. Credit: NASA/JPL
Artist's concept of Sagittarius A, the supermassive black hole at the center of our galaxy. Credit: NASA/JPL

6 million years ago, when our first human ancestors were doing their thing here on Earth, the black hole at the center of the Milky Way was a ferocious place. Our middle-aged, hibernating black hole only munches lazily on small amounts of hydrogen gas these days. But when the first hominins walked the Earth, Sagittarius A was gobbling up matter and expelling gas at speeds reaching 1,000 km/sec. (2 million mph.)

The evidence for this hyperactive phase in Sagittarius’ life, when it was an Active Galactic Nucleus (AGN), came while astronomers were searching for something else: the Milky Way’s missing mass.

There’s a funny problem in our understanding of our galactic environment. Well, it’s not that funny. It’s actually kind of serious, if you’re serious about understanding the universe. The problem is that we can calculate how much matter we should be able to see in our galaxy, but when we go looking for it, it’s not there. This isn’t just a problems in the Milky Way, it’s a problem in other galaxies, too. The entire universe, in fact.

Our measurements show that the Milky Way has a mass about 1-2 trillion times greater than the Sun. Dark matter, that mysterious and invisible hobgoblin that haunts cosmologists’ nightmares, makes up about five sixths of that mass. Regular, normal matter makes up the last sixth of the galaxy’s mass, about 150-300 billion solar masses. But we can only find about 65 billion solar masses of that normal matter, made up of the familiar protons, neutrons, and electrons. The rest is missing in action.

Astrophysicists at the Harvard-Smithsonian Center for Astrophysics have been looking for that mass, and have written up their results in a new paper.

“We played a cosmic game of hide-and-seek. And we asked ourselves, where could the missing mass be hiding?” says lead author Fabrizio Nicastro, a research associate at the Harvard-Smithsonian Center for Astrophysics (CfA) and astrophysicist at the Italian National Institute of Astrophysics (INAF).

“We analyzed archival X-ray observations from the XMM-Newton spacecraft and found that the missing mass is in the form of a million-degree gaseous fog permeating our galaxy. That fog absorbs X-rays from more distant background sources,” Nicastro continued.

Artist's impression of the ESA's XMM Newton Spacecraft.  Image credit:  ESA
Artist’s impression of the ESA’s XMM Newton Spacecraft. Image credit: ESA

Nicastro and the other scientists behind the paper analyzed how the x-rays were absorbed and were able to calculate the amount and distribution of normal matter in that fog. The team relied heavily on computer models, and on the XMM-Newton data. But their results did not match up with a uniform distribution of the gaseous fog. Instead, there is an empty “bubble”, where this is no gas. And that bubble extends from the center of the galaxy two-thirds of the way to Earth.

What can explain the bubble? Why would the gaseous fog not be spread more uniformly through the galaxy?

Clearing gas from an area that large would require an enormous amount of energy, and the authors point out that an active black hole would do it. They surmise that Sagittarius A was very active at that time, both feeding on gas falling into itself, and pumping out streams of hot gas at up to 1000 km/sec.

Which brings us to present day, 6 million years later, when the shock-wave caused by that activity has travelled 20,000 light years, creating the bubble around the center of the galaxy.

Another piece of evidence corroborates all this. Near the galactic center is a population of 6 million year old stars, formed from the same material that at one time flowed toward the black hole.

“The different lines of evidence all tie together very well,” says Smithsonian co-author Martin Elvis (CfA). “This active phase lasted for 4 to 8 million years, which is reasonable for a quasar.”

The numbers all match up, too. The gas accounted for in the team’s models and observations add up to 130 billion solar masses. That number wraps everything up pretty nicely, since the missing matter in the galaxy is thought to be between 85 billion and 235 billion solar masses.

This is intriguing stuff, though it’s certainly not the final word on the Milky Way’s missing mass. Two future missions, the European Space Agency’s Athena X-ray Observatory, planned for launch in 2028, and NASA’s proposed X-Ray Surveyor could provide more answers.

Who knows? Maybe not only will we learn more about the missing matter in the Milky Way and other galaxies, we may learn more about the activity at the center of the galaxy, and what ebbs and flows it has gone through, and how that has shaped galactic evolution.

A ‘Cosmic Miracle’: Indications Of Early Forming ‘Direct Collapse’ Black Hole Seen

An image based on a supercomputer simulation of the cosmological environment where primordial gas undergoes the direct collapse to a black hole. Credit: Aaron Smith/TACC/UT-Austin.

Astronomers have been finding some extremely old supermassive black holes, ones that formed when the Universe was quite young. But they were puzzled at how a black hole could grow to such tremendous size when the Universe itself was just a toddler.

Astronomers have now found a unique set of conditions were present half a billion years after the Big Bang that allowed these monster black holes to form. An unusual source of intense radiation created what are called “direct-collapse black holes.”

“It’s a cosmic miracle,” said Volker Bromm of The University of Texas at Austin, who worked with several astronomers on the finding. “It’s the only time in the history of the universe when conditions are just right for them to form.”

The conventional understanding of how black holes form is called the accretion theory, where an extremely massive star collapses and black hole “seeds” are built from the collapse by pulling in gas from their surroundings and by mergers of smaller black holes. But that process takes a long time, much longer than the time these quickly forming black holes were around. Plus, the early universe didn’t have the quantities of gas and dust needed for supermassive black holes to grow to their gigantic size.

The new findings suggest instead that some of the first black holes formed directly when a cloud of gas collapsed, bypassing any other intermediate phases, such as the formation and subsequent destruction of a massive star.

This artist's illustration depicts a possible "seed" for the formation of a supermassive black hole, that is an object that contains millions or even billions of times the mass of the Sun. In the artist's illustration, the gas cloud is shown as the wispy blue material, while the orange and red disk is showing material being funneled toward the growing black hole through its gravitational pull. Credit: X-ray: NASA/CXC/Scuola Normale Superiore/Pacucci, F. et al, Optical: NASA/STScI; Illustration: NASA/CXC/M.Weiss.
This artist’s illustration depicts a possible “seed” for the formation of a supermassive black hole, that is an object that contains millions or even billions of times the mass of the Sun. In the artist’s illustration, the gas cloud is shown as the wispy blue material, while the orange and red disk is showing material being funneled toward the growing black hole through its gravitational pull. Credit: X-ray: NASA/CXC/Scuola Normale Superiore/Pacucci, F. et al, Optical: NASA/STScI; Illustration: NASA/CXC/M.Weiss.

Of course, like any black hole, these “direct collapse” black holes can’t be seen. But there was strong evidence for their existence, as they are needed to power the highly luminous quasars detected in the young universe. A quasar’s great brightness comes from matter spiraling into a supermassive black hole, heating to millions of degrees, creating jets that shine like beacons across the Universe. But since the accretion theory doesn’t explain supermassive black holes in extremely distant — and therefore young — universe, astronomers couldn’t explain the quasars either. This has been called “the quasar seed problem.”

“The quasars observed in the early universe resemble giant babies in a delivery room full of normal infants,” said Avi Loeb from the Harvard-Smithsonian Center for Astrophysics, who worked with Bromm. “One is left wondering: what is special about the environment that nurtured these giant babies? Typically the cold gas reservoir in nearby galaxies like the Milky Way is consumed mostly by star formation.”

But In 2003, Bromm and Loeb came up with a theoretical idea to get an early galaxy to form a supermassive seed black hole, by suppressing the otherwise prohibitive energy input from star formation. They called the process “direct collapse.”

“Begin with a “primordial cloud of hydrogen and helium, suffused in a sea of ultraviolet radiation,” Bromm said. “You crunch this cloud in the gravitational field of a dark-matter halo. Normally, the cloud would be able to cool, and fragment to form stars. However, the ultraviolet photons keep the gas hot, thus suppressing any star formation. These are the desired, near-miraculous conditions: collapse without fragmentation! As the gas gets more and more compact, eventually you have the conditions for a massive black hole.”

This set of cosmic conditions appears to have only existed in the very early universe, and this process does not happen in galaxies today.

To test their theory, Bromm, Loeb and their colleague Aaron Smith started studying a galaxy called CR7, identified by a Hubble Space Telescope survey called COSMOS as being around at less than 1 billion years after the Big Bang.

David Sobral of the University of Lisbon had made follow-up observations of CR7 with some of the world’s largest ground-based telescopes, including Keck and the VLT. These uncovered some extremely unusual features in the light signature coming from CR7. Specifically, the Lyman-alpha hydrogen line was several times brighter than expected. Remarkably, the spectrum also showed an unusually bright helium line.

“Whatever is driving this source is very hot — hot enough to ionize helium,” Smith said, about 100,000 degrees Celsius.

These and other unusual features in the spectrum meant that it could either be a cluster of primordial stars or a supermassive black hole likely formed by direct collapse.

Smith ran simulations for both scenarios and while the star cluster scenario “spectacularly failed,” Smith said, the direct collapse black hole model performed well.

Also, earlier this year, researchers using combined data from the Chandra X-ray Observatory, Hubble Space Telescope, and Spitzer Space Telescope to identify these possible black hole seeds. They found two objects, both of these matched the theoretical profile in the infrared data. (read their paper here.)

It seems astronomers are “converging on this model,” Smith said, for solving the quasar seed problem and the early black hole conundrum.

Stay tuned.

Bromm, Loeb and Smith’s work is published in the journal Monthly Notices of the Royal Astronomical Society.

Sources:
RAS, Harvard-Smithsonian CfA, Press release for NASA’s detection of direct collapse black holes earlier this year.

What Are Virtual Particles?

What Are Virtual Particles?

Sometimes I figure out the weak spot in my articles based on the emails and comments they receive.

One popular article we did was all about Stephen Hawking’s realization that black holes must evaporate over vast periods of time. We talked about the mechanism, and mentioned how there are these virtual particles that pop in and out of existence.

Normally these particles self annihilate, but at the edge of a black hole’s event horizon, one particle falls in, while another is free to wander the cosmos. Since you can’t create particles from nothing, the black hole needs to sacrifice a little bit of itself to buy this newly formed particle’s freedom.

But my short article wasn’t enough to clarify exactly what virtual particles are. Clearly, you all wanted more information. What are they? How are they detected? What does this mean for black holes?

In situations like this, when I know the actual Physics Police are watching, I like to call in a ringer. Once again, I’m going to go back and talk to my good friend, and actual working astrophysicist, Dr. Paul Matt Sutter. He has written papers on subjects like the Bayesian Analysis of Cosmic Dawn and MHD Simulations of Magnetic Outflows. He really knows his stuff.


Fraser Cain:
Hey Paul, first question: What are virtual particles?

Paul Matt Sutter:
Alright. No pressure, Fraser. Okay, okay.

To get the concept of virtual particles you actually have to take a step back and think about the field, especially the electromagnetic field. In our current view of how the universe works all of space and time is filled up with this kind of background field. And this field can wibble and wabble around, and sometimes these wibbles and wabbles are like waves that propagate forward, and we call these waves photons or electromagnetic radiation, but sometimes it can just sit there and you know bloop bloop bloop, just you know pop fizzle in and out, or up and down, and kind of boil a little all on its own.

In fact all the time space is kind of wibbling/wabbling around this field even in a vacuum. A vacuum isn’t the absence of everything. The vacuum is just where this field is in its lowest energy state. But even though it’s in that lowest energy state, even though maybe on average there is nothing there. There’s nothing stopping it from just bloop bloop bloop you know bubbling around.

 Credit: NASA, ESA, Q.D. Wang (University of Massachusetts, Amherst), and S. Stolovy (Caltech)

Credit: NASA, ESA, Q.D. Wang (University of Massachusetts, Amherst), and S. Stolovy (Caltech)

So actually the vacuum is kind of boiling with these fields. In particular the electromagnetic field which is what we are talking about right now.

And we know that photons, that light, can turn into particle, anti-particle pairs. It can turn into say an electron and a positron. It can just do this. It can happen to normal photons, and it can happen to these kind of temporary wibbly wobbly photons.

So sometimes a photon or sometimes the electromagnetic field can propagate from one place to another, and we call it a photon. And that photon can split off into a positron and an electron, and other times it can just wibble wobble kind of in place and then wibble wobble POP POP. It pops into a positron and an electron and then they crash into each other or whatever, and they just simmer back down. So, wibble wobble, pop pop, fizz fizz is kind of what’s going on in the vacuum all they time, and that’s the name we give these virtual particles are just the normal kind of background fuzz or background static to the vacuum.

Fraser:
Okay. So how do we see evidence for virtual particles?

Paul:
Yeah, great question. We know that the vacuum has an energy associated with it. We know that these virtual particles are always fizzing in and out of existence for a few reasons.

One is the transition of the electron in different states of the atom. If you excite the atom the electron pops up to a higher energy state. There is kind of no reason for that electron to pop back down to a lower energy state. It’s already there. It’s actually a stable state. There is no reason for it to leave unless there is little wibble wobbles in the electromagnetic field and it can giggle around that electron and knock it out of that higher energy state and send it crashing down into a lower state

Another thing is called the Lamb Shift, and this is when the wibbly wobbly electromagnetic field or the virtual particles interact again with electrons in say a hydrogen atom. It can gently nudge them around, and this shift effects some states of the electron and not other states. And there are actually states that you would say have the exact same say energy properties, they are just kind of identical, but because the Lamb Shift, because of this wibbly wobbly electromagnetic field interacts with one of those states and not the other, it actually subtly changes the energy levels of those states even though you’d expect them to be completely the same.

And another piece of evidence is in photon photon scattering usually two photons just, phweeet, fly by each other. They are electrically neutral, so they have no reason to interact, but sometimes the photons can wibble wobble into say electron/positron pairs, and that electron/positron pair can interact with the other photons. So sometimes they bounce off each other. It’s super rare because you have to wait for the wibble wobble to happen at just the right time, but it can happen.

Credit: NASA/Dana Berry/SkyWorks Digital
Credit: NASA/Dana Berry/SkyWorks Digital

Fraser:
So how do they interact with black holes?

Paul:
Alright, this is the heart of the matter. What do all of these virtual particles or wibbly wobbly electromagnetic fields have to do with black holes, and specifically Hawking radiation? But check this out. Hawkings original formulation of this idea that black holes can radiate and lose mass actually has nothing to do with virtual particles. Or it doesn’t speak directly about virtual particle pairs, and in fact no other formulations or more modern conceptions of this process talk about virtual particle pairs.

Instead, they talk more about the field itself and specifically what’s happening to the field before the black hole is there, what’s happening to it as the black hole forms, and then what happens to the field after it’s formed. And it kind of asks a question: What happens to these wibbly wobbly bits of the field, these like transient kind of boiling nature of the vacuum of the electromagnetic field? What happens to it as that black hole is forming?

Well what happens is that some of the wibbly wobbly bits just get caught near the black hole, near the event horizon as it is forming, and they spend a long time there, and eventually they do escape. So it takes awhile, but when they escape because of the intense curvature there, the intense curvature of space-time, they can get boosted or promoted. So instead of being temporarily wibbly wobbly’s, in the field they get boosted to become “real” particles or “real” photons. So it’s really like an interaction of the formation of the black hole itself with the wibbly wobbly background field, that eventually escapes because it’s not quite trapped by the black hole.

Eventually it escapes and gets turned into real particles, and you can calculate like what happens with say the expected number of particles near the event horizon of the black hole. The answer is the negative number, which means the black hole is losing mass and spitting out particles.

Now this popular conception of virtual particle pairs popping into existence and one getting caught inside the event horizon. That’s is not exactly tied to the mathematics of Hawking radiation but it’s not exactly wrong either. Remember the wibbly wobbly’s in the electromagnetic field are related to these pairs of particles and anti-particles that are constantly popping in and out of existence. They kind of go hand in hand. So by talking about wibbly wobbly’s in the field you’re also kind of talking about the production of virtual particles. And it’s not exactly the math, but you know close enough.

An artist's conception of a supermassive black hole's jets. Image Credit: NASA / Dana Berry / SkyWorks Digital
An artist’s conception of a supermassive black hole’s jets. Image Credit: NASA / Dana Berry / SkyWorks Digital

Fraser:
Okay, and finally, Paul. I need you to just randomly blow the minds of the viewers. Something about virtual particles that is just amazing!

Paul:
Alright. So you want to bend people’s minds? All right. I was saving this for the last. Something juicy, just for you, Fraser.

Check this out, it’s one other big piece of evidence we have for the existence of these background fluctuations and the existence of virtual particles, and that’s something we call the Casimir Effect, or Casimir Force.

You take two neutral metal plates, and what happens is this field that permeates all of space-time is inside the plates and it’s outside the plates. Inside the plates, you can only have certain wavelengths of modes. Almost like the inside of a trumpet can only have certain modes that make sound. The ends of the wavelengths must connect to the plates, because that’s what metal plates do to electromagnetic fields.

Outside the plates you can have any wavelength you want. It doesn’t matter.

So it means outside the plates you have an infinite number of possible wavelengths of modes. Every kind of possible kind of fluctuation, wibble wabble in the electromagnetic field is there, but inside the plates it’s only certain wavelengths that can fit inside the plates.

Now, outside there’s an infinite number of modes. Inside, there is still an infinite number of modes, just slightly fewer infinite number of modes. And you can take the infinity on the outside, and subtract the infinite infinity on the inside, and actually get a finite number, and what you end up with is a pressure or a force that brings the plates together. And we have actually measured this. This is a real thing, and yes, I am not kidding around, you can take infinity minus a different infinity, and get a finite number. It’s possible. One example is the Euler Mascheroni Constant. I dare you to look it up!


So there you go, now I hope you understand what these virtual particles are, how they’re detected, and how they contribute to the evaporation of a black hole.

And if you haven’t already, make sure you click here and go to his channel. You’ll find dozens of videos answering equally mind-bending questions. In fact, send your questions and he might just make a video and answer them.

Weekly Space Hangout – June 10, 2016: Dr. Chris McKay

Host: Fraser Cain (@fcain)

Special Guest:
NASA Astrobiologist Dr. Chris McKay organized an August 2014 workshop to discuss the future of a permanent moon base, and the ultimate goal of establishing a human settlement on Mars. The resultant nine papers have been recently published in a special issue of the journal New Space.

Guests:
Paul M. Sutter (pmsutter.com / @PaulMattSutter)
Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg)
Dave Dickinson (www.astroguyz.com / @astroguyz)

Their stories this week:
LISA Pathfinder Exceeds Expectations

Hunting Lunar Letters

Watching a Black Hole Eat – Live!

Inflatable ISS module inflates

Falcon 9 relaunch target slips to Sept/Oct

We’ve had an abundance of news stories for the past few months, and not enough time to get to them all. So we are now using a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.

You can also join in the discussion between episodes over at our Weekly Space Hangout Crew group in G+!

Weekly Space Hangout – May 27, 2016: Dr. Seth Shostak

Host: Fraser Cain (@fcain)

Special Guest:
Dr. Seth Shostak is the Senior Astronomer at the SETI Institute. He also heads up the International Academy of Astronautics’ SETI Permanent Committee. In addition, Seth is keen on outreach activities: interesting the public – and especially young people – in science in general, and astrobiology in particular. He’s co-authored a college textbook on astrobiology, and has written three trade books on SETI. In addition, he’s published more than 400 popular articles on science — including regular contributions to both the Huffington Post and Discover Magazine blogs — gives many dozens of talks annually, and is the host of the SETI Institute’s weekly science radio show, “Big Picture Science.”

Guests:
Paul M. Sutter (pmsutter.com / @PaulMattSutter)
Kimberly Cartier (@AstroKimCartier )
Jolene Creighton (fromquarkstoquasars.com / @futurism)
Nicole Gugliucci (cosmoquest.org / @noisyastronomer)
Brian Koberlein (@briankoberlein / briankoberlein.com)

Their stories this week:
“Fresh” Lunar Craters

Faintest early-universe galaxy detected

Update on NASA’s Juno Mission

Europa’s ocean may have Earth-like chemical balance

Do Primordial Black Holes Solve Dark Matter?

India Successfully Launches Tiny Reusable Space Shuttle

30 KM Wide Asteroid Impacted Australia 3.4 Billion Years Ago

MeerKAT First Images

We’ve had an abundance of news stories for the past few months, and not enough time to get to them all. So we’ve started a new system. Instead of adding all of the stories to the spreadsheet each week, we are now using a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.

You can also join in the discussion between episodes over at our Weekly Space Hangout Crew group in G+!

Fermi Links Neutrino Blast To Known Extragalactic Blazar

This image shows the galaxy PKS B1424-418, and the blazar that lives there. The dotted circle is the area in which Fermi detected the neutrino Big Bird. Image: NASA/DOE/LAT Collaboration.
This image shows the galaxy PKS B1424-418, and the blazar that lives there. The dotted circle is the area in which Fermi detected the neutrino Big Bird. Image: NASA/DOE/LAT Collaboration.

A unique observatory buried deep in the clear ice of the South Pole region, an orbiting observatory that monitors gamma rays, a powerful outburst from a black hole 10 billion light years away, and a super-energetic neutrino named Big Bird. These are the cast of characters that populate a paper published in Nature Physics, on Monday April 18th.

The observatory that resides deep in the cold dark of the Antarctic ice has one job: to detect neutrinos. Neutrinos are strange, standoffish particles, sometimes called ‘ghost particles’ because they’re so difficult to detect. They’re like the noble gases of the particle world. Though neutrinos vastly outnumber all other atoms in our Universe, they rarely interact with other particles, and they have no electrical charge. This allows them to pass through normal matter almost unimpeded. To even detect them, you need a dark, undisturbed place, isolated from cosmic rays and background radiation.

This explains why they built an observatory in solid ice. This observatory, called the IceCube Neutrino Observatory, is the ideal place to detect neutrinos. On the rare occasion when a neutrino does interact with the ice surrounding the observatory, a charged particle is created. This particle can be either an electron, muon, or tau. If these charged particles are of sufficiently high energy, then the strings of detectors that make up IceCube can detect it. Once this data is analyzed, the source of the neutrinos can be known.

The next actor in this scenario is NASA’s Fermi Gamma-Ray Space Telescope. Fermi was launched in 2008, with a specific job in mind. Its job is to look at some of the exceptional phenomena in our Universe that generate extraordinarily large amounts of energy, like super-massive black holes, exploding stars, jets of hot gas moving at relativistic speeds, and merging neutron stars. These things generate enormous amounts of gamma-ray energy, the part of the electromagnetic spectrum that Fermi looks at exclusively.

Next comes PKS B1424-418, a distant galaxy with a black hole at its center. About 10 billion years ago, this black hole produced a powerful outburst of energy, called a blazar because it’s pointed at Earth. The light from this outburst started arriving at Earth in 2012. For a year, the blazar in PKS B1424-418 shone 15-30 times brighter in the gamma spectrum than it did before the burst.

Detecting neutrinos is a rare occurrence. So far, IceCube has detected about a hundred of them. For some reason, the most energetic of these neutrinos are named after characters on the popular children’s show called Sesame Street. In December 2012, IceCube detected an exceptionally energetic neutrino, and named it Big Bird. Big Bird had an energy level greater than 2 quadrillion electron volts. That’s an enormous amount of energy shoved into a particle that is thought to have less than one millionth the mass of an electron.

The IceCube Neutrino Observatory is a series of strings of detectors, drilled deep into the Antarctic ice. Image:  Nasa-verve - IceCube Science Team - Francis Halzen, Department of Physics, University of Wisconsin, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=26350372
The IceCube Neutrino Observatory is a series of strings of detectors, drilled deep into the Antarctic ice. Image: Nasa-verve – IceCube Science Team – Francis Halzen, Department of Physics, University of Wisconsin, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=26350372

Big Bird was clearly a big deal, and scientists wanted to know its source. IceCube was able to narrow the source down, but not pinpoint it. Its source was determined to be a 32 degree wide patch of the southern sky. Though helpful, that patch is still the size of 64 full Moons. Still, it was intriguing, because in that patch of sky was PKS B1424-418, the source of the blazar energy detected by Fermi. However, there are also other blazars in that section of the sky.

The scientists looking for Big Bird’s source needed more data. They got it from TANAMI, an observing program that used the combined power of several networked terrestrial telescopes to create a virtual telescope 9,650 km(6,000 miles) across. TANAMI is a long-term program monitoring 100 active galaxies that are located in the southern sky. Since TANAMI is watching other active galaxies, and the energetic jets coming from them, it was able to exclude them as the source for Big Bird.

The team behind this new paper, including lead author Matthias Kadler of the University of Wuerzberg in Germany, think they’ve found the source for Big Bird. They say, with only a 5 percent chance of being wrong, that PKS B1424-418 is indeed Big Bird’s source. As they say in their paper, “The outburst of PKS B1424–418 provides an energy output high enough to explain the observed petaelectronvolt event (Big Bird), suggestive of a direct physical association.”

So what does this mean? It means that we can pinpoint the source of a neutrino. And that’s good for science. Neutrinos are notoriously difficult to detect, and they’re not that well understood. The new detection method, involving the Fermi Telescope in conjunction with the TANAMI array, will not only be able to locate the source of super-energetic neutrinos, but now the detection of a neutrino by IceCube will generate a real-time alert when the source of the neutrino can be narrowed down to an area about the size of the full Moon.

This promises to open a whole new window on neutrinos, the plentiful yet elusive ‘ghost particles’ that populate the Universe.

A Super-Fast Star System Shrugs Its Shoulders At Physics

This annotated artist's conception illustrates our current understanding of the structure of the Milky Way galaxy. Image Credit: NASA
This annotated artist's conception illustrates our current understanding of the structure of the Milky Way galaxy. Image Credit: NASA

Astronomers have found a pair of stellar oddballs out in the edges of our galaxy. The stars in question are a binary pair, and the two companions are moving much faster than anything should be in that part of the galaxy. The discovery was reported in a paper on April 11, 2016, in the Astrophysical Journal Letters.

The binary system is called PB3877, and at 18,000 light years away from us, it’s not exactly in our neighborhood. It’s out past the Scutum-Centaurus Arm, past the Perseus Arm, and even the Outer Arm, in an area called the galactic halo. This binary star also has the high metallicity of younger stars, rather than the low metallicity of the older stars that populate the outer reaches. So PB3877 is a puzzle, that’s for sure.

PB3877 is what’s called a Hyper-Velocity Star (HVS), or rogue star, and though astronomers have found other HVS’s, more than 20 of them in fact, this is the first binary one found. The pair consists of a hot sub-dwarf primary star that’s over five times hotter than the Sun, and a cooler companion star that’s about 1,000 degrees cooler than the Sun.

Hyper-Velocity stars are fast, and can reach speeds of up to 1,198 km. per second, (2.7 million miles per hour,) maybe faster. At that speed, they could cross the distance from the Earth to the Moon in about 5 minutes. But what’s puzzling about this binary star is not just its speed, and its binary nature, but its location.

Hyper-Velocity stars themselves are rare, but PB3877 is even more rare for its location. Typically, hyper velocity stars need to be near enough to the massive black hole at the center of a galaxy to reach their incredible speeds. A star can be drawn toward the black hole, accelerated by the unrelenting pull of the hole, then sling-shotted on its way out of the galaxy. This is the same action that spacecraft can use when they gain a gravity assist by travelling close to a planet.

This video shows how stars can accelerate when their orbit takes them close to the super-massive black holes at the center of the Milky Way.

But the trajectory of PB3877 shows astronomers that it could not have originated near the center of the galaxy. And if it had been ejected by a close encounter with the black hole, how could it have survived with its binary nature intact? Surely the massive pull of the black hole would have destroyed the binary relationship between the two stars in PB3877. Something else has accelerated it to such a high speed, and astronomers want to know what, exactly, did that, and how it kept its binary nature.

Barring a close encounter with the super-massive black hole at the center of the Milky Way, there are a couple other ways that PB3877 could have been accelerated to such a high velocity.

One such way is a stellar interaction or collision. If two stars were travelling at the right vectors, a collision between them could impart energy to one of them and propel it to hyper-velocity. Think of two pool balls on a pool table.

Another possibility is a supernova explosion. It’s possible for one of the stars in a binary pair to go supernova, and eject it’s companion at hyper-velocity speeds. But in these cases, either stellar collision or supernova, things would have to work out just right. And neither possibility explains how a wide-binary system like this could stay intact.

Fraser Cain sheds more light on Hyper-Velocity Stars, or Rogue Stars, in this video.

There is another possibility, and it involves Dark Matter. Dark Matter seems to lurk on the edge of any discussion around something unexplained, and this is a case in point. The researchers think that there could be a massive cocoon or halo of Dark Matter around the binary pair, which is keeping their binary relationship intact.

As for where the binary star PB3788 came from, as they say in the conclusion of their paper, “We conclude that the binary either formed in the halo or was accreted from the tidal debris of a dwarf galaxy by the Milky Way.” And though the source of this star’s formation is an intriguing question, and researchers plan follow up study to verify the supernova ejection possibility, its possible relationship with Dark Matter is also intriguing.

Supermassive Black Hole Found In The Cosmic Boonies

A supermassive black hole has been found in an unusual spot: an isolated region of space where only small, dim galaxies reside. Image credit: NASA/JPL-Caltech
A team of astronomers from South Africa have noticed a series of supermassive black holes in distant galaxies that are all spinning in the same direction. Credit: NASA/JPL-Caltech

Astronomers have found a massive black hole in a place they never expected to find one. The hole comes in at 17 billion solar masses, which makes it the second largest ever found. (The largest is 21 billion solar masses.) And though its enormous mass is noteworthy, its location is even more intriguing.

Supermassive black holes are typically found at the centers of huge galaxies. Most galaxies have them, including our own Milky Way galaxy, where a comparatively puny 4 million solar mass black hole is located. Not only that, these gargantuan holes tend to be located in galaxies that are part of a large cluster of galaxies. Being surrounded by all that mass is a prerequisite for the formation of supermassive black holes. The largest one known, at 21 billion solar masses, is located in a very dense region of space called the Coma Cluster, where over 1,000 galaxies have been identified.

The largest supermassive holes also tend to be surrounded by bright companions, who have also grown large from the plentiful mass in their surroundings. (Of course, its not the black holes that are bright, but the quasars that surround them.) The long and the short of it is that supermassive black holes are usually found in galaxy clusters, and usually have other supermassive companions in the same region of space. They’re not found in isolation.

But this newly found black hole is in a rather sparse region of space. It’s in NGC 1600, an elliptical galaxy in the constellation Eridanus, 200 million light years from Earth. NGC 1600 is not a particularly large galaxy, and though it has been considered part of a larger group of galaxies, all its companions are much dimmer in comparison. So NGC 1600 is a rather small, isolated galaxy, with only a few dim companions.

A supermassive black hole of 17 billion solar masses has been found in the elliptical galaxy NGC 1600, a rather isolated galaxy with only dim companions. To date, supermassive black holes have only been found in huge galaxies at the centre of large clusters of galaxies. This image is a composite image from the Hubble and from ground observatories. Image Credit: NASA/ESA/Digital Sky Survey 2.
A supermassive black hole of 17 billion solar masses has been found in the elliptical galaxy NGC 1600, a rather isolated galaxy with only dim companions. To date, supermassive black holes have only been found in huge galaxies at the centre of large clusters of galaxies. This image is a composite image from the Hubble and from ground observatories. Image Credit: NASA/ESA/Digital Sky Survey 2.

There’s another way that supermassive holes can form. Instead of growing large over time, by feeding on the mass of their home galaxies and galaxy clusters, they can form when two galaxies merge, and two smaller holes become one. But even this requires that they be in a region where galaxies are plentiful, allowing for more collisions and mergers.

It may be possible that NGC is the result of a merger of two galaxies, or that it is two black holes that are currently merging. Or it could be that NGC 1600’s region of space was once extremely rich in gas, in the early days of the Universe, and that’s what gave rise to this ‘out of place’ supermassive black hole.

There is much to be learned about the conditions that give rise to these behemoth black holes. The MASSIVE study will combine several telescopes to survey and catalogue the largest galaxies and black holes. This should tell astronomers a lot about their distribution, and about the circumstances that allow them to exist. We might find even larger ones.