Astronauts Don Protective Gear to Fix ISS Toilet

Tom Mashburn during Monday's EVA. Credit: NASA

[/caption]
Space station astronauts repaired a broken toilet in the U.S Destiny laboratory today, avoiding a potentially messy situation. With the shuttle-space station complex currently home to a record combined crew of 13 astronauts and cosmonauts, fixing the toilet was of utmost importance. ISS crew members Gennady Padalka and Frank De Winne were told to don safety goggles and protective gear before opening the toilet’s access panels. They replaced a half-dozen components during work Sunday and Monday repairing the defective toilet with spare parts on the orbiting outpost.

While toilet repairs were going on, shuttle astronauts David Wolf and Thomas Marshburn completed the second spacewalk of the STS-127 mission, during a day filled with remembrances and tributes to the Apollo 11 moon landing.

The two astronauts transferred a spare KU-band antenna to long-term storage on the space station, along with a backup coolant system pump module and a spare drive motor for the station’s robot arm transporter. Installation of a television camera on the Japanese Exposed Facility experiment platform was deferred to a later spacewalk. This was the second of five STS-127 spacewalks, the 127th in support of International Space Station assembly and maintenance.

The STS-127 mission spacwalks will complete construction of the Japan Aerospace Exploration Agency’s Kibo laboratory.

The ISS has two toilets for its six-person crew, the one that malfunctioned in Destiny and another in the Russian Zvezda command module. The space shuttle Endeavour also is equipped with a toilet.
After tests to make sure the toilet was operating properly, flight controllers cleared the combined 13-member shuttle-station crew to resume normal use.

“The US Destiny lab toilet has been repaired and checked out. The crew has been given a “go” to use it. All three toilets are working,” NASA said in a post on Twitter.

Jupiter Impact Confirmed

This image shows a large impact shown on the bottom left on Jupiter's south polar region captured on July 20, 2009, by NASA's Infrared Telescope Facility in Mauna Kea, Hawaii. Credit: NASA/JPL/Infrared Telescope Facility

[/caption]
As we reported yesterday, an amateur astronomer snapped evidence of an impact on Jupiter. Now, NASA has confirmed the black spot on the giant gas planet is in fact an impact and not just a weather-related disturbance. And Anthony Wesley has now made the biggest observation of his life.

“It still feels very surreal right now,” he told Universe Today. “I guess it will take some time to really sink in (pun intended). I guess it shows that persistence and many hours at the scope eventually pays off.”

The Infrared Telescope Facility at the summit of Mauna Kea, Hawaii, has imaged the south polar region Jupiter, confirming the impact, which occurred on July 19. New infrared images show the likely impact point, with a visibly dark “scar” and bright upwelling particles in the upper atmosphere detected in near-infrared wavelengths, and a warming of the upper troposphere with possible extra emission from ammonia gas detected at mid-infrared wavelengths.

Anthony said imaging Jupiter has been his main passion since 2004. “It’s such a dynamic system that every image I take shows something new and different,” he said, “It keeps me coming back year after year, with bigger and better equipment each time. I never expected to see anything like this of course, but even the routine imaging of Jupiter’s storm systems can reveal a tremendous wealth of detail.”

Anthony said this is one of the areas where amateurs can make a significant contribution to science. “The the study of planetary atmospherics is a very hot topic at the moment and nowhere are the dynamics more evident than on Jupiter,” he said. “Researchers are coming to rely on amateur images of Jupiter for much of their data, augmented by professional images whenever something truly significant occurs that justifies the cost of using the larger instruments.”

Anthony Wesley from Canberra, Australia has captured a new impact spot on Jupiter. Credit: Anthony Wesley
Anthony Wesley from Canberra, Australia has captured a new impact spot on Jupiter. Credit: Anthony Wesle


“It’s significant that in each of the last 3 years amateurs have made the initial discoveries of new features in the Jovian atmosphere, the colour change of the previously white Oval BA to red in 2007 by Chris Go of the Philippines, the formation of another (smaller) red spot last year by myself, and then this event in 2009. In all cases the amateur work was followed up with imagery from Hubble and other major telescopes.”

This new impact occurred exactly 15 years after the first impacts by the comet Shoemaker-Levy 9, and as the celebrations of the Apollo 11 moon landings are taking place.

Glenn Orton, a scientist at JPL and his team of astronomers kicked into gear early in Monday morning and haven’t stopped tracking the planet. They are downloading data now and are working to get additional observing time on this and other telescopes.

“We were extremely lucky to be seeing Jupiter at exactly the right time, the right hour, the right side of Jupiter to witness the event. We couldn’t have planned it better,” he said.

The top image taken by the Infrared Telescope Facility, was taken at 1.65 microns, a wavelength sensitive to sunlight reflected from high in Jupiter’s atmosphere, and it shows both the bright center of the scar (bottom left) and the debris to its northwest (upper left).

“It could be the impact of a comet, but we don’t know for sure yet,” said Orton. “It’s been a whirlwind of a day, and this on the anniversary of the Shoemaker-Levy 9 and Apollo anniversaries is amazing.”

Shoemaker-Levy 9 was a comet that had been seen to break into many pieces before the pieces hit Jupiter in 1994.

Sources: JPL, email exchange with Anthony Wesley

After 40 Years Moon Rocks Still Revealing Secrets

Scientists in the Lunar Receiving Laboratory. Credit: NASA

[/caption]
Even though scientists have been able to study Moon rocks up close for almost 40 years, there are still many answers to be gleaned from the lunar samples collected by the Apollo astronauts. “We know even more now and can ask smarter questions as we research these samples,” says Randy Korotev from Washington University in St. Louis. “There are still some answers, we believe, in the Apollo 11 mission.” One possible clue the Moon rocks could provide is a better understanding of Earth’s history and when life actually began on our planet.

Korotev has been mainly interested in studying the impact history of the moon, how the moon’s surface has been affected by meteorite impacts and the nature of the early lunar crust.

“You can look at the moon and know that the moon has been hit a lot by very large meteorites,” he said. “We know this occurred some 3.9 billion years ago. We don’t know, however, the history of large meteorites hitting the Earth — we can’t see those impacts because they would have been erased by Earth’s active geology. We want to see if meteorite bombardment on the moon coincided with what was happening on Earth, and, in turn, with life starting on Earth.”

Recently, Korotev and his colleagues decided to begin taking a closer look at the Apollo samples to learn more about the Moon’s impact history. He says they still have much work to do with his samples, which have been chemically analyzed and are sealed in tubes and securely stored away for now.

Korotev expects the Apollo Moon rocks will provide scientific study for years to come, as our technology and understanding of the Moon improves. “We went to the moon and collected samples before we knew much about the moon,” he said. “We didn’t totally understand the big concept of what the moon was like until early 2000 as a result of missions that orbited the moon collecting mineralogical and compositional data.”
“Bringing samples back from the Moon wasn’t the point of the mission,” added Korotev. “It was really about politics. It took scientists like Bob Walker to bring these samples back — to show the value of them for research.”

Korotev credits Walker, also from Washington University and a handful of other scientists for the fact that there are even moon samples to study.

“Bob convinced them to build a receiving lab for the samples and advised them on the handling and storage of them. We didn’t go to the moon to collect rocks, so we scientists are really lucky that we have this collection.”

See Universe Today’s article on the history of the Lunar Receiving Lab.

Researchers in WUSTL's Laboratory for Space Sciences in Arts & Sciences have a long tradition of being among the first in the world to receive samples from a NASA mission. In this photo taken in 1969, the late Robert M. Walker, Ph.D., the McDonnell Professor of Physics and first director of the university's McDonnell Center for the Space Sciences in Arts & Sciences, displays photos and lunar samples from the Apollo 11 mission that year.  Credit: WUSTL
Researchers in WUSTL's Laboratory for Space Sciences in Arts & Sciences have a long tradition of being among the first in the world to receive samples from a NASA mission. In this photo taken in 1969, the late Robert M. Walker, Ph.D., the McDonnell Professor of Physics and first director of the university's McDonnell Center for the Space Sciences in Arts & Sciences, displays photos and lunar samples from the Apollo 11 mission that year. Credit: WUSTL

Walker was recruited to serve on the scientific team that advised NASA on the handling and distribution of moon rocks and soil samples from the first Apollo missions. That team distributed Apollo 11 samples to some 150 laboratories worldwide, including Washington University, St. Louis (WUSTL).

Walker also briefed those early astronauts about what to expect on the rocky, dusty moon surface.

In an interview some months after the first moon samples arrived in WUSTL’s space sciences lab, Walker recalled the excitement of that momentous day in 1969: “We felt just like a bunch of kids who were suddenly given a brand new toy store … there was so much to do, we hardly knew where to begin.”

Ghislaine Crozaz, Ph.D., professor of earth and planetary sciences emerita in Arts & Sciences at Washington University and a member of Walker’s space sciences group that was one of those selected to study the first lunar samples, says the event is “as vivid in my mind as if it had happened yesterday.”
Small rock fragments from the lunar "soil" collected by the Apollo 11 astronauts in 1969. The background grid spacing is 2 mm.  Credit: WUSTL
Crozaz says that the team studied the cosmic rays and radiation history of the lunar samples mainly using nuclear particle tracks, which were revealed by techniques invented by Walker.

“After we received the samples in early September, we worked like hell until the First Lunar Science Conference in early January 1970 in Houston, where we arrived with our Science paper after having worked ‘incommunicado’ for 4 months.”

In their study of the lunar materials, Walker’s laboratory led the way in deciphering their record of lunar, solar system and galactic evolution. Of special importance was the information they gave on the history of solar radiation and cosmic rays.

Crozaz says the lunar samples provided insights into the history of the solar system that couldn’t be achieved at the time by looking at meteorites found on Earth. The intense heat encountered during their passage through the atmosphere would have erased much of the record of radiation the meteorites carried.

Source: Washington University St. Louis

Land on the Moon in Google Earth


To celebrate the 40th anniversary of the Apollo 11 Moon landing, Google has launched a new feature: the Moon in Google Earth. You can now use Google Earth to explore, fly around and search the Moon. Google was able to get several astronauts to participate in this new feature, and you can get tours of landing sites, narrated by Apollo astronauts, view 3D models of landed spacecraft, zoom into 360-degree photos to see astronauts’ footprints and watch rare TV footage of the Apollo missions. The hi-resolution views of the Moon were developed in collaboration with NASA Ames Research and JAXA. It’s loads of fun and provides an historic perspective as well as a look to the future of lunar exploration. If you already have Google Earth 5.0 on your computer, just click on the tab on the top toolbar that has a picture of Saturn, and click on Moon. If you click on the Apollo 11 flag, you can zoom in on that location and take a tour of the first landing site on the Moon! What a great way celebrate the 40th anniversary. Enjoy!

Click here to go the the Moon in Google Earth.

Carnival of Space #112: The Big Moon Day Show

Earth rise over lunar surface. Credit: NASA

[/caption]
This week’s Carnival of Space is hosted by Ken Murphy at Out of the Cradle.

Click here to read the Carnival of Space #112.

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, let Fraser know if you can be a host, and he’ll schedule you into the calendar.

Finally, if you run a space-related blog, please post a link to the Carnival of Space. Help us get the word out.

On Apollo 11’s 40th, Astronauts Reflect on Space Program

Earth rise over lunar surface. Credit: NASA

[/caption]

Seven Apollo astronauts gathered at NASA headquarters this morning to commemorate the 40th anniversary of Apollo 11’s lunar landing — on July 20, 1969.

“This is really a national celebration,” said James Lovell, who flew on Apollo 8 and 13. “This is really a celebration for all the people who helped Neil and Buzz and Mike” make the trip to the moon, he said.

But the press conference was bittersweet, as all of the astronauts seemed to agree the space program has not gone where they hoped it would, in the years since that pinnacle of achievement. “I don’t think there was a soul in NASA that wouldn’t have thought we would have been on Mars by the year 2000,” said Walt Cunningham, from Apollo 7.

Among the astronauts, there seemed to be seven different opinions about how to get back on track.

Eugene Cernan, from Apollo 10 and 17, advocated going back to the moon, setting up bases and new telescopes. “The ultimate goal is truly to go to Mars,” he said.

Charles Duke from Apollo 16 says we need to develop better space suits. “Lunar dust, I think, is going to be a real problem,” he said, adding that air locks shoudl be developed to keep lunar dust outside any living quarters.

Buzz Aldrin has different notions altogether: “Why not do those [projects] at the space station?” he mused. “Prolong the life of the space station. We put 100 billion into the space station.” Aldrin questions the rationale that going back to the moon is a logical next step to Mars, since the physical environment on Mars will be different.

The astronauts seemed all over the map about the International Space Station as well, with some questioning its usefulness to science and its expense, and others optimistic that its glory days haven’t yet begun.

Several of the astronauts pointed out that Mars exploration has hit a new and encouraging stride, but all of them also seem to agree that space exploration needs a shot in the arm in terms of both funding, and the will of the people — especially young people.

“Everyone knows who John Glenn is, Neil Armstrong … I defy almost every one in this room to name one or two or three members on the space station today,” Cernan said. “We need to re-inspire that kind of spirit in the minds and hearts — the passion — of these kids.”

Other Universe Today Apollo 11 40th anniversary stories:

Book Review: Magnificent Desolation, by Buzz AldrinHow to Handle Moon Rocks and Lunar Bugs: A Personal History of Apollo’s Lunar Receiving LabQ & A with Apollo 11 Astronaut Michael CollinsLRO Images Apollo Landing Sites (w00t!)NASA Laments Missing Apollo 11 Film, Makes Do With What’s Left; And finally, the treasure trove: Apollo 11 Anniversary Link-O-Rama

Kid’s Astronomy: Sagittarius – Summer Central!


Ah, yes… The skies have long been dark and the constellations have been on the move since the last time we’ve visited! Hercules now stands overhead when darkness falls. Summer Bugs and Scorpius are already going west of the meridian and Ophiuchus, the “Snake Charmer” has taken its place. In the southern hemisphere, they are tolerating winter – but the nights are warm in the north and with them comes our finest times of viewing our own Milky Way galaxy’s spiral arm… Sagittarius.

Are you ready to learn more? Then for most of you, the journey will begin as the sky starts to darken. Do you remember the herdsman, Bootes? His marker star, Arcturus, has now moved from overhead to the high west for most locations. How about the Summer Triangle? Instead of waiting for hours for it to arrive, those three bright stars show clearly as well risen to the east and high east. Do you remember the Scorpion? It’s here, too… And as the sky gets truly dark, you won’t be able to miss sparkling red Antares or the distinctive pattern of Scorpius as it sits against the southern skyline slightly to the southwest.

But, we promised you summer, didn’t we? That’s right. And no summer would be complete without some starry nights and peering into the center of our own Milky Way Galaxy. We’ll begin by identifying the southernmost star of the Summer Triangle, Altair, and the Aquila constellation. Its distinctive “T” shape shows in even relatively light polluted areas! Beginning with Altair (Alpha Scu), count four stars down the back towards the south. At the end of this chain, you will see two stars close together. Starhop almost this same distance west with your binoculars and listen to the wind….

m11a“What Summer would be complete without looking for a beautiful flock of Wild Ducks taking flight against the starry night? You’ll find this sparkling open cluster just south of another sky-bird, Aquila. Count down four stars to Lambda Scuti…” In binoculars it will show as a distinctive diamond-shaped compression of star field and will begin some resolution. In the finderscope it will appear as a small hazy patch. Even in a small telescope it will resolve into a glorious open cluster and will show hundreds of stars to larger aperture. At around 220 million years old, Messier 11 is one of the richest and most compact of the known open clusters, containing about 2900 stars. Its brightest and hottest main sequence stars are of spectral type B8 and it also contains many yellow and red giant stars. Speeding away from us at 22 kilometers per second, a total of 82 variable stars have so far been discovered amidst its vast population!

m17a“If you like beach parties, then why not capture your own lobster? Although it is sometimes known as the Omega Nebula, Messier 17 looks like a ghostly green lobster just waiting on your pot!” How do you find it? For binoculars and image correct finderscopes, try starting with the constellation of Aquila and begin tracing the stars down the eagle’s back to Lambda – just like you did for M11. When you reach that point, continue to extend the line through to Alpha Scuti, then southwards towards Gamma Scuti. M17 is slightly more than 2 degrees (about a finger width) southwest of this star. If you are in a dark sky location, you can also identify it easily in binoculars by starting at the M24 “Star Cloud” north of Lambda Sagittari (the teapot lid star) and simply scan north. This nebula is bright enough to even cut through moderately light polluted skies with ease, but don’t expect to see it when the Moon is nearby. You’ll enjoy the rich star fields combined with an interesting nebula in binoculars, while telescopes will easily begin resolution of interior stars.

m8a“Summer nights mean a chance to swim, and what more peaceful way than in the Blue Lagoon? Get out your binoculars and explore M8 – the Lagoon Nebula….” Although the constellation of Sagittarius is recognized as the Archer, it is most familiar as an asterism known as the ‘teapot’. Where skies are dark, its simple house-like shape appears like a teapot in the sky and the steam escaping the spout in the Milky Way. Finding Messier 8 in binoculars or a telescope is easy in a dark location, because you only need to start at the tip of the teapot’s spout and move your optics due north until this large, bright nebula appears. However, not everyone is blessed with dark skies and finding M8 from an urban location can be a little more difficult. From a well-lighted situation, both the teapot lid star (Lambda) and Alpha Scorpii (Antares) show well. You’ll find M8 just slightly north about 1/4 of the distance between Lambda and Alpha. In binoculars it will be quite bright and you’ll see the beginnings of its embedded open cluster – while a telescope of any size will resolve the cluster and bring up wonderful details in the wispy nebula. Large aperture should also look for accompanying dark nebula, too. Be aware that although it is bright, well-lit situations will greatly reduce contrast and a moonlit night or city lights will make it very difficult to find. Because of the Lagoon Nebula’s large apparent size, use low magnification to see the full extent of the nebula, but be sure to up the power to study its many features!

Messier Object 8 is a giant interstellar cloud. An emission nebula is a localized region of ionized gas which emits light in different colors at wavelengths not always visible to the human eye. Its energy source is ionization from high-energy photons emitted from a nearby hot star, which causes it to glow – much like the heating coil on an electric stove. The colors you see photographically depend on the chemical composition and how much it is being ionized. Most nebulae contain an abundance of hydrogen, which doesn’t require much energy to be ionized and appears red. Where more energy is available from more powerful stars, other elements will be ionized and green and blue hues will appear. To our human eyes, we see nebulae like M8 is gray, or gray/green… Doubly ionized oxygen! Many emission nebulae like M8 often have dark areas in them where no stars or light seems to appear. We refer to these as ‘dark nebula’ but they’re really just clouds of dust which block the light.

The Lagoon Nebula is about 5200 light years away and covers an area of space about 140 by 60 light years. Its brightest portion is often called the “Hourglass Nebula” and it’s a region where new star formation is occurring. Inside you’ll also see young open star cluster NGC 6530. According to information, it may be situated just slightly in front of the nebula from our perspective, but interstellar reddening shows the nebula is also involved with the cluster. M8 is also famous for its Bok globules – dark, collapsing clouds of protostellar material!

m22a“Are you ready to go catch some lightning bugs? Then you’ll find a whole swarm of them just waiting for you near the top of the celestial tea kettle.” From its position almost on the ecliptic plane, bright globular cluster M22 is easy to find in optics of all sizes… The most important clue is simply identifying the Sagittarius “teapot” shape! Once you’ve located it, just chose the “lid” star, Lambda (Kaus Borealis) and look about a finger width (2 degrees) due northeast. In binoculars, if you center Lambda, M22 will appear in the 10:00 region of your field of view. In a finderscope, you will need to hop from Lambda northeast to 24 Sagittari and you’ll see it as a faint fuzzy nearby also to the northeast. From a dark sky location, Messier Object 22 can also sometimes be spotted with the unaided eye! No matter what size optics you use, this large, very luminous ball of stars is quite appealing. A joy to binocular users and an exercise in resolution to telescopes. Drifting along in space some 10,400 light years from our solar system, M22 shares common ground with a lot of other clusters of its type. It’s true that it is a gravitationally bound sphere of stars and that most of its stars are all about the same age. It’s also true that it’s part of our galactic halo and may once have been part of a galaxy that our Milky Way cannibalized… But it’s there that the similarities end. There’s a lot more to this ball of stars that’s receding away from us at 149 kilometers per second than meets the eye.

Messier 22 contains at least 70,000 individual stars – and out of those? Only 32 are variable stars. It spans an incredible 200 light years in diameter and ranks 4th in brightness against all the known globular clusters in our galaxy. And four is its lucky number… Because it is also one of only four globular clusters known to contain a planetary nebula. But is that all? Not hardly. Recent Hubble Space Telescope investigations of Messier 22 have led to the discovery of an astonishing discovery. It would appear that there’s planet-sized objects floating around in there about 80 times the mass of Earth!

catspaw_noao“Summer fun means including the whole family and it would appear a curious cat has been tracking around the center of our Milky Way Galaxy! Get out your telescope and look for the Cat’s Paw Nebula, NGC 6334, just above the Scorpion’s tail.” Nebulae are perhaps as famous for being identified with familiar shapes as perhaps cats are for getting into trouble! Still, no known cat could have created the vast Cat’s Paw Nebula visible in Scorpius. At 5,500 light years distant, Cat’s Paw is an emission nebula with a red color that originates from an abundance of ionized hydrogen atoms. Alternatively known as the Bear Claw Nebula or NGC 6334, stars nearly ten times the mass of our Sun have been born there in only the past few million years.

ngc6369_heritage“What Summer night would not be complete without telling a ghost story around the campfire!It’s time to take a look at Telescopium – the telescope – and find NGC 6369.” This pretty planetary nebula was discovered by astronomer William Herschel as he used a telescope to explore the constellation Ophiuchus. It’s called a planetary nebula because it is round and planet-shaped – but it’s far fainter. For that very reason, it’s often called the Little Ghost Nebula! What is is a sun-like star at the end of its life… shedding its outer layers and expanding into space. During this time, the star’s core begins to shrinks until it ends up as a white dwarf star. Once transformed, the white dwarf star then lights the “left over” nebula material. Over 2,000 light-years away, the Little Ghost Nebula shows us what make eventually become of our own Sun in another 5 billion years!

Enjoy your summer evenings….

Many thanks to these great resources for the images! Sagittarius Region Map courtesy of Bill Keel of the University of Alabama, M11, M17, M8, and M22 images courtesy of NOAO/AURA/NSF, NGC 6334 courtesy of Travis Rector, NOAO/AURA/NSF and the “Little Ghost” courtesy of the Hubble Heritage Team

What is the Gravitational Constant?

Visualization of a massive body generating gravitational waves (UWM)

The gravitational constant is the proportionality constant used in Newton’s Law of Universal Gravitation, and is commonly denoted by G. This is different from g, which denotes the acceleration due to gravity. In most texts, we see it expressed as:

G = 6.673×10-11 N m2 kg-2

It is typically used in the equation:

F = (G x m1 x m2) / r2 , wherein

F = force of gravity

G = gravitational constant

m1 = mass of the first object (lets assume it’s of the massive one)

m2 = mass of the second object (lets assume it’s of the smaller one)

r = the separation between the two masses

As with all constants in Physics, the gravitational constant is an empirical value. That is to say, it is proven through a series of experiments and subsequent observations.

Although the gravitational constant was first introduced by Isaac Newton as part of his popular publication in 1687, the Philosophiae Naturalis Principia Mathematica, it was not until 1798 that the constant was observed in an actual experiment. Don’t be surprised. It’s mostly like this in physics. The mathematical predictions normally precede the experimental proofs.

Anyway, the first person who successfully measured it was the English physicist, Henry Cavendish, who measured the very tiny force between two lead masses by using a very sensitive torsion balance. It should be noted that, after Cavendish, although there have been more accurate measurements, the improvements on the values (i.e., being able to obtain values closer to Newton’s G) have not been really substantial.

Looking at the value of G, we see that when we multiply it with the other quantities, it results in a rather small force. Let’s expand that value to give you a better idea on how small it really is: 0.00000000006673 N m2 kg-2

Alright, let’s now see what force would two 1-kg objects exert on one another when their geometrical centers are spaced 1 meter apart. So, how much do we get?

F = 0.00000000006673 N. It really doesn’t matter much if we increase both masses substantially.

For example, let’s try the heaviest recorded mass of an elephant, 12,000 kg. Assuming we have two of these, spaced 1 meter apart from their centers. I know it’s difficult to imagine that since elephants are rather stout, but let’s just proceed this way because I want to put emphasis on the significance of G.

So, how much did we get? Even if we rounded that off, we’d still obtain only 0.01 N. For comparison, the force exerted by the earth on an apple is roughly 1 N. No wonder we don’t feel any force of attraction when we sit beside someone… unless of course you’re a male and that person is Megan Fox (still, it’d be safe to assume that the attraction would only be one way).

Therefore, the force of gravity is only noticeable when we consider at least one mass to be very massive, e.g. a planet’s.

Allow me to end this discussion with one more mathematical exercise. Assuming you know both your mass and your weight, and you know the radius of the earth. Plug those into the equation above and solve for the other mass. Voila! Wonder of wonders, you’ve just obtained the mass of the Earth.

You can read more about the gravitational constant here in Universe Today. Want to learn more about a new study that finds fundamental force hasn’t changed over time? There’s also some insights you can find among the comments in this article: Record Breaking “Dark Matter Web” Structures Observed Spanning 270 Million Light Years Across

There’s more about it at NASA. Here are a couple of sources there:

Here are two episodes at Astronomy Cast that you might want to check out as well:

Sources:

I Could’a Been A Contender… NGC 2903 by Warren Keller

This beautiful Leo spiral galaxy – NGC 2903 – is only some 20 million light-years away and is one of the brightest galaxies visible from the northern hemisphere. Despite easily being seen in larger binoculars and small telescopes, for some reason it was never included in Charles Messier’s famous catalog of celestial grandeur. “You don’t understand! I could’a had class. I could’a been a contender. I could’a been somebody instead of a bum, which is what I am.” This incredible color image taken with an amateur ground-based telescope shows off the galaxy’s exquisite spiral arms – including intriguing details of NGC 2903’s core region, a stunning amalgamation of old and young star clusters with immense dust and gas clouds. But there’s a whole lot more there to be seen…

Just a little smaller than our own Milky Way, NGC 2903 is about 80,000 light-years across and displays an exceptional rate of star formation activity near its core in visible light – but it also screams bright in radio, infrared, ultraviolet, and x-ray bands. While in every respect, this galaxy is much like our own home neighborhood, just like “On The Waterfront”, there’s some mysterious goings-on along that central bar – very young, hot globular clusters. Apparently, star formation is absolutely running rampant in a 2000 light-year wide circumnuclear ring surrounding NGC 2903’s center. “This isolated system strikingly reveals a soft extended X-ray feature reaching in north-west direction up to a projected distance of 5.2 kpc from the center into the halo. The residual X-ray emission in the disk reveals the same extension as the Ha disk. Since galactic superwinds, giant kpc-scale galactic outflows, seem to be a common phenomenon observed in a number of edge-on galaxies, especially in the X-ray regime, and are produced by excess star-formation activity, the existence of hot halo gas as found in NGC 2903 can be attributed to events such as central starbursts.” says D. Tschoke (et al), “That such a starburst has taken place in NGC 2903 must be proven. The detection of hot gas above galaxy disks also with intermediate inclination, however, encounters the difficulty of discriminating between that contribution from disk and active nuclear region.”

So what causes extremely starburst activity? As we’ve learned from our astrophoto lessons – galaxy interaction is a prime suspect. “NGC 2903 is found to have an H I envelope that is larger than previously known, extending to at least three times the optical diameter of the galaxy. Our search for companions yields one new discovery. The companion is 64 kpc from NGC 2903 in projection, is likely associated with a small optical galaxy of similar total stellar mass, and is dark matter dominated. In the region surveyed, there are now two known companions: our new discovery and a previously known system that is likely a dwarf spheroidal, lacking H I content.” says Judith A. Irwin (et al), “If H I constitutes 1% of the total mass in all possible companions, then we should have detected 230 companions, according to cold dark matter (CDM) predictions. Consequently, if this number of dark-matter clumps are indeed present, then they contain less than 1% H I content, possibly existing as very faint dwarf spheroidals or as starless, gasless dark-matter clumps.”

So how do we study what we cannot see? Only through photography and understanding how each phase of cosmic construction affects photographic results. “These results, and other considerations, have led to the hypothesis that the dark matter surrounding spiral galaxies consists of cold gas, mainly in the form of molecular hydrogen. The spatial distribution of this cold gas should be similar to that of the observed neutral hydrogen.” says H. Hoekstra of the Kapteyn Astronomical Institut, “There is a potentially powerful selection effect that may cause a relationship between the surface densities of HI and dark matter for the galaxies in our sample. This is because the HI surface density distributions of the galaxies in our sample have the common characteristic that the highest values in the inner regions, as well as the lowest values in the outer regions are similar from galaxy to galaxy.”

Now that we understand how astrophotos are used to determine galactic properties, open the image and take a closer look at all the galaxies hidden nearby NGC 2903 – and the details inside. When Warren Keller and David Plesko at Cherry Mountain Observatory collaborated on this photo, you can bet the first results from the raw data didn’t look like this finished work of art. For those of you who already understand the ins and outs of what makes deep space imaging what it is – perhaps I’ll totally explain this wrong, because it’s a new concept to me… But that’s why the world has Warren Keller.

When processing a raw image, there’s a lot more to it that just whacking it into photoshop and tweaking this or adjusting that. There’s things hiding inside and just like a great symphony, it takes a composer and a virtuoso to end up with music to make you cry. Because I don’t fully understand the process, I asked Warren to help me along, so I might also understand how these tiny details are drawn from thin air… or the blankness of space. “One of my big things is color balance- being true to the data, coupled with an understanding of how the object should look. What I see though is what I call assumptive processing- ‘It’s a galaxy and its arms must be really blue!’ In reality, each is very different and that’s why I love ’em so much. That sets a precedent, but I say be faithful to the data (once gradients are eliminated).”

And taking that data and teaching others how to process it is what Warren is all about. “All that being said, I’m aware of Atmospheric Extinction, CCD’s relative insensitvity to Blue, especially front lit and ABGs and the cancellation of Blue by the yellowing lens of middle-aged folks.” But is there a way that even us yellowing old dogs can be taught new tricks? Yeah. Warren not only knows how to sing the song, but he’s a music teacher. He’s created a teaching program called Image Processing for Astrophotography – or IP4AP. Say’s Warren: “IP4AP “Image Processing For Astrophotography” was created for Astrophotographers of all skill levels. There are many resources for learning Image Processing, but we believe these techniques are best taught – Visually!”

So, I was curious… And here’s a introductory look at Warren’s teaching style:

Before you take a cut out of me for being “commercial”, please remember that my job as a astronomical reporter is to also find products and methods which I find exciting and our readers might want to be made aware of. And, quite frankly, after having looking at many of Warren’s images and how his lesson plans work, I thought there just might be more than one budding (or seasoned) astrophotographer out there that might find what IP4AP has to offer of great value. As a matter of fact, even premier astro imagers like Dietmar Hager have used it. “Having had a couple of sessions with Warren covering essential facts about sophisticated usage of AstroArt and Photoshop was like leading me out of the dark basement of astrophotography into the highlighted groundfloor and further up. Guys, and I can tell you this is a high rise building and Warren is the perfect guide. Thanks for enriching my knowledge about digital processing!”

Go on, open it… Count all the details you can see in this image of NGC 2903 and its companions… and when you’re ready to become a contender, you can find IP4AP at many great retailers like OPT, Adirondak Astronomy and High Point Scientific. You’ve made a large investment in equipment – Now make a small one and learn the secrets of producing stunning astrophotographs!

Possible New Impact on Jupiter

Anthony Wesley from Canberra, Australia has captured a new impact spot on Jupiter. Credit: Anthony Wesle

[/caption]

Amateur astronomer Anthony Wesley from Canberra, Australia captured an image of Jupiter on July 19 showing a possible new impact site. Anthony’s image shows a new dark spot in the South Polar Region of Jupiter, at approximately 216° longitude in System 2. It looks very similar to the impact marks made on Jupiter when comet Shoemaker-Levy 9 crashed into the gas giant in 1994. (But read the Bad Astronomer’s post that the black spot could also be weather.)

UPDATE (7/20): It has been confirmed this is an impact on Jupiter. Mike Salway shared the news Glenn Orton from JPL has imaged the Jupiter black spot with the NASA Infrared Telescope and he has confirmed it’s an impact.

The list below shows the times (in UT) when the black spot will be visible again (generated in WinJupos by Hans-Joerg Mettig), and found on the Mike Salway’s Ice In Space website.

2009 Jul 19 06:09 ( 216°) 16:05 ( 216°)
2009 Jul 20 02:00 ( 216°) 11:56 ( 216°) 21:52 ( 216°)
2009 Jul 21 07:47 ( 216°) 17:43 ( 216°)
2009 Jul 22 03:38 ( 216°) 13:34 ( 216°) 23:30 ( 216°)
2009 Jul 23 09:25 ( 216°) 19:21 ( 216°)
2009 Jul 24 05:16 ( 216°) 15:12 ( 216°)
2009 Jul 25 01:08 ( 216°) 11:03 ( 216°) 20:59 ( 216°)
2009 Jul 26 06:54 ( 216°) 16:50 ( 216°)
2009 Jul 27 02:45 ( 216°) 12:41 ( 216°) 22:37 ( 216°)
2009 Jul 28 08:32 ( 216°) 18:28 ( 216°)
2009 Jul 29 04:23 ( 216°) 14:19 ( 216°)2009
Jul 30 00:15 ( 216°) 10:10 ( 216°) 20:06 ( 216°)
2009 Jul 31 06:01 ( 216°) 15:57 ( 216°)

If you get the opportunity to observe or image this potential new discovery, please do.

On his observing blog, Anthony said he began observing Jupiter at approximately 11pm local time (1300UTC), using a 14.5″ Newtonian telescope. “I’d noticed a dark spot rotating into view in Jupiter’s south polar region and was starting to get curious,” he wrote. “When first seen close to the limb (and in poor conditions) it was only a vaguely dark spot, I thought likely to be just a normal dark polar storm. However as it rotated further into view, and the conditions also improved, I suddenly realized that it wasn’t just dark, it was black in all channels, meaning it was truly a black spot.”

First he thought it might be a dark moon (like Callisto) or a moon shadow, but it was in the wrong place and the wrong size. “Also I’d noticed it was moving too slow to be a moon or shadow. As far as I could see it was rotating in sync with a nearby white oval storm that I was very familiar with – this could only mean that the back feature was at the cloud level and not a projected shadow from a moon. I started to get excited.”

Hard-Hat tip to Mike Salway for alerting UT to the news.