LRO/LCROSS Ready for Launch to the Moon

The Atlas V with LRO and LCROSS at the pad. Credit: NASA

[/caption]
NASA is going back to the Moon today! The Lunar Reconnaissance Orbiter (LRO) and a piggyback mission called the Lunar Crater Observation and Sensing Satellite (LCROSS) are at the launch pad, ready to blast off on an Atlas V today (Thursday June 18), with launch windows at 5:12 p.m., 5:22 p.m. or 5:32 p.m. EDT. (9:12, 9:22 or 9:32 GMT). The dual mission will provide detailed lunar maps to aid in returning humans to the moon, while searching for water ice in permanently shaded craters at the moon’s poles.

LRO is scheduled for a one-year prime mission, exploring the moon from a polar orbit of about 31 miles, or 50 kilometers, the closest any spacecraft has orbited the moon. Its primary objective is to conduct investigations to prepare for future explorations of the moon.

“LRO will circle the moon every two hours,” Craig Tooley, LRO project manager explained at a press briefing earlier this week. “As moon rotates, LRO will be able to see the entire surface, so every month, we will map the entire surface of moon. There will be gaps in our measurements because the view of the instruments are very narrow beneath the satellite ground track. Over the course of an entire year, we can fill in these gaps to have a global measurement of the moon and a new set of data, a new atlas so to speak showing temperature, minerals, images and other data.”

Artist concept of LRO in lunar orbit. Credit: NASA
Artist concept of LRO in lunar orbit. Credit: NASA

Tooley said that the Apollo missions accepted the risk of not knowing details of the landing sites. “They had safe landings, but we want to return to moon with repeated landings and have a higher degree of safety.”

LRO will be able to look at the distribution of rocks, boulders, and craters, with its 50 cm spatial resolution camera. “We’ll be able to see small boulders and know where it is safe to land,” said Rich Vondrak, project scientist. “NASA has identified fifty high priority sites that are potential landing sites for astronauts.”

LRO has a Narrow Angle Camera (NAC) and a Wide Angle Camera (WAC). NAC is dedicated to high resolution, and Vondrak said the high priority regions will be mapped in high res the first year, and they are working with science community for areas to study during an extended mission.

The Lunar Oribter Laser Altimeter (LOLA) will provide a high resolution 3-D relief map of moon. “LOLA resolution will be 10 times better than what we currently have,” said Vondrak. “We’re looking forward to mapping Aiken Basin, a huge depression, very carefully, and the polar regions are of high interest. We’ll have new eyes on the moon to get new views to prepare for future exploration of the moon.”

Regions near the pole have nearly continuous sunlight, which could be a source of warmth and power for future explorers. There are also regions inside polar craters that are continuously dark and very cold, and previous missions have found evidence of hydrogen, which scientists expect to be associated with water ice, a potential resource for future explorers.

“We’ll do the best possible attempt of determining the characteristic of the lunar surface from orbit, but to really understand the water content of the surface, you would like to land there,” said Vondrak. “We are fortunate that LRO will carry a companion mission, LCROSS, to seek water on the moon.”

Artist concept of LCROSS and Centaur stage heading for impact. Credit: NASA
Artist concept of LCROSS and Centaur stage heading for impact. Credit: NASA

LCROSS will search for water ice on the moon by sending the spent upper-stage Centaur rocket to impact part of a polar crater in permanent shadows. LCROSS will fly into the plume of dust left by the impact and measure the properties before also colliding with the lunar surface.

“LCROSS will shepherd the Centaur to the precise orbit, and accelerate it into the moon,” said LCROSS project scientist Tony Colaprete. “The two will separate, with LCROSS following the Centaur by four minutes, taking live “bent pipe” meausrments, sendin back live video (which will be shown live via webcast) taking measurements of the lunar regolith characteristics, looking for lunar water vapor or ice characteristics, then impacting the lunar surface itself. LCROSS will be a smashing success.”

The impact will take place about 100 days after launch, and the science team hopes to recruit amateur astronomers and students to help watch the impact from Earth. “This should be very engaging for the public, and their observations will help us, too,” said Colaprete.

If launch slips to Friday, June 19, the launch opportunities would be 6:41 p.m., 6:51 p.m. and 7:01 p.m EDT (10:41, 10;51 and 11:01 GMT).

Several videos about LRO and LCROSS.

Follow LRO’s Launch Blog.

Watch KSC video feeds of launch prep and launch.

World’s First Spaceport Begins Construction

Spaceport America designed by URS/Foster + partners. Conceptual image courtesy Vyonyx Ltd.

[/caption]
The western United States used to be known as the frontier, and now that region will provide access to the final frontier. On June 19, ground will be broken in New Mexico for Spaceport America, the world’s first commercial spaceport built for launching private citizens into space. Groundbreaking ceremonies will include a flyover by Virgin Galactic’s WhiteKnightTwo, the mothership that will send tourists on their way to space in SpaceShip2. Virgin Galactic will be the first – if not most important — tenant of Spaceport America, and already more than 250 people have put money down to take trips to the edge of space as early as next year.

Spaceport America’s runway is scheduled to be completed next summer. The terminal and hangar should be ready for tenants in December 2010, when Virgin Galactic hopes to begin taking tourists to space.

White knight Two.  Credit:  FlightGlobal.com.
White knight Two. Credit: FlightGlobal.com.

Competitors such as XCOR Aerospace and Armadillo Aerospace are developing spacecraft for $95,000 flights. And as flights become more routine, costs should drop.

Five miles from the terminal is a launching pad for 20-foot rockets used mostly for science experiments, which has been operational for the past two years.

If you are in the Las Cruces/ Truth or Consequences, New Mexico area, check out Spaceport America’s website. The groundbreaking ceremonies are free and open to the public.

Source: AP, Spaceport America

ISS Now Visible in Daytime!

The International Space Station seen during the day. Credit: Spaceweather.com

[/caption]
Oh wow! I love satellite watching, and especially the International Space Station, but now I don’t have to wait for nightfall anymore. We reported that the ISS had become the second brightest object in the night sky back in March 2009 with the addition of the final set of solar arrays. And now its been confirmed that the space station, under the right conditions, can be visible during the day, too. “On June 13th, I was watching a red-headed woodpecker’s nest when the ISS passed overhead,” said Brooke O’Klatner of Charlotte, North Carolina, who took this image, which was posted on Spaceweather.com.

And the ISS will get even brighter when the STS-127 mission arrives, hopefully in July (liftoff has been re-scheduled for July 11 after being postponed today because of a hydrogen leak.) The mission will add an addition on to the Kibo lab, and with Endeavour attached to the station, it will be quite bright. Can’t wait! In the meantime, I’m going to test out my best eagle eyes and try to see the ISS during the day. If anyone is able to see it during a daytime pass, let us know! (Pictures encouraged!)

Exoplanet Has Oddball Orbit

XO-3b's eccentric orbit. Credit: New Scientist

[/caption]
In what might be a evidence of planetary billiards, astronomers have found an exoplanet with an extremely odd orbit. The question is, was this planet the cue ball or the object ball? While most planets orbit around a star’s mid-section, this one – called XO-3b — is tilted about 37 degrees from the star’s equator. It’s also a massive planet, about 10 times the size of Jupiter. Such a misalignment must have occurred as a result of a disturbance, such as a collision with another object, sometime after the planet’s formation. But astronomers say they don’t yet know what caused the unusual orbit of XO-3b.

Detecting this oddball orbit required a combination of good luck, advanced technology and ingenious methodology. The planet was discovered back in 2007 using the transit method by measuring how the star is dimmed by the planet passing in through the line-of-sight between Earth and the star.

Joshua Winn explains the planet XO-3b's tilted orbit. Credit: MIT
Joshua Winn explains the planet XO-3b's tilted orbit. Credit: MIT

Using the Keck I telescope, detecting the planet itself was relatively easy, as it dimmed the star’s light by about 1 percent. But to go one step further and measure the angle of its orbit, meant that “we have to be sneaky about it,” said MIT physicist Joshua Winn, who led the team that measured the planet’s tilted orbit. It turns out that if a planet crosses the star’s disk at an angle to the star’s own rotation, it causes a distinctive pattern of change in the overall color of the star, as measured by a highly sensitive spectrograph, because of the Doppler shifts caused by the star’s rotation.

Hints of such a spectral signature were seen last year by another team, but that team acknowledged that they could not be confident of their result. The new observations, carried out by Winn and his team in February at the Keck I Observatory in Hawaii, provided a clear, solid measurement of the planet’s distinctive tilt, determining the angle of the orbit to be about 37 degrees from the star’s equator. The results are reported in a paper in the Astrophysical Journal, which was recently posted online and will be published in the journal’s August issue.

A majority of the exoplanet discovered so far are very large planets comparable to the gas giants in our solar system, but orbiting their stars much closer in (and thus faster). That’s because the method used to detect these planets makes it much easier to detect such close-in giants than smaller or more distant ones. In the case of XO-3b, it is about 13 times as massive as Jupiter, yet orbits its star with a period, or “year,” of just 3.5 days (Jupiter, by contrast, takes almost 12 years for an orbit). That size and closeness to its star are “unusual, even by the standards of exoplanets,” Winn says.

A collision between planets,like the one illustrated, could have caused the odd orbit of XO-3b. Credit: NASA/JPL-Caltech
A collision between planets,like the one illustrated, could have caused the odd orbit of XO-3b. Credit: NASA/JPL-Caltech

Such “hot Jupiters” – so named because they resemble the solar system’s largest planet, but would be much hotter because of their proximity to their parent stars – could not have formed in the places they are seen now, according to accepted planet-formation theory. They must have formed much further out from the star, then migrated inward to their present positions. Astronomers have come up with different mechanisms to account for the migration: the gravitational attraction of other planets as they passed close by, or the attraction of the disk of dust and gas from which the star and its planets formed.

Close encounters with other planets could greatly amplify a slight initial tilt, but attraction from the disk of material could not. Likely, a cataclysmic event occurred in this planet’s past.

Read the team’s paper.

Source: MIT

Spaceflight

Spaceflight
A close-up of Atlantis during launch. Credit: NASA

Even before man had managed to take to the skies on our planet, he had thought of spaceflight and soaring through the skies of the planets that he could see. As soon as the Montgolfier brothers had successfully launched their first hot air balloon a race began to see who could fly untethered, then into space. That race for spaceflight never let up. Yuri Gagarin and the Soviet space program arrived first, but the Americans were close behind and were committed to one-up-manship.

Tackling all of the spaceflight articles on the internet would take a dozen researchers a lifetime. Of course, you do not have that kind of time or patience, so we have assembled links to all of the articles that we have here on Universe Today related to the topic. We do not expect you to just dive in blind, so here are a few fun facts about spaceflight.

The average space suit costs a little over $12 million(U.S.). Not bad for an outfit that can protect you from a meteorite.

There are 13,000 detectable pieces of space junk…left over pieces and parts from space repairs, broken down satellites, etc. Where ever man goes, garbage seems to accumulate. Some of this junk managed to destroy at least one satellite.

We are on the cusp of full blown space tourism. The ultrarich have been buying trips on space shuttle missions for years, but there are at least two companies that have tested commercial spacecraft.

Many of today’s modern rockets are a variation of the German V2 rocket.

There are hundreds of interesting facts about spaceflight in the links below. Everything from space food to space tourism and the different mission launched by various space agencies. Hopefully, you will find everything that you need and, as always, enjoy your research.

Where In The Universe #58



It’s Wednesday, so that means its time for another “Where In The Universe” challenge to test your visual knowledge of the cosmos. See if you can name where in the Universe this image is from, and give yourself extra points if you can name the spacecraft responsible for the image. Make your guess and post a comment, but please no links to the answer. Check back sometime on Thursday to find the answer and see how you did.

UPDATE: The answer has now been posted below.

This one, I admit, was a little tough. But fun! Although I think a lot of people were too perplexed to post an answer.

This image was taken by the Spitzer Space Telescope, and it is of a star located 1,140 light-years away from Earth. The star is a small baby star named HH 46/47, and it appears to be blowing bubbles. The infant star can be seen as a white spot toward the center of the Spitzer image. The two bubbles are shown as hollow elliptical shells of bluish-green material extending from the star. Wisps of green in the image reveal warm molecular hydrogen gas, while the bluish tints are formed by starlight scattered by surrounding dust.

These bubbles formed when powerful jets of gas, traveling at 200 to 300 kilometers per second, or about 120 to 190 miles per second, smashed into the cosmic cloud of gas and dust that surrounds HH 46/47. The red specks at the end of each bubble show the presence of hot sulfur and iron gas where the star’s narrow jets are currently crashing head-on into the cosmic cloud’s gas and dust material.

Find out more about this Spitzer image here.

Check back next week for another Where In The Universe challenge!

Looking for (Former) Lakeshore Property? HiRISE Finds It on Mars

This is reconstructed landscape showing the Shalbatana lake on Mars as it may have looked roughly 3.4 billion years ago. Data used in reconstruction are from NASA and the European Space Agency. Credit: Image credit: G. Di Achille, University of Colorado

[/caption]
If you’re in the market for some remote lakeshore property where you can get away from it all, this might be just what you’re looking for. Located in a secluded, pristine setting, this must-see property might be one of a kind. It’s very remote; – did I mention this lakeshore is on Mars? And, oh — it happens to be a former lakeshore.

While lakeshore property on Mars might sound like the biggest real estate swindle ever, the news of the first definitive lakeshore on Mars is momentous. Using images from the HiRISE Camera on the Mars Reconnaissance Orbiter, a University of Colorado at Boulder research team has discovered indications of a deep, ancient lake, estimated to be more than 3 billion years old.

The lake appears to have covered as much as 80 square miles and was up to 460 meters (1,500 feet) deep — roughly the equivalent of Lake Champlain bordering the United States and Canada, said CU-Boulder Research Associate Gaetano Di Achille, who led the study. The shoreline evidence, found along a broad delta in a region called Shalbatana Vallis, includes a series of alternating ridges and troughs thought to be surviving remnants of beach deposits.

“This is the first unambiguous evidence of shorelines on the surface of Mars,” said Di Achille. “The identification of the shorelines and accompanying geological evidence allows us to calculate the size and volume of the lake, which appears to have formed about 3.4 billion years ago.”

HiRISE image from Shalbatana Vallis. Credit: NASA/JPL/ U of AZ
HiRISE image from Shalbatana Vallis. Credit: NASA/JPL/ U of AZ

An analysis of the HiRISE images indicate that water carved a 50 km (30 mile) -long canyon that opened up into a valley, depositing sediment that formed a large delta. This delta and others surrounding the basin imply the existence of a large, long-lived lake, said team member Brian Hynek, also from CU-Boulder.
“Finding shorelines is a Holy Grail of sorts to us,” said Hynek.

In addition, the evidence shows the lake existed during a time when Mars is generally believed to have been cold and dry, which is at odds with current theories proposed by many planetary scientists, he said. “Not only does this research prove there was a long-lived lake system on Mars, but we can see that the lake formed after the warm, wet period is thought to have dissipated.”

Planetary scientists think the oldest surfaces on Mars formed during the wet and warm Noachan epoch from about 4.1 billion to 3.7 billion years ago that featured a bombardment of large meteors and extensive flooding. The newly discovered lake is believed to have formed during the Hesperian epoch and postdates the end of the warm and wet period on Mars by 300 million years, according to the study.

The deltas adjacent to the lake are of high interest to planetary scientists because deltas on Earth rapidly bury organic carbon and other biomarkers of life, according to Hynek. Most astrobiologists believe any present indications of life on Mars will be discovered in the form of subterranean microorganisms.

Close-up of region in Shalbatana Vallis. Credit: NASA/JPL/U of A
Close-up of region in Shalbatana Vallis. Credit: NASA/JPL/U of A

But in the past, lakes on Mars would have provided cozy surface habitats rich in nutrients for such microbes, Hynek said.

The retreat of the lake apparently was rapid enough to prevent the formation of additional, lower shorelines, said Di Achille. The lake probably either evaporated or froze over with the ice slowly turning to water vapor and disappearing during a period of abrupt climate change, according to the study.

Di Achille said the newly discovered pristine lake bed and delta deposits would be would be a prime target for a future landing mission to Mars in search of evidence of past life.

“On Earth, deltas and lakes are excellent collectors and preservers of signs of past life,” said Di Achille. “If life ever arose on Mars, deltas may be the key to unlocking Mars’ biological past.”

The team’s paper has been published online in Geophysical Research Letters, a publication of the American Geophysical Union.

IYA Live Telescope Today: NGC 6281

Did you get a chance to watch the IYA Live Telescope today? This time we went hunting galactic open star clusters and we found a beauty! NGC 6281 can be easily spotted in binoculars and small telescopes and we invite you along for the tour. No telescope? No problem. As always, we record a video clip for you so you can enjoy, too!

Your guide star to finding NGC 6281 is Mu Scorpii. About a finger-width east you will find large open galactic star cluster NGC 6281. At magnitude 5.4, you’ll find this sky gem punctuated by a wide pair of 6th magnitude stars. This brightly scattered cluster of three dozen members shows no real nucleus but is easily recognized at low magnifications.

Recent studies have found possible light variations of the member star HD 153919 – identified as an X-ray source. The nebulousity associated with this cluster is also an active HII region and of interest to astronomers wanting to study using Hubble instruments: “We propose a WFPC2 FUV imaging survey of 6 Galactic open clusters with ages ranging from 1 Myr to 300 Myr complemented with NUV/optical imaging of the same fields. No such survey has ever been attempted before in the FUV at the resolution of WFPC2 (indeed, no WFPC2 FUV images of any Galactic open cluster exist in the HST archive) and, since WFPC2 will be retired in SM4 and none of the other HST instruments can do FUV imaging of bright objects, this is the last chance to do such a survey before another UV telescope is launched.” says Dr. Jesus Maiz Apellaniz, “This survey will provide a new perspective on young intermediate age Galactic clusters and a key template for the study of star formation at high redshift, where the intensity peak we observe in the optical/NIR from Earth is located in the FUV in its rest frame. For clusters still associated with an H II region, UV imaging maps the continuum emission of the ionized gas and the radiation scattered by background dust and, combined with optical nebular images, can be used to determine the 3-D structure of the H II region. For all young clusters, FUV+NUV+optical photometry can be used to study the UV excesses of T-Tauri stars. For clusters older than ~40 Myr, the same photometric combination is the easiest method to detect companion white dwarfs which are invisible using only the optical and NIR. WFPC2 is also an excellent instrument to discover close companions around bright stars and improve our knowledge of their multiplicity fraction. Finally, for all clusters, the combination of high-spatial-resolution UV and optical photometry can be used to simultaneously measure the temperature, extinction, extinction law, distance, and existence of companions (resolved and unresolved) and, thus, produce clean HR diagrams with resolved cluster membership and much-reduced systematic uncertainties.”

As always, be sure to enjoy the views from our IYA Live Telescope whenever the skies are clear and dark in Central Victoria by clicking on the link to your right! And have fun… We do!

The Case of the Missing Sunspots: Solved?

NASA image of a sunspot up close. Solar physicists are working to understand why the Sun has seen so few in the past year.

[/caption]

The Sun has seen precious few sunspots (as shown in this NASA closeup) in the past year, and solar physicists have been working to understand why. Now, some think they have an answer.

According to work being presented this week at the meeting of the Solar Physics Division of the American Astronomical Society, a solar jet stream deep inside the Sun is migrating slower than usual through the star’s interior and it’s at least associated with — if not causing — the current lull in sunspots and solar activity.

The Sun normally undergoes an eleven-year cycle of magnetic activity related to sunspots, solar flares, and the interplanetary storms called “CMEs.” The current “solar minimum” quiet period has been unusually long and deep, confounding scientists who hope to understand the origins of space weather and the Sun’s magnetic field.

Rachel Howe and Frank Hill, both scientists with the National Solar Observatory (NSO) in Tucson, Arizona, used long-term observations from the NSO’s Global Oscillation Network Group facility to detect and track an east-to-west jet stream, known as the “torsional oscillation,” at depths of ~1,000 to 7,000 km (about 600 to 4,000 miles) below the surface of the Sun. The Sun generates new jet streams near its poles every 11 years; the streams migrate slowly, over a period of 17 years, to the equator and are associated with the production of sunspots once they reach a critical latitude of 22 degrees.

Howe and Hill found that the stream associated with the new solar cycle has moved sluggishly, taking three years to cover a 10-degree range in latitude compared to two years for the last solar cycle, but has now reached the critical latitude. The current solar minimum has become so long and deep, some scientists have speculated the Sun might enter a long period with no sunspot activity at all. The new result both shows that the Sun’s internal magnetic dynamo continues to operate, and heralds the beginning of a new cycle of solar activity.

“It is exciting to see,” said Hill, “that just as this sluggish stream reaches the usual active latitude of 22 degrees, a year late, we finally begin to see new groups of sunspots emerging at the new active latitude.” Since the current minimum is now one year longer than usual, Howe and Hill conclude that the extended solar minimum phase may have resulted from the slower migration of the flow.

GONG and its sister instrument SOHO/MDI measure sound waves on the surface of the Sun. Scientists can then use the sound waves to probe structures deep in the interior of the star, in a process analogous to a sonogram in a medical office.

“Using the global sound wave inversions, we have been able to reveal the intimate connection between subtle changes in the Sun’s interior and the sunspot cycle on its surface,” said Hill.

“This is an important piece of the solar activity puzzle,” added Dean Pesnell, of NASA’s Goddard Space Flight Center. “It shows how flows inside the Sun are related to the creation of solar activity and how the timing of the solar cycle might be produced. None of the forecasting research groups predicted the current long extended delay in the new cycle. There is a lot more to learn in order to understand how the Sun creates magnetic fields.”

The new science of helioseismology, enabled by instruments such as the ground-based GONG, the Michelson Doppler Imager aboard the SOHO spacecraft, and NASA’s planned Solar Dynamics Observatory, has revolutionized understanding of the solar interior. “While the surface effects of the Sun’s torsional oscillations have been observed for some time, understanding of the dynamo and the origin of sunspots depend on measurements of the solar interior that are only possible
with helioseismic techniques,” said Hill.

Source: AAS Solar Physics Division Meeting (press release). Anne Minard is attending the meeting, and will report additional details from the teleconference on her blog at anneminard.com. Check back there after 2 p.m. Mountain. Also: check out this great movie!

Jupiter’s Fiery Moon Io Could One Day Break Free, Go Dormant

Artist view of Io's heat loss induced by strong Jupiter's tides. Credit: V.Lainey, IMCCE-Paris Observatory

[/caption]

Io may be close to thermal equilibrium, according to a study published this week in Nature. And if the new findings are correct, the volcanically wild moon could one day break free of Jupiter’s hold — and lose its rare, volcanic splendor.

Io is Jupiter’s innermost moon, and is the most volcanically active body in the Solar System. Its geological activity is thought to be the result of tidal heating from friction generated by the pull of Jupiter’s gravity. But it’s not known whether this internally generated tidal heat is high enough to generate the heat flow observed on Io’s surface.

Using astronomic observations made between 1891 and 2007, Valery Lainey,  of the Observatoire de Paris in France, and colleagues have estimated the dissipation of tidal energy in Io by tracking its effect on the orbital motions of the innermost Galilean moons. For Io, the value is in good agreement with the observed surface heat flow and suggests that Io is close to thermal equilibrium. Jupiter’s tidal dissipation is close to the upper bound of its average value, as would be expected from the long-term evolution of the system.

“The measured secular accelerations indicate that Io is evolving inwards, towards Jupiter,” Lainey and her colleagues add, “and that the three innermost Galilean moons (Io, Europa and Ganymede) are evolving out of the exact Laplace resonance.”

In an accompanying editorial, Gerald Schubert of the University of California in Los Angeles, writes that “Io’s orbital imprisonment is the cause of its spectacular volcanism.”

“If it eventually breaks free, the most volcanically active object in our Solar System will become dormant.”

Source: Nature