Hubble Spots Unique Object in the Main Asteroid Belt

Artist’s impression shows the binary asteroid 288P, located in the Main Asteroid Belt between the planets Mars and Jupiter. Credit: ESA/Hubble, L. Calçada.

In 1990, the NASA/ESA Hubble Space Telescope was deployed into Low Earth Orbit (LEO). As one of NASA’s Great Observatories – along with the Compton Gamma Ray Observatory, the Chandra X-ray Observatory, and the Spitzer Space Telescope – this instrument remains one of NASA’s larger and more versatile missions. Even after twenty-seven years of service, Hubble continues to make intriguing discoveries, both within our Solar System and beyond.

The latest discovery was made by a team of international astronomers led by the Max Planck Institute for Solar System Research. Using Hubble, they spotted a unique object in the Main Asteroid Belt – a binary asteroid known as 288P – which also behaves like a comet. According to the team’s study, this binary asteroid experiences sublimation as it nears the Sun, which causes comet-like tails to form.

The study, titled “A Binary Main-Belt Comet“, recently appeared in the scientific journal Nature. The team was led by Jessica Agarwal of the Max Planck Institute for Solar System Research, and included members from the Space Telescope Science Institute, the Lunar and Planetary Laboratory at the University of Arizona, the Johns Hopkins University Applied Physics Laboratory (JHUAPL), and the University of California at Los Angeles.

Using the Hubble telescope, the team first observed 288P in September 2016, when it was making its closest approach to Earth. The images they took revealed that this object was not a single asteroid, but two asteroids of similar size and mass that orbit each other at a distance of about 100 km. Beyond that, the team also noted some ongoing activity in the binary system that was unexpected.

As Jessica Agarwal explained in a Hubble press statement, this makes 288P the first known binary asteroid that is also classified as a main-belt comet. “We detected strong indications of the sublimation of water ice due to the increased solar heating – similar to how the tail of a comet is created,” she said. In addition to being a pleasant surprise, these findings are also highly significant when it comes to the study of the Solar System.

Since only a few objects of this type are known, 288P is an extremely important target for future asteroid studies. The various features of 288P also make it unique among the few known wide asteroid binaries in the Solar System. Basically, other binary asteroids that have been observed orbited closer together, were different in size and mass, had less eccentric orbits, and did not form comet-like tails.

The observed activity of 288P also revealed a great deal about the binary asteroids past. From their observations, the team concluded that 288P has existed as a binary system for the past 5000 years and must have accumulated ice since the earliest periods of the Solar System. As Agarwal explained:

“Surface ice cannot survive in the asteroid belt for the age of the Solar System but can be protected for billions of years by a refractory dust mantle, only a few meters thick… The most probable formation scenario of 288P is a breakup due to fast rotation. After that, the two fragments may have been moved further apart by sublimation torques.”

Image depicting the two areas where most of the asteroids in the Solar System are found: the Main Asteroid Belt and the Trojans. Credit: ESA/Hubble, M. Kornmesser

Naturally, there are many unresolved questions about 288P, most of which stem from its unique behavior. Given that it is so different from other binary asteroids, scientists are forced to wonder if it merely coincidental that it presents such unique properties. And given that it was found largely by chance, it is unlikely that any other binaries that have similar properties will be found anytime soon.

“We need more theoretical and observational work, as well as more objects similar to 288P, to find an answer to this question,” said Agarwal. In the meantime, this unique binary asteroid is sure to provide astronomers with many interesting opportunities to study the origin and evolution of asteroids orbiting between Mars and Jupiter.

In particular, the study of those asteroids that show comet-like activity (aka. main-belt comets) is crucial to our understanding of how the Solar System formed and evolved. According to contrasting theories of its formation, the Asteroid Belt is either populated by planetesimals that failed to become a planet, or began empty and gradually filled with planetesimals over time.

In either case, studying its current population can tell us much about how the planets formed billions of years ago, and how water was distributed throughout the Solar System afterwards. This, in turn, is crucial to determining how and where life began to emerge on Earth, and perhaps elsewhere!

Be sure to check out this animation of the 288P binary asteroid too, courtesy of the ESA and Hubble:

 

Further Reading: Hubble, Nature

European Asteroid Smasher Could Bolster Planetary Defense

US-European Asteroid Impact and Deflection mission – AIDA.

Planetary Defense is a concept very few people heard of or took seriously – that is until last week’s humongous and totally unexpected meteor explosion over Russia sent millions of frightened residents ducking for cover, followed just hours later by Earth’s uncomfortably close shave with the 45 meter (150 ft) wide asteroid named 2012 DA14.

This ‘Cosmic Coincidence’ of potentially catastrophic space rocks zooming around Earth is a wakeup call that underscores the need to learn much more about the ever present threat from the vast array of unknown celestial debris in close proximity to Earth and get serious about Planetary Defense from asteroid impacts.

The European Space Agency’s (ESA) proposed Asteroid Impact and Deflection Assessment mission, or AIDA, could significantly bolster both our basic knowledge about asteroids in our neighborhood and perhaps even begin testing Planetary Defense concepts and deflection strategies.

After two years of work, research teams from the US and Europe have selected the mission’s target – a so called ‘binary asteroid’ named Didymos – that AIDA will intercept and smash into at about the time of its closest approach to Earth in 2022 when it is just 11 million kilometers away.

“AIDA is not just an asteroid mission, it is also meant as a research platform open to all different mission users,” says Andres Galvez, ESA studies manager.

Asteroid Didymos could provide a great platform for a wide variety of research endeavors because it’s actually a complex two body system with a moon – and they orbit each other. The larger body is roughly 800 meters across, while the smaller one is about 150 meters wide.

Didymos with its Moon
Didymos with its Moon. Credit: ESA

So the smaller body is some 15 times bigger than the Russian meteor and 3 times the size of Asteroid 2012 DA14 which flew just 27,700 km (17,200 mi) above Earth’s surface on Feb. 15, 2013.

The low cost AIDA mission would be comprised of two spacecraft – a mother ship and a collider. Two ships for two targets.

The US collider is named the Double Asteroid Redirection Test, or DART and would smash into the smaller body at about 6.25 km per second. The impact should change the pace at which the objects spin around each other.

ESA’s mothership is named Asteroid Impact Monitor, or AIM, and would carry out a detailed science survey of Didymos both before and after the violent collision.

“The project has value in many areas,” says Andy Cheng, AIDA lead at Johns Hopkins’ Applied Physics Laboratory, “from applied science and exploration to asteroid resource utilisation.” Cheng was a key member of NASA’s NEAR mission that first orbited and later landed on the near Earth Asteroid named Eros back in 2001.

Recall that back in 2005, NASA’s Deep Impact mission successfully lobbed a projectile into Comet Tempel 1 that unleashed a fiery explosion and spewing out vast quantities of material from the comet’s interior, including water and organics.

NASA’s Deep Impact images Comet Tempel 1 alive with light after colliding with the impactor spacecraft on July 4, 2005.  ESA and NASA are now proposing the AIDA mission to smash into Asteroid Didymos.  CREDIT: NASA/JPL-Caltech/UMD
NASA’s Deep Impact images Comet Tempel 1 alive with light after colliding with the impactor spacecraft on July 4, 2005. ESA and NASA are now proposing the AIDA mission to smash into Asteroid Didymos. CREDIT: NASA/JPL-Caltech/UMD

ESA has invited researchers to submit AIDA experiment proposals on a range of ideas including anything that deals with hypervelocity impacts, planetary science, planetary defense, human exploration or innovation in spacecraft operations. The deadline is 15 March.

“It is an exciting opportunity to do world-leading research of all kinds on a problem that is out of this world,” says Stephan Ulamec from the DLR German Aerospace Center. “And it helps us learn how to work together in international missions tackling the asteroid impact hazard.”

The Russian meteor exploded without warning in mid air with a force of nearly 500 kilotons of TNT, the equivalent of about 20–30 times the atomic bombs detonated at Hiroshima and Nagasaki.

Over 1200 people were injured in Russia’s Chelyabinsk region and some 4000 buildings were damaged at a cost exceeding tens of millions of dollars. A ground impact would have decimated cities like New York, Moscow or Beijing with millions likely killed.

ESA’s AIDA mission concept and NASA’s approved Osiris-REx asteroid sample return mission will begin the path to bolster our basic knowledge about asteroids and hopefully inform us on asteroid deflection and Planetary Defense strategies.

Ken Kremer

Near-Earth asteroid Eros imaged from NASA’s orbiting NEAR spacecraft. Credit: NASA
Near-Earth asteroid Eros imaged from NASA’s orbiting NEAR spacecraft. Credit: NASA