Exploding Binary Stars Will Light Up the Sky in 2022

Artist’s impression of the VFTS 352 star system, the hottest and most massive double star system to date where the two components are in contact and sharing material. Credit: ESO/L. Calçada

Stellar collisions are an amazingly rare thing. According to our best estimates, such events only occur in our galaxy (within globular clusters) once every 10,000 years. It’s only been recently, thanks to ongoing improvements in instrumentation and technology, that astronomers have been able to observe such mergers taking place. As of yet, no one has ever witnessed this phenomena in action – but that may be about to change!

According to study from a team of researchers from Calvin College in Grand Rapids, Michigan, a binary star system that will likely merge and explode in 2022. This is an historic find, since it will allow astronomers to witness a stellar merger and explosion for the first time in history. What’s more, they claim, this explosion will be visible with the naked-eye to observers here on Earth.

The findings were presented last week at the 229th Meeting of the American Astronomical Society (AAS). In a presentation titled “A Precise Prediction of a Stellar Merger and Red Nova Outburst“, Professor Lawrence Molnar and his team shared findings that indicate how this binary pair will merge in about six years time. This event, they claim, will cause an outburst of light so bright that it will become the brightest object in the night sky.

Professor Lawrence Molnar of the Calvin College’s Dept. of Physics and Astronomy. He predicts KIC 9832227 will collide and explode in 2022. Credit: calvin.edu

This binary star system, which is known as KIC 9832227, is one that Prof. Molnar and his colleagues – which includes students from the Apache Point Observatory and the University of Wyoming – have been monitoring since 2013. His interest in the star was piqued during a conference in 2013 when Karen Kinemuchi (an astronomers with the Apache Point Observatory) presented findings about brightness changes in the star.

This led to questions about the nature of this star system – specifically, whether it was a pulsar or a binary pair. After conducting their own observations using the Calvin observatory, Prof. Molnar and his colleagues concluded that the star was a  contact binary – a class of binary star where the two stars are close enough to share an atmosphere. This brought to mind similar research in the past about another binary star system known as V1309 Scorpii.

This binary pair also had a shared atmosphere; and over time, their orbital period kept decreasing until (in 2008) they unexpectedly collided and exploded. Believing that KIC 9832227 would undergo a similar fate, they began conducting tests to see if the star system was exhibiting the same behavior. The first step was to make spectroscopic observations to see if their observations could be explained by the presence of a companion star.

As Cara Alexander, a Calvin College student and one of the co-authors on the team’s research paper, explained in a college press release:

“We had to rule out the possibility of a third star. That would have been a pedestrian, boring explanation. I was processing data from two telescopes and obtained images that showed a signature of our star and no sign of a third star. Then we knew we were looking at the right thing. It took most of the summer to analyze the data, but it was so exciting. To be a part of this research, I don’t know any other place where I would get an opportunity like that; Calvin is an amazing place.”

Diagram showing the summer constellations of Cygnus and Lyra and the position of KIC 9832227 (shown with a red circle). Credit: calvin.edu

The next step was to measure the pair’s orbital period, to see it was in fact getting shorter over time – which would indicate that the stars were moving closer to each other. By 2015, Prof. Molnar and his team determined that the stars would eventually collide, resulting in a kind of stellar explosion known as a “Red Nova”. Initially, they estimated this would take place between 2018 and 2020, but have since placed the date at 2022.

In addition, they predict that the burst of light it will cause will be bright enough to be seen from Earth. The star will be visible as part of the constellation Cygnus, and it appear as an addition star in the familiar Northern Cross star pattern (see above). This is an historic case, since no astronomer has ever been able to accurately predict when and where a stellar collision would take place in the past.

What’s more, this discovery is immensely significant because it represents a break with the traditional discovery process. Not only have small research institutions and universities not been the ones to take the lead on these sorts of discoveries in the past, but student-and-teacher teams have also not been the ones who got to make them. As Molnar explained it:

“Most big scientific projects are done in enormous groups with thousands of people and billions of dollars. This project is just the opposite. It’s been done using a small telescope, with one professor and a few students looking for something that is not likely. Nobody has ever predicted a nova explosion before. Why pay someone to do something that almost certainly won’t succeed? It’s a high-risk proposal. But at Calvin it’s only my risk, and I can use my work on interesting, open-ended questions to bring extra excitement into my classroom. Some projects still have an advantage when you don’t have as much time or money.”

The model Prof. Molnar and his team constructed of the double star system KIC 9832227, which is a contact binary (i.e. two stars that are touching). Credit: calvin.edu.

Over the course of the next year, Molnar and his colleagues will be monitoring KIC 9832227 carefully, and in multiple wavelengths. This will be done with the help of the NROA’s Very Large Array (VLA), NASA’s Infrared Telescope Facility at Mauna Kea, and the ESA’s XMM-Newton spacecraft. These observatories will study the star’s radio, infrared and X-ray emissions, respectively.

Molnar also expects that amateur astronomers will be able to monitor the pair’s orbital timing and variations in brightness. And if he and his team’s predictions are correct, every student and stargazer in the northern hemisphere – not to mention people who just happen to be out for a walk – will be privy to the amazing light show. This is sure to be a once-in-a-lifetime event, so stay tuned for more information!

Interestingly enough, this historic discovery is also the subject of a documentary film. Titled “Luminous“, the documentary – which is directed by Sam Smartt, a Calvin professor of communication arts and sciences – chronicles the process that led Prof. Molnar and his team to make this unprecedented discovery. The documentary will also include footage of the Red Nova as it happens in 2022, and is expected to be released sometime in 2023.

Check out the trailer below:

Further Reading: Calvin College, Science Mag

Could Garnet Planets be Habitable?

A new study based on data from Sloan Digital Sky Survey (SDSS) shows how certain exoplanets are dominated by minerals like olivine and garnet. Credit: NASA

The hunt for exoplanet has revealed some very interesting things about our Universe. In addition to the many gas giants and “Super-Jupiters” discovered by mission like Kepler, there have also been the many exoplanet candidate that comparable in size and structure to Earth. But while these bodies may be terrestrial (i.e. composed of minerals and rocky material) this does not mean that they are “Earth-like”.

For example, what kind of minerals go into a rocky planet? And what could these particular compositions mean for the planet’s geological activity, which is intrinsic to planetary evolution? According to new study produced by a team of astronomers and geophysicists, the composition of an exoplanet depends on the chemical composition of its star – which can have serious implications for its habitability.

The findings of this study were presented at the 229th Meeting of the American Astronomical Society (AAS), which will be taking place from Jan. 3rd to Jan. 7th. During an afternoon presentation – titled “Between a Rock and a Hard Place: Can Garnet Planets Be Habitable?” – Johanna Teske (an astronomer from the Carnegie Institute of Science)  showed how different types of stars can produce vastly different types of planets.

The Apache Point Observatory Galactic Evolution Experiment (APOGEE), which collects spectrographic information on distant stars. Credit: astronomy.as.virginia.edu

Using the Apache Point Observatory Galactic Evolution Experiment (APOGEE), which is part of the Sloan Digital Sky Survey (SDSS) Telescope at Apache Point Observatory, they examined spectrographic information obtained from 90 star systems – which were also observed by the Kepler Mission. These systems are of particular interest to exoplanet hunters because they have been shown to contain rocky planets.

As Teske explained during the course of the presentation, this information could help scientists to place further constraints on what it takes for a planet to be habitable. “[O]ur study combines new observations of stars with new models of planetary interiors,” she said. “We want to better understand the diversity of small, rocky exoplanet composition and structure — how likely are they to have plate tectonics or magnetic fields?”

Focusing on two star systems in particular – Kepler 102 and Kepler 407 – Teske demonstrated how the composition of a planet has a great deal to do with the composition of its star. Whereas Kepler 102 has five known planets, Kepler 407, has two different planets – one gaseous and the other terrestrial. And while Kepler 102 is quite similar to our Sun (slightly less luminous), Kepler 407 has close to the same mass (but a lot more silicon).

In order to understand what consequences these differences could have for planetary formation, the SDSS team turned to a team of geophysicists. Led by Cayman Unterborn from Arizona State University, this team ran computer models to see what kinds of planets each system would have. As Unterborn explained:

“We took the star compositions found by APOGEE and modeled how the elements condensed into planets in our models. We found that the planet around Kepler 407, which we called ‘Janet,” would likely be rich in the mineral garnet. The planet around Kepler 102, which we called ‘Olive,’ is probably rich in olivine, like Earth.”

Artist rendition of interior compositions of planets around the stars Kepler 102 and Kepler 407. Credit: Robin Dienel/Carnegie DTM

This difference would have considerable impact on planetary tectonics. For one, garnet is lot more rigid than olivine, which would mean “Janet” would experience less in the way of long-term plate tectonics. This in turn would mean that processes that are believed to be essential to life on Earth – like volcanic activity, atmospheric recycling, and mineral exchanges between the crust and mantle – would be less common.

This raises additional questions about the habitability of “Earth-like” planets in other star systems. In addition to being rocky and having strong magnetic fields and viable atmospheres, it seems that exoplanets also need to have the right mix of minerals in order to support life – life as we know it, at any rate. What’s more, this kind of research also helps us to understand how life came to emerge on Earth in the first place.

Looking forward, the research team hopes to extend their study to include all the 200,000 stars surveyed by APOGEE to see which could host terrestrial planets. This will allow astronomers to determine the mineral composition of more rocky worlds, thus helping them to determine which rocky exoplanets are “Earth-like”, and which are just “Earth-sized”.

Further Reading: SDSS

Chandra Spots Two Cosmic Heavy-Hitters at Once

Composite view of the collision between galaxy clusters Abell 3411 and Abell 3412 . Credit: X-ray: NASA/CXC/SAO/R. van Weeren et al./NAOJ/Subaru

This week, the 229th Meeting of the American Astronomical Society (AAS) kicked off in Grapevine, Texas. Between Monday and Friday (January 3rd to January 7th), attendees will be hearing presentations by researchers and scientists from several different fields as they share the latest discoveries in astronomy and Earth science.

One of the highlights so far this week was a presentation from NASA’s Chandra X-ray Observatory, which took place on the morning of Wednesday, January 5th. In the course of the presentation, an international research team showed some stunning images of two of the most powerful cosmic forces seen together for the first time – a supermassive black hole and two massive galaxy clusters colliding.

The galaxy clusters are known as Abell 3411 and Abell 3412, which are located about two billion light years from Earth. Both of these clusters are quite massive, each possessing the equivalent of about a quadrillion times the mass of our Sun. Needless to say, the collision of these objects produced quite the shockwave, which included the release of hot gas and energetic particles.

X-ray image of the collision between Abell 3411 and Abell 3412. Credit: NASA/CXC/SAO/R. van Weeren et al.

This was made all the more impressive thanks to the presence of a supermassive black hole (SMBH) at the center of one of the galaxy clusters. As the team described in their paper – titled “The Case for Electron Re-Acceleration at Galaxy Cluster Shocks” – the galactic collision produced a nebulous outburst of x-rays (shown above), which were produced when hot clouds of gas from one cluster plowed through the hot gas clouds of the other.

Meanwhile, the inflowing gas was accelerated outward into a jet-like stream, thanks to the powerful electromagnetic fields of the SMBH. These particles were accelerated even further when they got swept up by the shock waves produced by the collision of the galactic clusters and their massive gas clouds. These streams were detected thanks to the burst of radio waves they released as a result.

By seeing these two major events happening at the same time in the same place, the research team effectively witnessed a cosmic “double whammy”. As Felipe Andrade-Santos of the Harvard-Smithsonian Center for Astrophysics (CfA), and co-author of the paper, described it in a Chandra press release:

“It’s almost like launching a rocket into low-Earth orbit and then getting shot out of the Solar System by a second rocket blast. These particles are among the most energetic particles observed in the Universe, thanks to the double injection of energy.”

Image of radio waves produce by the collision between Abell 3411 and Abell 3412. Credit: NASA/CXC/SAO/R. van Weeren et al.

Relying on data obtained from the Chandra X-ray Observatory, the Giant Metrewave Radio Telescope (GMRT) in India, the Karl G. Jansky Very Large Array, the Keck Observatory, and Japan’s Subaru Telescope, the team was able to capture this event in the optical, x-ray, and radio wave wavelengths. This not only led to some stunning images, but shed some light on a long-standing mystery in galaxy research.

In the past, astronomers have detected radio emissions coming from Abell 3411 and Abell 3412 using the GMRT. But the origins of these emissions, which reached for millions of light years, was the subject of speculation and debate. Relying on the data they obtained, the research team was able to determine that they are the result of energetic particles (produced by the clouds of hot gas colliding) being further accelerated by galactic shock waves.

Or as co-author William Dawson, of the Lawrence Livermore National Lab in Livermore, California, put it:

“This result shows that a remarkable combination of powerful events generate these particle acceleration factories, which are the largest and most powerful in the Universe. It is a bit poetic that it took a combination of the world’s biggest observatories to understand this.”

Many interesting finds have been shared since the 229th Meeting of the AAS began – like the hunt for the source of a Fast Radio Burst – and many more are expected before it wraps up at the end of the week. These will include the latest results from the Sloan Digital Sky Survey (SDSS), and new and exciting research on black holes, exoplanets, and other astronomical phenomena.

And be sure to check out this podcast from Chandra as well, which talks about the collision between Abell 3411 and 3412 and the cosmic forces it unleashed.

Further Reading: Chandra X-ray Observatory