An Exoplanet Reaches 2400 C in One Hemisphere. Does it Really Rain Iron?

This artist's illustration shows the fiery exoplanet WASP-76b. Previous study shows the planet rains iron it's so hot. Now astronomers have detected barium in its atmosphere. Image Credit: ESO/M. Kornmesser

WASP-76b is an ultra-hot Jupiter about 640 light-years away from Earth in the constellation Pisces. A few years ago it gained notoriety for being so hot that iron falls as rain. It’s tidally locked to its star, and the planet’s star-facing hemisphere can reach temperatures as high as 2400 Celsius, well above iron’s 1538 C melting point.

Scientists have been studying the planet since its discovery in 2013, and new evidence suggests that it’s even hotter than thought. But, almost disappointingly, there might be no iron rain after all.

Continue reading “An Exoplanet Reaches 2400 C in One Hemisphere. Does it Really Rain Iron?”

Astronomers Have Found the Perfect Exoplanet to Study Another World’s Atmosphere

An artist's rendering of TOI-1231 b, a Neptune-like planet about 90 light years away from Earth. Credit: NASA/JPL-Caltech

TESS (Transiting Exoplanet Survey Satellite) has found a new planet, and the discovery of this sub-Neptune exoplanet has scientists excited about atmospheres. The combination of the planet’s size, its thick atmosphere, and its orbit around a small M-class star close to Earth provides researchers with an opportunity to learn more about exoplanet atmospheres. We’re getting better and better at finding exoplanets, and studying their atmospheres is the next step in understanding them as a whole.

Continue reading “Astronomers Have Found the Perfect Exoplanet to Study Another World’s Atmosphere”

Earth’s Atmosphere Can Generate a “Space Hurricane”

Illustration of a space hurricane, created using the observational data. Credit: Qing-He Zhang / Shandong University

There are hurricanes in space.

Researchers looking through archival data found evidence of a previously unobserved phenomenon — a giant swirling mass of plasma above Earth’s northern polar region. The “space hurricane,” as the science team calls it, churned for hours, raining down electrons instead of water.

Continue reading “Earth’s Atmosphere Can Generate a “Space Hurricane””

We Could Find Extraterrestrial Civilizations by Their Air Pollution

Exoplanet Kepler 62f would need an atmosphere rich in carbon dioxide for water to be in liquid form. Artist's Illustration: NASA Ames/JPL-Caltech/T. Pyle

Upcoming telescopes will give us more power to search for biosignatures on all the exoplanets we’ve found. Much of the biosignature conversation is centred on biogenic chemistry, such as atmospheric gases produced by simple, single-celled creatures. But what if we want to search for technological civilizations that might be out there? Could we find them by searching for their air pollution?

If a distant civilization was giving our planet a cursory glance in its own survey of alien worlds and technosignatures, they couldn’t help but notice our air pollution.

Could we turn the tables on them?

Continue reading “We Could Find Extraterrestrial Civilizations by Their Air Pollution”

Astronomers Challenge Recent Findings About Venus. “No Statistically Significant Detection of Phosphine”

This artistic impression depicts Venus. Astronomers at MIT, Cardiff University, and elsewhere may have observed signs of life in the atmosphere of Venus. Credits:Image: ESO (European Space Organization)/M. Kornmesser & NASA/JPL/Caltech

In September, a team of scientists reported finding phosphine in the upper atmosphere of Venus. Phosphine can be a biomarker and is here on Earth. But it’s also present on Jupiter, where it’s produced abiotically. The discovery led to conjecture about what kind of life might survive in Venus’ atmosphere, continually producing the easily-degraded phosphine.

The authors of that study were circumspect about their own results, saying that they hope someone can determine a source for the phosphine, other than life.

Now a new study says that the original phosphine detection is not statistically significant.

Continue reading “Astronomers Challenge Recent Findings About Venus. “No Statistically Significant Detection of Phosphine””

Astronomers Report They’ve Detected the Amino Acid Glycine in the Atmosphere of Venus

The planet Venus, as imaged by the Magellan mission. Credit: NASA/JPL

Does it feel like all eyes are on Venus these days? The discovery of the potential biomarker phosphine in the planet’s upper atmosphere last month garnered a lot of attention, as it should. There’s still some uncertainty around what the phosphine discovery means, though.

Now a team of researchers claims they’ve discovered the amino acid glycine in Venus’ atmosphere.

Continue reading “Astronomers Report They’ve Detected the Amino Acid Glycine in the Atmosphere of Venus”

Did Pioneer See Phosphine in the Clouds of Venus Decades Ago?

Artist’s rendition of a theoretical balloon probe in Venus Clouds c. T.Balint ESA

The discovery of phosphine in Venus’ atmosphere has generated a lot of interest. It has the potential to be a biosignature, though since the discovery, some researchers have thrown cold water on that idea.

But it looks, at least, like the discovery is real, and that one of NASA’s Pioneer spacecraft detected the elusive gas back in 1978. And though it’s not necessarily a biosignature, the authors of a new study think that we need to rethink the chemistry of Venus’ atmosphere.

Continue reading “Did Pioneer See Phosphine in the Clouds of Venus Decades Ago?”

Maybe Volcanoes Could Explain the Phosphine in Venus’ Atmosphere

This artistic impression depicts Venus. Astronomers at MIT, Cardiff University, and elsewhere may have observed signs of life in the atmosphere of Venus. Credits:Image: ESO (European Space Organization)/M. Kornmesser & NASA/JPL/Caltech

The detection of phosphine in Venus’ atmosphere was one of those quintessential moments in space science. It was an unexpected discovery, and when combined with our incomplete understanding of planetary science, and our wistful hopefulness around the discovery of life, the result was a potent mix that lit up internet headlines.

As always, some of the headlines were a bit of an over-reach. But that’s the way it goes.

At the heart of it all, there is compelling science. And the same, overarching question that keeps popping up: Are we alone?

Continue reading “Maybe Volcanoes Could Explain the Phosphine in Venus’ Atmosphere”

Climate Change is Making the Atmosphere Worse for Astronomy

climate change and observatories
Global climate change's effects will reach right up the skies, affecting such places as the VLTI in Chile. Courtesy ESO.

Modern astronomical telescopes are extraordinarly powerful. And we keep making them more powerful. With telescopes like the Extremely Large Telescope and the Giant Magellan Telescope seeing first light in the coming years, our astronomical observing power will be greater than ever.

But a new commentary says that climate change could limit the power of our astronomical observatories.

Continue reading “Climate Change is Making the Atmosphere Worse for Astronomy”

Astronomers Continue to Analyze Pluto’s Atmosphere

This image of Pluto taken by the New Horizons spacecraft shows the blue color of Pluto's high-altitude haze. Image: NASA/New Horizons.
This image of Pluto taken by the New Horizons spacecraft shows the blue color of Pluto's high-altitude haze. Image: NASA/New Horizons.

When NASA’s New Horizons spacecraft flew past Pluto, studying the atmosphere was a key scientific objective. Most of what we know about the ice dwarf came from that flyby. That happened in July 2015, but it took over 15 months to send all the data home, and it’s taking even longer to analyze it.

Continue reading “Astronomers Continue to Analyze Pluto’s Atmosphere”