The Average Temperature of the Universe has Been Getting Hotter and Hotter

An illustration of cosmic expansion. Credit: NASA's Goddard Space Flight Center Conceptual Image Lab

For almost a century, astronomers have understood that the Universe is in a state of expansion. Since the 1990s, they have come to understand that as of four billion years ago, the rate of expansion has been speeding up. As this progresses, and the galaxy clusters and filaments of the Universe move farther apart, scientists theorize that the mean temperature of the Universe will gradually decline.

But according to new research led by the Center for Cosmology and AstroParticle Physics (CCAPP) at Ohio State University, it appears that the Universe is actually getting hotter as time goes on. After probing the thermal history of the Universe over the last 10 billion years, the team concluded that the mean temperature of cosmic gas has increased more than 10 times and reached about 2.2 million K (~2.2 °C; 4 million °F) today.

Continue reading “The Average Temperature of the Universe has Been Getting Hotter and Hotter”

Big Bang Theory: Evolution of Our Universe

Illustration of the Big Bang Theory
The Big Bang Theory: A history of the Universe starting from a singularity and expanding ever since. Credit: grandunificationtheory.com

How was our Universe created? How did it come to be the seemingly infinite place we know of today? And what will become of it, ages from now? These are the questions that have been puzzling philosophers and scholars since the beginning the time, and led to some pretty wild and interesting theories. Today, the consensus among scientists, astronomers and cosmologists is that the Universe as we know it was created in a massive explosion that not only created the majority of matter, but the physical laws that govern our ever-expanding cosmos. This is known as The Big Bang Theory.

For almost a century, the term has been bandied about by scholars and non-scholars alike. This should come as no surprise, seeing as how it is the most accepted theory of our origins. But what exactly does it mean? How was our Universe conceived in a massive explosion, what proof is there of this, and what does the theory say about the long-term projections for our Universe?

The basics of the Big Bang theory are fairly simple. In short, the Big Bang hypothesis states that all of the current and past matter in the Universe came into existence at the same time, roughly 13.8 billion years ago. At this time, all matter was compacted into a very small ball with infinite density and intense heat called a Singularity. Suddenly, the Singularity began expanding, and the universe as we know it began.

Continue reading “Big Bang Theory: Evolution of Our Universe”

What is the Big Freeze?

Dark, cold stars from the young Universe could still be here today (University of Utah)

[/caption]The Big Freeze, which is also known as the Heat Death, is one of the possible scenarios predicted by scientists in which the Universe may end. It is a direct consequence of an ever expanding universe. The most telling evidences, such as those that indicate an increasing rate of expansion in regions farthest from us, support this theory. As such, it is the most widely accepted model pertaining to our universe’s ultimate fate.

The term Heat Death comes from the idea that, in an isolated system (the Universe being a very big example), the entropy will continuously increase until it reaches a maximum value. The moment that happens, heat in the system will be evenly distributed, allowing no room for usable energy (or heat) to exist – hence the term ‘heat death’. That means, mechanical motion within the system will no longer be possible.

This kind of ending is a stark contrast to what other scientists believe will be the Universe’s alternative ultimate fate, known as the Big Crunch. The Big Crunch, if it does happen, will be characterized by a collapse of unimaginably gargantuan proportions and will eventually culminate into an immensely massive black hole. The Big Freeze, on the other hand, will happen with less fanfare since everything will wind down to a cold silent halt.

To determine which ending is most possible, scientists need to gather data regarding the density, composition, and even the shape of the Universe.

For example, if the density is found to be lower than what is known as the critical density, then a continuous expansion will ensue. If the density is equal to the critical density, then the Universe will expand forever but at a decreasing rate. Finally, if the density is found to be greater than the critical density, the Universe will eventually stop expanding and then collapse.

It is therefore clear that, for a Big Freeze to occur, the density must be less than the critical density.

Accurate measurements made by the WMAP (Wilkinson Microwave Anisotropy Probe), which picks up cosmic microwave background radiation (CMBR), indicate a density that is much less than the critical density. This is very consistent with observations at the outer regions of the Universe; that being, increasing outward velocities of galaxies as they are further from us.

Through these observations as well as the density measurements, more scientists are inclined to believe that the most possible ending is that of a Big Freeze.

Articles on the big freeze are so hot. It’s a good thing we’ve got a nice collection of them here in Universe Today. Here are two of them:

Here are links from NASA about the big freeze:

Tired eyes? Let your ears help you learn for a change. Here are some episodes from Astronomy Cast that just might suit your taste:

Sources:
http://burro.astr.cwru.edu/stu/advanced/cosmos_death.html
http://map.gsfc.nasa.gov/universe/uni_fate.html