The World's Largest Digital Camera is Complete. It Will Go Into the Vera Rubin Observatory

Researchers examine the LSST Camera. The camera will soon be shipped to Chile, where it will be the heart of Vera C. Rubin Observatory (right). Credit: Vera C. Rubin Observatory/DOE/SLAC

The Vera C. Rubin Observatory, formerly the Large Synoptic Survey Telescope (LSST), was formally proposed in 2001 to create an astronomical facility that could conduct deep-sky surveys using the latest technology. This includes a wide-field reflecting telescope with an 8.4-meter (~27.5-foot) primary mirror that relies on a novel three-mirror design (the Simonyi Survey Telescope) and a 3.2-megapixel Charge-Coupled Device (CCD) imaging camera (the LSST Camera). Once complete, Rubin will perform a 10-year survey of the southern sky known as the Legacy Survey of Space and Time (LSST).

While construction on the observatory itself did not begin until 2015, work began on the telescope’s digital cameras and primary mirror much sooner (in 2004 and 2007, respectively). After two decades of work, scientists and engineers at the Department of Energy’s (DOE) SLAC National Accelerator Laboratory and their collaborators announced the completion of the LSST Camera – the largest digital camera ever constructed. Once mounted on the Simonyi Survey Telescope, this camera will help researchers observe our Universe in unprecedented detail.

Continue reading “The World's Largest Digital Camera is Complete. It Will Go Into the Vera Rubin Observatory”

The Sun Might Have Once Had a Binary Companion Star

Credit: CfA

For some time now, astronomers have known that the majority of systems in our galaxy consist of binary pairs rather than individual stars. What’s more, in recent decades, research has revealed that stars like our Sun are actually born in clusters within solar nebulas. This has led to efforts in recent years to locate G-type (yellow dwarf) stars in our galaxy that could be the Sun’s long-lost “solar siblings.”

And now, a new study by Harvard astronomers Amir Siraj and Prof. Abraham Loeb has shown that the Sun may once have once had a very similar binary companion that got kicked out of our Solar System. If confirmed, the implications of this could be groundbreaking, especially where theories on how the Oort Cloud formed and whether or not our system captured a massive object (Planet Nine) in the past.

Continue reading “The Sun Might Have Once Had a Binary Companion Star”

If Planet 9 is a Primordial Black Hole, We Might Be Able to See Flares When it Consumes Comets

Artist's conception of accretion flares resulting from the encounter of an Oort-cloud comet and a hypothesized black hole in the outer solar system. Credit: M. Weiss

A comet-eating black hole the size of a planet? It’s possible. And if there’s one out there in the distant Solar System, a pair of researchers think they know how to find it.

If they do, we might finally put the Planet 9 issue to rest.

Continue reading “If Planet 9 is a Primordial Black Hole, We Might Be Able to See Flares When it Consumes Comets”

The Large Synoptic Survey Telescope Could Find More of Earth’s Transient Moons

One of the many PHOs (Potentially Hazardous Objects) that we're keeping an eye on. Image Credit: NASA
One of the many PHOs (Potentially Hazardous Objects) that we're keeping an eye on. Image Credit: NASA

It is a well-known astronomical convention that Earth has only one natural satellite, which is known (somewhat uncreatively) as “the Moon”. However, astronomers have known for a little over a decade that Earth also has a population of what are known as “transient Moons”. These are a subset of Near-Earth Objects (NEOs) that are temporarily scooped up by Earth’s gravity and assume orbits around our planet.

According to a new study by a team of Finish and American astronomers, these temporarily-captured orbiters (TCOs) could be studied with the Large Synoptic Survey Telescope (LSST) in Chile – which is expected to become operational by 2020. By examining these objects with the next-generation telescope, the study’s authors argue that we stand to learn a great deal about NEOs and even begin conducting missions to them.

Continue reading “The Large Synoptic Survey Telescope Could Find More of Earth’s Transient Moons”

Great News! The Large Synoptic Survey Telescope Might be Named for Vera Rubin

The LSST, or Vera Rubin Survey Telescope, under construction at Cerro Pachon, Chile. Image Credit: LSST

The U.S. House of Representatives have passed a bill to change the name of the Large Synoptic Survey Telescope (LSST.) Instead of that explanatory yet cumbersome name, it will be named after American astronomer Vera Rubin. Rubin is well-known for her pioneering work in discovering dark matter.

Continue reading “Great News! The Large Synoptic Survey Telescope Might be Named for Vera Rubin”

Earth’s Mini-Moons are the Perfect Targets to Test Out Asteroid Mining

Artist's impression of a Near-Earth Asteroid passing by Earth. Credit: ESA

Roughly 4.5 billion years ago, scientists theorize that Earth experienced a massive impact with a Mars-sized object (named Theia). In accordance with the Giant Impact Hypothesis, this collision placed a considerable amount of debris in orbit, which eventually coalesced to form the Moon. And while the Moon has remained Earth’s only natural satellite since then, astronomers believe that Earth occasionally shares its orbit with “mini-moons”.

These are essentially small and fast-moving asteroids that largely avoid detection, with only one having been observed to date. But according to a new study by an international team of scientists, the development of  instruments like the Large Synoptic Survey Telescope (LSST) could allow for their detection and study. This, in turn, will present astronomers and asteroid miners with considerable opportunities.

The study which details their findings recently appeared in the Frontiers in Astronomy and Space Sciences under the title “Earth’s Minimoons: Opportunities for Science and Technology“. The study was led by Robert Jedicke, a researcher from the University of Hawaii at Manoa, and included members from the Southwest Research Institute (SwRI), the University of Washington, the Luleå University of Technology, the University of Helsinki, and the Universidad Rey Juan Carlos.

As a specialist in Solar System bodies, Jedicke has spent his career studying the orbit and size distributions of asteroid populations – including Main Belt and Near Earth Objects (NEOs), Centaurs, Trans-Neptunian Objects (TNOs), comets, and interstellar objects. For the sake of their study, Jedicke and his colleagues focused on objects known as temporarily-captured orbiters (TCO) – aka. mini-moons.

These are essentially small rocky bodies – thought to measure up to 1-2 meters (3.3 to 6.6 feet) in diameter – that are temporarily gravitationally bound to the Earth-Moon system. This population of objects also includes temporarily-captured flybys (TCFs), asteroids that fly by Earth and make at least one revolution of the planet before escaping orbit or entering our atmosphere.

As Dr. Jedicke explained in a recent Science Daily news release, these characteristics is what makes mini-moons particularly hard to observe:

“Mini-moons are small, moving across the sky much faster than most asteroid surveys can detect. Only one minimoon has ever been discovered orbiting Earth, the relatively large object designated 2006 RH120, of a few meters in diameter.”

This object, which measured a few meters in diameter, was discovered in 2006 by the Catalina Sky Survey (CSS), a NASA-funded project supported by the Near Earth Object Observation Program (NEOO) that is dedicated to discovering and tracking Near-Earth Asteroids (NEAs). Despite improvements over the past decade in ground-based telescopes and detectors, no other TCOs have been detected since.

Artist rendering of the LSST observatory (foreground) atop Cerro Pachón in Chile. Credit: Large Synoptic Survey Telescope Project Office.

After reviewing the last ten years of mini-moon research, Jedicke and colleagues concluded that existing technology is only capable of detecting these small, fast moving objects by chance. This is likely to change, according to Jedicke and his colleagues, thanks to the advent of the Large Synoptic Survey Telescope (LSST), a wide-field telescope that is currently under construction in Chile.

Once complete, the LSST will spend the ten years investigating the mysteries of dark matter and dark energy, detecting transient events (e.g. novae, supernovae, gamma ray bursts, gravitational lensings, etc.), mapping the structure of the Milky Way, and mapping small objects in the Solar System. Using its advanced optics and data processing techniques, the LSST is expected to increase the number of cataloged NEAs and Kuiper Belt Objects (KBOs) by a factor of 10-100.

But as they indicate in their study, the LSST will also be able to verify the existence of TCOs and track their paths around our planet, which could result in exciting scientific and commercial opportunities. As Dr. Jedicke indicated:

“Mini-moons can provide interesting science and technology testbeds in near-Earth space. These asteroids are delivered towards Earth from the main asteroid belt between Mars and Jupiter via gravitational interactions with the Sun and planets in our solar system. The challenge lies in finding these small objects, despite their close proximity.”

Time-lapse photo of the sky above the LSST construction site in Chile. Credit: LSST

When it is completed in a few years, it is hoped that the LSST will confirm the existence of mini-moons and help track their orbits around Earth. This will be possible thanks to the telescope’s primary mirror (which measures 8.4 meters (27 feet) across) and its 3200 megapixel camera – which has a tremendous field of view. As Jedicke explained, the telescope will be able to cover the entire night sky more than once a week and collect light from faint objects.

With the ability to detect and track these small, fast objects, low-cost missions may be possible to mini-Moons, which would be a boon for researchers seeking to learn more about asteroids in our Solar System. As Dr Mikael Granvik – a researcher from the Luleå University of Technology, the University of Helsinki, and a co-author on the paper – indicated:

“At present we don’t fully understand what asteroids are made of. Missions typically return only tiny amounts of material to Earth. Meteorites provide an indirect way of analyzing asteroids, but Earth’s atmosphere destroys weak materials when they pass through. Mini-moons are perfect targets for bringing back significant chunks of asteroid material, shielded by a spacecraft, which could then be studied in detail back on Earth.”

As Jedicke points out, the ability to conduct low-cost missions to objects that share Earth’s orbit will also be of interest to the burgeoning asteroid mining industry. Beyond that, they also offer the possibility of increasing humanity’s presence in space.

“Once we start finding mini-moons at a greater rate they will be perfect targets for satellite missions,” he said. “We can launch short and therefore cheaper missions, using them as testbeds for larger space missions and providing an opportunity for the fledgling asteroid mining industry to test their technology… I hope that humans will someday venture into the solar system to explore the planets, asteroids and comets — and I see mini-moons as the first stepping stones on that voyage.”

Further Reading: Science Daily, Frontiers in Astronomy and Space Sciences

What are the Chances that the Next Generation LSST Could Find New Planets in the Solar System?

Artist's concept of the hypothetical "Planet Nine." Could it have moons? Credit: NASA/JPL-Caltech/Robert Hurt

In the past few decades, thanks to improvements in ground-based and space-based observatories, astronomers have discovered thousands of planets orbiting neighboring and distant stars (aka. extrasolar planets). Strangely enough, it is these same improvements, and during the same time period, that enabled the discovery of more astronomical bodies within the Solar System.

These include the “minor planets” of Eris, Sedna, Haumea, Makemake, and others, but also the hypothesized planetary-mass objects collectively known as Planet 9 (or Planet X). In a new study led by Northern Arizona University and the Lowell Observatory, a team of researchers hypothesize that the Large Synoptic Survey Telescope (LSST) – a next-generation telescope that will go online in 2022 – has a good chance of finding this mysterious planet.

Their study, titled “On the detectability of Planet X with LSST“, recently appeared online. The study was led by David E. Trilling, an astrophysicist from the Northern Arizona University and the Lowell Observatory, and included Eric C. Bellm from the University of Washington and Renu Malhotra of the Lunar and Planetary Laboratory at The University of Arizona.

Artist’s impression of the Large Synoptic Survey Telescope (LSST). Credit: lsst.org

Located on the Cerro Pachón ridge in north-central Chile, the 8.4-meter LSST will conduct a 10-year survey of the sky that will deliver 200 petabytes worth of images and data that will address some of the most pressing questions about the structure and evolution of the Universe and the objects in it. In addition to surveying the early Universe in order to understand the nature of dark matter and dark energy, it will also conduct surveys of the remote areas of the Solar System.

Planet 9/X is one such object. In recent years, the existence of two planetary-mass bodies have been hypothesized to explain the orbital distribution of distant Kuiper Belt Objects. While neither planet is thought to be exceptionally faint, the sky locations of these planets are poorly constrained – making them difficult to pinpoint. As such, a wide area survey is needed to detect these possible planets.

In 2022, the LSST will carry out an unbiased, large and deep survey of the southern sky, which makes it an important tool when it comes to the search of these hypothesized planets. As they state in their study:

“The possibility of undiscovered planets in the solar system has long fascinated astronomers and the public alike. Recent studies of the orbital properties of very distant Kuiper belt objects (KBOs) have identified several anomalies that may be due to the gravitational influence of one or more undiscovered planetary mass objects orbiting the Sun at distances comparable to the distant KBOs.

Animated diagram showing the spacing of the Solar Systems planet’s, the unusually closely spaced orbits of six of the most distant KBOs, and the possible “Planet 9” (aka. “Planet X”). Credit: Caltech/nagualdesign

These studies include Trujillo & Sheppard’s 2014 study where they noticed similarities in the orbits of distant Trans-Neptunian Objects (TNOs) and postulated that a massive object was likely influencing them. This was followed by a 2016 study by Sheppard & Trujillo where they suggested that the high perihelion objects Sedna and 2012 VP113 were being influence by an unknown massive planet.

This was followed in 2016 by Konstantin Batygin and Michael E. Brown of Caltech suggesting that an undiscovered planet was the culprit. Finally, Malhotra et al. (2016) noted that the most distant KBOs have near-integer period ratios, which was suggestive of a dynamical resonance with a massive object in the outer Solar System. Between these studies, various mass and distance estimates were formed that became the basis of the search for this planet.

Overall, these estimates indicated that Planet 9/X was a super-Earth with anywhere between 5 to 20 Earth masses, and orbited the Sun at a distance of between 150 – 600 AU. Concurrently, these studies have also attempted to narrow down where this Super-Earth’s orbit will take it throughout the outer Solar System, as evidenced by the perturbations it has on KBOs.

Unfortunately, the predicted locations and brightness of the object are not yet sufficiently constrained for astronomers to simply look in the right place at the right time and pick it out. In this respect, a large area sky survey must be carried out using moderately large telescopes with a very wide field of view. As Dr. Trilling told Universe Today via email:

“The predicted Planet X candidates are not particularly faint, but the possible locations on the sky are not very well constrained at all. Therefore, what you really need to find Planet X is a medium-depth telescope that covers a huge amount of sky. This is exactly LSST. LSST’s sensitivity will be sufficient to find Planet X in almost all its (their) predicted configurations, and LSST will cover around half of the known sky to this depth. Furthermore, the cadence is well-matched to finding moving objects, and the data processing systems are very advanced. If you were going to design a tool to find Planet X, LSST is what you would design.”

The orbits of several KBOs provide indications about the possible existence of Planet 9. Credit: Caltech/R. Hurt (IPAC)

However, the team also acknowledges that within certain parameters, Planet 9/X may not be detectable by the LSST. For example, it is possible that that there is a very narrow slice of predicted Planet 9/X parameters where it might be slightly too faint to be easily detected in LSST data. In addition, there is also a small possibility that irregularities in the Planet 9/X cadence might lead to it being missed.

There is the even the unlikely ways in which Planet 9/X could go undetected in LSST data, which would come down to a simple case of bad luck. However, as Dr. Trilling indicated, the team is prepared for these possibilities and is hopeful they will find Planet 9/X, assuming there’s anything to find:
“The more likely conclusion if planet X is not detected in LSST data is that planet X doesn’t exist – or at least not the kind of planet X that has been predicted. In this case, we’ve got to work harder to understand how the Universe created this pattern of orbits in the outer Solar System that I described above. This is a really fun part of science: make a prediction and test it, and find that the result is rarely what is predicted. So now we’ve got to work harder to understand the universe. Hopefully this new understanding makes new predictions that we then can test, and we repeat the cycle.”
The existence of Planet 9/X has been one of the more burning questions for astronomers in recent years. If its existence can be confirmed, astronomers may finally have a complete picture of the Solar System and its dynamics. If it’s existence can be ruled out, this will raise a whole new series of questions about what is going on in the Outer Solar System!

Further Reading: arXiv

Rise of the Super Telescopes: Why We Build Them

This illustration shows what the Giant Magellan Telescope will look like when it comes online. The fifth of its seven mirror segments is being cast now. Each of the segments is a 20 ton piece of glass. Image: Giant Magellan
This illustration shows what the Giant Magellan Telescope will look like when it comes online. Each of its mirror segments is a 20 ton piece of glass. Image: Giant Magellan Telescope – GMTO Corporation

One night 400 years ago, Galileo pointed his 2 inch telescope at Jupiter and spotted 3 of its moons. On subsequent nights, he spotted another, and saw one of the moons disappear behind Jupiter. With those simple observations, he propelled human understanding onto a path it still travels.

Galileo’s observations set off a revolution in astronomy. Prior to his observations of Jupiter’s moons, the prevailing belief was that the entire Universe rotated around the Earth, which lay at the center of everything. That’s a delightfully childish viewpoint, in retrospect, but it was dogma at the time.

Until Galileo’s telescope, this Earth-centric viewpoint, called Aristotelian cosmology, made sense. To all appearances, we were at the center of the action. Which just goes to show you how wrong we can be.

But once it became clear that Jupiter had other bodies orbiting it, our cherished position at the center of the Universe was doomed.

Galileo Galilei set off a revolution in astronomy when he used his telescope to observe moons orbiting Jupiter. By Justus Sustermans - http://www.nmm.ac.uk/mag/pages/mnuExplore/PaintingDetail.cfm?ID=BHC2700, Public Domain, https://commons.wikimedia.org/w/index.php?curid=230543
Galileo Galilei set off a revolution in astronomy when he used his telescope to observe moons orbiting Jupiter. By Justus Sustermans – http://www.nmm.ac.uk/mag/pages/mnuExplore/PaintingDetail.cfm?ID=BHC2700, Public Domain, https://commons.wikimedia.org/w/index.php?curid=230543

Galileo’s observations were an enormous challenge to our understanding of ourselves at the time, and to the authorities at the time. He was forced to recant what he had seen, and he was put under house arrest. But he never really backed down from the observations he made with his 2 inch telescope. How could he?

Now, of course, there isn’t so much hostility towards people with telescopes. As time went on, larger and more powerful telescopes were built, and we’ve gotten used to our understanding going through tumultuous changes. We expect it, even anticipate it.

In our current times, Super Telescopes rule the day, and their sizes are measured in meters, not inches. And when new observations challenge our understanding of things, we cluster around out of curiosity, and try to work our way through it. We don’t condemn the results and order scientists to keep quiet.

The first of the Super Telescopes, as far as most of us are concerned, is the Hubble Space Telescope. From its perch in Low Earth Orbit (LEO), the Hubble has changed our understanding of the Universe on numerous fronts. With its cameras, and the steady stream of mesmerizing images those cameras deliver, a whole generation of people have been exposed to the beauty and mystery of the cosmos.

The Hubble Space Telescope could be considered the first of the Super Telescopes. In this image it is being released from the cargo bay of the Space Shuttle Discovery in 1990. Image: By NASA/IMAX - http://mix.msfc.nasa.gov/abstracts.php?p=1711, Public Domain, https://commons.wikimedia.org/w/index.php?curid=6061254
The Hubble Space Telescope could be considered the first of the Super Telescopes. In this image it is being released from the cargo bay of the Space Shuttle Discovery in 1990. Image: By NASA/IMAX – http://mix.msfc.nasa.gov/abstracts.php?p=1711, Public Domain, https://commons.wikimedia.org/w/index.php?curid=6061254

Hubble has gazed at everything, from our close companion the Moon, all the way to galaxies billions of light years away. It’s spotted a comet breaking apart and crashing into Jupiter, dust storms on Mars, and regions of energetic star-birth in other galaxies. But Hubble’s time may be coming to an end soon, and other Super Telescopes are on the way.

Nowadays, Super Telescopes are expensive megaprojects, often involving several nations. They’re built to pursue specific lines of inquiry, such as:

  • What is the nature of Dark Matter and Dark Energy? How are they distributed in the Universe and what role do they play?
  • Are there other planets like Earth, and solar systems like ours? Are there other habitable worlds?
  • Are we alone or is there other life somewhere?
  • How do planets, solar systems, and galaxies form and evolve?

Some of the Super Telescopes will be on Earth, some will be in space. Some have enormous mirrors made up of individual, computer-controlled segments. The Thirty Meter Telescope has almost 500 of these segments, while the European Extremely Large Telescope has almost 800 of them. Following a different design, the Giant Magellan Telescope has only seven segments, but each one is over 8 meters in diameter, and each one weighs in at a whopping 20 tons of glass each.

This artistic bird's-eye view shows the dome of the ESO European Extremely Large Telescope (E-ELT) in all its glory, on top of the Chilean Cerro Armazones. The telescope is currently under construction and its first light is targeted for 2024.
This artistic bird’s-eye view shows the dome of the ESO European Extremely Large Telescope (E-ELT) in all its glory, on top of the Chilean Cerro Armazones. The telescope is currently under construction and its first light is targeted for 2024.

Some of the Super Telescopes see in UV or Infrared, while others can see in visible light. Some see in several spectrums. The most futuristic of them all, the Large Ultra-Violet, Optical, and Infrared Surveyor (LUVOIR), will be a massive space telescope situated a million-and-a-half kilometers away, with a 16 meter segmented mirror that dwarfs that of the Hubble, at a mere 2.4 meters.

Some of the Super Telescopes will discern the finest distant details, while another, the Large Synoptic Survey Telescope, will complete a ten-year survey of the entire available sky, repeatedly imaging the same area of sky over and over. The result will be a living, dynamic map of the sky showing change over time. That living map will be available to anyone with a computer and an internet connection.

A group photo of the team behind the Large Synoptic Survey Telescope. The group gathered to celebrate the casting of the 'scope's 27.5 ft diameter mirror. The LSST will create a living, detailed, dynamic map of the sky and make it available to anyone. Image: LSST Corporation
A group photo of the team behind the Large Synoptic Survey Telescope. The group gathered to celebrate the casting of the ‘scope’s 27.5 ft diameter mirror. The LSST will create a living, detailed, dynamic map of the sky and make it available to anyone. Image: LSST Corporation

We’re in for exciting times when it comes to our understanding of the cosmos. We’ll be able to watch planets forming around young stars, glimpse the earliest ages of the Universe, and peer into the atmospheres of distant exoplanets looking for signs of life. We may even finally crack the code of Dark Matter and Dark Energy, and understand their role in the Universe.

Along the way there will be surprises, of course. There always are, and it’s the unanticipated discoveries and observations that fuel our sense of intellectual adventure.

The Super Telescopes are technological masterpieces. They couldn’t be built without the level of technology we have now, and in fact, the development of Super Telescopes help drives our technology forward.

But they all have their roots in Galileo and his simple act of observing with a 2-inch telescope. That, and the curiosity about nature that inspired him.

The Rise of the Super Telescopes Series:

Rise of the Super Telescopes: The Large Synoptic Survey Telescope

An artist's illustration of the Large Synoptic Survey Telescope with a simulated night sky. The team hopes to use the LSST to further refine their search for hard-surface supermassive objects. Image: Todd Mason, Mason Productions Inc. / LSST Corporation
An artist's illustration of the Large Synoptic Survey Telescope with a simulated night sky. The team hopes to use the LSST to further refine their search for hard-surface supermassive objects. Image: Todd Mason, Mason Productions Inc. / LSST Corporation

We humans have an insatiable hunger to understand the Universe. As Carl Sagan said, “Understanding is Ecstasy.” But to understand the Universe, we need better and better ways to observe it. And that means one thing: big, huge, enormous telescopes.

In this series we’ll look at 6 of the world’s Super Telescopes:

The Large Synoptic Survey Telescope

While the world’s other Super Telescopes rely on huge mirrors to do their work, the LSST is different. It’s a huge panoramic camera that will create an enormous moving image of the Universe. And its work will be guided by three words: wide, deep, and fast.

While other telescopes capture static images, the LSST will capture richly detailed images of the entire available night sky, over and over. This will allow astronomers to basically “watch” the movement of objects in the sky, night after night. And the imagery will be available to anyone.

The LSST is being built by a group of institutions in the US, and even got some money from Bill Gates. It will be situated atop Cerro Pachon, a peak in Northern Chile. The Gemini South and Southern Astrophysical Research Telescopes are also situated there.

The Camera Inside the ‘Scope

At the heart of the LSST is its enormous digital camera. It weighs over three tons, and the sensor is segmented in a similar way that other Super Telescopes have segmented mirrors. The LSST’s camera is made up of 189 segments, which together create a camera sensor about 2 ft. in diameter, behind a lens that is over 5 ft. in diameter.

Each image that the LSST captures is 40 times larger than the full moon, and will measure 3.2 gigapixels. The camera will capture one of these wide-field images every 20 seconds, all night long. Every few nights, the LSST will give us an image of the entire available night sky, and it will do that for 10 years.

“The LSST survey will open a movie-like window on objects that change brightness, or move, on timescales ranging from 10 seconds to 10 years.” – LSST: FROM SCIENCE DRIVERS TO REFERENCE DESIGN AND ANTICIPATED DATA PRODUCTS

The LSST will capture a vast, movie-like image of over 40 billion objects. This will range from distant, enormous galaxies all the way down to Potentially Hazardous Objects as small as 140 meters in diameter.

The primary-tertiay mirror at its construction facility. Image: LSST

There’s a whole other side to the LSST which is a little more challenging. We get the idea of an in-depth, moving, detailed image of the sky. That’s intuitively easy to engage with. But there’s another side, the data mining challenge.

The Data Challenge

The whole endeavour will create an enormous amount of data. Over 15 terabytes will have to be processed every night. Over its 10 year lifespan, it will capture 60 petabytes of data.

Once data is captured by the LSST, it will travel via two dedicated 40 GB lines to the Data Processing and Archive Center. That Center is a super-computing facility that will manage all the data and make it available to users. But when it comes to handling the data, that’s just the tip of the iceberg.

“LSST is a new way to observe, and gaining knowledge from the Big Data LSST delivers is indeed a challenge.” – Suzanne H. Jacoby, LSST

The sheer amount of data created by the LSST is a challenge that the team behind it saw coming. They knew they would have to build the capacity of the scientific community in advance, in order to get the most out of the LSST.

Handling all of the data from the LSST requires its own infrastructure. Image: LSST

As Suzanne Jacoby, from the LSST team, told Universe today, “To prepare the science community for LSST Operations, the LSST Corporation has undertaken an “Enabling Science” effort which funds the LSST Data Science Fellowship Program (DSFP). This two-year program is designed to supplement existing graduate school curriculum and explores topics including statistics, machine learning, information theory, and scalable programming.”

The Science

The Nature of Dark Matter and Understanding Dark Energy

Contributing to our understanding Dark Energy and Dark Matter is a goal of all of the Super Telescopes. The LSST will map several billion galaxies through time and space. It will help us understand how Dark Energy behaves over time, and how Dark Matter affects the development of cosmic structure.

Cataloging the Solar System

The raw imaging power of the LSST will be a game-changer for mapping and cataloguing our Solar System. It’s thought that the LSST could detect between 60-90% of all potentially hazardous asteroids (PHAs) larger than 140 meters in diameter, as far away as the main asteroid belt. This will not only contribute to NASA’s goal of identifying threats to Earth posed by asteroids, but will help us understand how planets formed and how our Solar System evolved.

Exploring the Changing Sky

The repeated imaging of the night sky, at great depth and with excellent image quality, should tell us a lot about supernovae, variable stars, and possible other events we haven’t even discovered yet. There are always surprising results whenever we build a new telescope or send a probe to a new destination. The LSST will probably be no different.

Milky Way Structure & Formation

The LSST will give us an unprecedented look at the Milky Way. It will survey over half of the sky, and will do so repeatedly. Hundreds of times, in fact. The end result will be an enormously detailed look at the motion of millions of stars in our galaxy.

Open Access

Perhaps the best part of the whole LSST project is that the all of the data will be available to everyone. Anyone with a computer and an internet connection will be able to access LSST’s movie of the Universe. It’s warm and fuzzy, to be sure, to have the results of large science endeavours like this available to anyone. But there’s more to it. The LSST team suspects that the majority of the discoveries resulting from its rich data will come from unaffiliated astronomers, students, and even amateurs.

It was designed from the ground up in this way, and there will be no delay or proprietary barriers when it comes to public data access. In fact, Google has signed on as a partner with LSST because of the desire for public access to the data. We’ve seen what Google has done with Google Earth and Google Sky. What will they come up with for Google LSST?

The Sloan Digital Sky Survey (SDSS), a kind of predecessor to the LSST, was modelled in the same way. All of its data was available to astronomers not affiliated with it, and out of over 6000 papers that refer to SDSS data, the large majority of them were published by astronomers not affiliated with SDSS.

First Light

We’ll have to wait a while for all of this to come our way, though. First light for the LSST won’t be until 2021, and it will begin its 10 year run in 2022. At that time, be ready for a whole new look at our Universe. The LSST will be a game-changer.

Weekly Space Hangout – February 3, 2017: Meredith Rawls & the LSST

Host: Fraser Cain (@fcain)

Special Guest: Meredith Rawls

Meredith is a Postdoctoral Researcher in the Department of Astronomy at the University of Washington. She writes software to prepare for the coming onslaught of data from the Large Synoptic Survey Telescope and studies weird binary stars. She is also the lead organizer of the ComSciCon-Pacific Northwest workshop for STEM graduate students in Seattle this March. Meredith holds degrees in physics and astronomy from Harvey Mudd College, San Diego State University, and New Mexico State University. When she’s not science-ing or telling people all about it, she plays viola, volunteers at summer camp, and advocates for more equity and less light pollution.

Guests:

Paul M. Sutter (pmsutter.com / @PaulMattSutter)
Kimberly Cartier ( KimberlyCartier.org / @AstroKimCartier )

Their stories this week:
Oxygen on the moon

Nearby “super-void” shapes galaxy motion

First science from Keck’s vortex coronograph

We use a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

If you would like to sign up for the AstronomyCast Solar Eclipse Escape, where you can meet Fraser and Pamela, plus WSH Crew and other fans, visit our site linked above and sign up!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page