The Orbit of Earth will be Hiding Earth 2.0

According to a new study, the motions of our Sun around its center of mass could make it impossible to detect another Earth in a distant star system. Credit: ESO

In the hunt for extra-solar planets, astronomers and enthusiasts can be forgiven for being a bit optimistic. In the course of discovering thousands of rocky planets, gas giants, and other celestial bodies, is it too much to hope that we might someday find a genuine Earth-analog? Not just an “Earth-like” planet (which implies a rocky body of comparable size) but an actual Earth 2.0?

This has certainly been one of the goals of exoplanet-hunters, who are searching nearby star systems for planets that are not only rocky, but orbit within their star’s habitable zone, show signs of an atmosphere and have water on their surfaces. But according to a new study by Alexey G. Butkevich – a astrophysicist from the Pulkovo Observatory in St. Petersburg, Russia – our attempts to discover Earth 2.0 could be hindered by Earth itself!

Butkevich’s study, titled “Astrometric Exoplanet Detectability and the Earth Orbital Motion“, was recently published in the Monthly Notices of the Royal Astronomical Society. For the sake of his study, Dr. Butkevich examined how changes in the Earth’s own orbital position could make it more difficult to conduct measurements of a star’s motion around its system’s barycenter.

Artist’s impression of how an Earth-like planet might look from space. Credit: ESO.

This method of exoplanet detection, where the motion of a star around the star system’s center of mass (barycenter), is known as the Astrometic Method. Essentially, astronomers attempt to determine if the presence of gravitational fields around a star (i.e. planets) are causing the star to wobble back and forth. This is certainly true of the Solar System, where our Sun is pulled back and forth around a common center by the pull of all its planets.

In the past, this technique has been used to identify binary stars with a high degree of precision. In recent decades, it has been considered as a viable method for exoplanet hunting. This is no easy task since the wobbles are rather difficult to detect at the distances involved. And until recently, the level of precision required to detect these shifts was at the very edge of instrument sensitivity.

This is rapidly changing, thanks to improved instruments that allow for accuracy down to the microarcsecond. A good example of this is the ESA’s Gaia spacecraft, which was deployed in 2013 to catalog and measure the relative motions of billions of stars in our galaxy. Given that it can conduct measurements at 10 microarcseconds, it is believed that this mission could conduct astrometric measurements for the sake of finding exoplanets.

But as Butkevich explained, there are other problems when it comes to this method. “The standard astrometric model is based on the assumption that stars move uniformly relative to the solar system barycentre,” he states. But as he goes on to explain, when examining the effects of Earth’s orbital motion on astrometric detection, there is a correlation between the Earth’s orbit and the position of a star relative to its system barycenter.

Kepler-22b, an exoplanet with an Earth-like radius that was discovery within the habitable zone of its host star. Credit: NASA

To put it another way, Dr. Butkevich examined whether or not the motion of our planet around the Sun, and the Sun’s motion around its center of mass, could have a cancelling effect on parallax measurements of other stars. This would effectively make any measurements of a star’s motion, designed to see if there were any planets orbiting it, effectively useless. Or as Dr. Butkevich stated in his study:

“It is clear from simple geometrical considerations that in such systems the orbital motion of the host star, under certain conditions, may be observationally close to the parallactic effect or even indistinguishable from it. It means that the orbital motion may be partially or fully absorbed by the parallax parameters.”

This would be especially true of systems where the orbital period of a planet was one year, and which had an orbit that placed it close to the Sun’s ecliptic – i.e. like Earth’s own orbit! So basically, astronomers would not be able to detect Earth 2.0 using astrometric measurements, because Earth’s own orbit and the Sun’s own wobble would make detection close to impossible.

As Dr. Butkevich states in his conclusions:

“We present an analysis of effects of the Earth orbital motion on astrometric detectability of exoplanetary systems. We demonstrated that, if period of a planet is close to one year and its orbital plane is nearly parallel to the ecliptic, orbital motion of the host may be entirely or partially absorbed by the parallax parameter. If full absorption occurs, the planet is astrometrically undetectable.”
Future surveys for exoplanets could be complicated by the Sun’s own motion around its barycenter. Credit: NASA

Luckily, exoplanet-hunters have a myriad of other methods too choose from, including direct and indirect measurements. And when it comes to spotting planets around neighboring stars, two of the most effective involve measuring Doppler shifts in stars (aka. the Radial Velocity Method) and dips in a star’s brightness (aka. the Transit Method).

Nevertheless, these methods suffer from their own share of drawbacks, and knowing their limitations is the first step in refining them. In that respect, Dr. Butkevich’s study has echoes of heliocentrism and relativity, where we are reminded that our own reference point is not fixed in space, and can influence our observations.

The hunt for exoplanets is also expected to benefit greatly from deployment of next-generation instruments like the James Webb Space Telescope, the Transiting Exoplanet Survey Satellite (TESS), and others.

Further Reading: arXiv

Will Gaia Be Our Next Big Exoplanet Hunter?

ESA's Gaia is currently on a five-year mission to map the stars of the Milky Way. Image credit: ESA/ATG medialab; background: ESO/S. Brunier.

Early on the morning of Dec. 19, 2013, the pre-dawn sky above the coastal town of Kourou in French Guiana was briefly sliced by the brilliant exhaust of a Soyuz VS06 rocket as it ferried ESA’s “billion-star surveyor” Gaia into space, on its way to begin a five-year mission to map the precise locations of our galaxy’s stars. From its position in orbit around L2 Gaia will ultimately catalog the positions of over a billion stars… and in the meantime it will also locate a surprising amount of Jupiter-sized exoplanets – an estimated 21,000 by the end of its primary mission in 2019.

And, should Gaia continue observations in extended missions beyond 2019 improvements in detection methods will likely turn up even more exoplanets, anywhere from 50,000 to 90,000 over the course of a ten-year mission. Gaia could very well far surpass NASA’s Kepler spacecraft for exoplanet big game hunting!

“It is not just the number of expected exoplanet discoveries that is impressive”, said former mission project scientist Michael Perryman, lead author on a report titled Astrometric Exoplanet Detection with Gaia. “This particular measurement method will give us planet masses, a complete exoplanet survey around all types of stars in our Galaxy, and will advance our knowledge of the existence of massive planets orbiting far out from their host stars”.

Watch: ESA’s Gaia Launches to Map the Milky Way

Artist's impression of a Jupiter-sized exoplanet orbiting an M-dwarf star
Artist’s impression of a Jupiter-sized exoplanet orbiting an M-dwarf star

The planets Gaia will be able to spot are expected to be anywhere from 1 to fifteen times the mass of Jupiter in orbit around Sun-like stars out to a distance of about 500 parsecs (1,630 light-years) from our own Solar System. Exoplanets orbiting smaller red dwarf stars will also be detectable, but only within about a fifth of that distance.

While other space observatories like NASA’s Kepler and CNES/ESA’s CoRoT were designed to detect exoplanets through the transit method, whereby a star’s brightness is dimmed ever-so-slightly by the silhouette of a passing planet, Gaia will detect particularly high-mass exoplanets by the gravitational wobble they impart to their host stars as they travel around them in orbit. This is known as the astrometric method.

A select few of those exoplanets will also be transiting their host stars as seen from Earth – anywhere from 25 to 50 of them – and so will be observable by Gaia as well as from many ground-based transit-detection observatories.

Read more: Gaia is “Go” for Science After a Few Minor Hiccups

After some issues with stray light sneaking into its optics, Gaia was finally given the green light to begin science observations at the end of July and has since been diligently scanning the stars from L2, 1.5 million km from Earth.

With the incredible ability to measure the positions of a billion stars each to an accuracy of 24 microarcseconds – that’s like measuring the width of a human hair from 1,000 km – Gaia won’t be “just” an unprecedented galactic mapmaker but also a world-class exoplanet detector! Get more facts about the Gaia mission here. 

The team’s findings have been accepted for publication in The Astrophysical Journal.

Source: ESA