Volunteers Still Needed for Simulated Mars Mission

NASA concept of a mission to Mars. Credit: NASA

[/caption]
Need to get away from it all? If you have a background in medicine, computers or engineering and can speak a little Russian and English, this might be just what you are looking for. The European Space Agency and the Russian Institute of Medical and Biological Problems are still looking for volunteers to participate in a 520-day simulation of an expedition to Mars. The institute announced last week the opening of registration, but haven’t yet gotten enough applicants. The nearly two-year experiment will simulate all aspects of a journey to the Red Planet, with a 250-day outward trip, a 30-day stay on its surface, and a 240-day return flight.

Basic requirements: age 25-50, higher education, knowledge of the Russian and English languages ensuring professional and household communication, and a citizen of Russia or ESA member countries.

This full-up simulation follows an earlier 14-day experiment in November 2007, and a 105-day simulation of a mission to Mars this year that ended in July. That mission involved four Russians and two members of the European Space Agency, who spent over three months hunkered down together in a lab that simulated life on board a spaceship.

A warm-up 105-day mission took place in 2009, with participants from Germany and France and four Russians living together in cramped conditions.  Credit:  ESA
A warm-up 105-day mission took place in 2009, with participants from Germany and France and four Russians living together in cramped conditions. Credit: ESA

But now comes the real test. The mission is slated to begin mid-2010 and the participants will live and work in a sealed facility in Moscow, Russia, to investigate the psychological and medical aspects of a long-duration space mission, focusing on the effect that isolation has on the human subjects. Similar to reality TV, the six participants will be filmed throughout their stay.

Scientists will also test various life-support, communications and scientific equipment.

The crew will grow their own vegetables in a special lab, sleep in capsule-sized rooms and will only leave the facility during their 30-day trip to Mars “surface.” They will stick to a rigid daily regime of work, rest and exercise, and follow the same diet as crews aboard the International Space Station.

The participants will be paid, although the amount isn’t specified. For the 105-day mission, each participant was paid 15,500 Euros ($20,000).

For more information or to sign up go to this website from ESA.

Sources: RiaNovosti, ESA, Russian Institute of Biological and Medical Problems

Particles Injected into Large Hadron Collider

The first ion beam entering point 2 of the LHC, just before the ALICE detector (23 October 2009). Credit: CERN

[/caption]
The Large Hadron Collider reached an important milestone last weekend as a beam of ions was injected into the clockwise beam pipe. This is the first time particles have been inside the collider since September, 2008 when physicists were forced to shut down the system because of a massive failure. According to a CERN press release, lead ions were placed in the clockwise beam pipe on Friday October 23, but did not travel along the whole circumference of the LHC. CERN officials still hope for a restart in 2009, with the first circulating beam likely to be injected in mid-November, and the first high energy collisions occurring around mid-December.

CERN said that later last Friday the first beam of protons followed the same route — and then on Saturday protons were sent through the LHCb detector.

They reported all settings and parameters showed a perfect functioning of the machine. In the coming weeks, physicists hope to have the first circulating beam. Then hunt for the elusive Higgs particle will recommence.

Here is an interview with CERN director general Rolf-Dieter Heuer about the switch-on of the LHC.

Sources: CERN, Physics World

Exploring With an Armada of Autonomous Robots

Artist concept of orbiter, airblimps, rovers and robots working together. Credit: JPL

[/caption]

JPL has a fun article on their website detailing what future robotic exploration might entail: an armada of robots could one day fly above the mountain tops of Saturn’s moon Titan, cross its vast dunes and sail in its liquid lakes. This is the vision of Wolfgang Fink, from the California Institute of Technology. He says we are on the brink of a great paradigm shift in planetary exploration, and the next round of robotic explorers will be nothing like what we see today.

“The way we explore tomorrow will be unlike any cup of tea we’ve ever tasted,” said Fink. “We are departing from traditional approaches of a single robotic spacecraft with no redundancy that is Earth-commanded to one that allows for having multiple, expendable low-cost robots that can command themselves or other robots at various locations at the same time.”

Fink and his team members at Caltech, the U.S. Geological Survey and the University of Arizona are developing autonomous software and have built a robotic test bed that can mimic a field geologist or astronaut, capable of working independently and as part of a larger team. This software will allow a robot to think on its own, identify problems and possible hazards, determine areas of interest and prioritize targets for a close-up look.

The way things work now, engineers command a rover or spacecraft to carry out certain tasks and then wait for them to be executed. They have little or no flexibility in changing their game plan as events unfold; for example, to image a landslide or cryovolcanic eruption as it happens, or investigate a methane outgassing event.

“In the future, multiple robots will be in the driver’s seat,” Fink said. These robots would share information in almost real time. This type of exploration may one day be used on a mission to Titan, Mars and other planetary bodies. Current proposals for Titan would use an orbiter, an air balloon and rovers or lake landers.

In this mission scenario, an orbiter would circle Titan with a global view of the moon, with an air balloon or airship floating overhead to provide a birds-eye view of mountain ranges, lakes and canyons. On the ground, a rover or lake lander would explore the moon’s nooks and crannies. The orbiter would “speak” directly to the air balloon and command it to fly over a certain region for a closer look. This aerial balloon would be in contact with several small rovers on the ground and command them to move to areas identified from overhead.

“This type of exploration is referred to as tier-scalable reconnaissance,” said Fink. “It’s sort of like commanding a small army of robots operating in space, in the air and on the ground simultaneously.”

A rover might report that it’s seeing smooth rocks in the local vicinity, while the airship or orbiter could confirm that indeed the rover is in a dry riverbed – unlike current missions, which focus only on a global view from far above but can’t provide information on a local scale to tell the rover that indeed it is sitting in the middle of dry riverbed.

A current example of this type of exploration can best be seen at Mars with the communications relay between the rovers and orbiting spacecraft like the Mars Reconnaissance Orbiter. However, that information is just relayed and not shared amongst the spacecraft or used to directly control them.

“We are basically heading toward making robots that command other robots,” said Fink, who is director of Caltech’s Visual and Autonomous Exploration Systems Research Laboratory, where this work has taken place.

“One day an entire fleet of robots will be autonomously commanded at once. This armada of robots will be our eyes, ears, arms and legs in space, in the air, and on the ground, capable of responding to their environment without us, to explore and embrace the unknown,” he added.

Papers describing this new exploration are published in the journal “Computer Methods and Programs in Biomedicine” and in the Proceedings of the SPIE.

Source: JPL

IYA Live Telescope – M50

Did you get a chance to check out the IYA Live Telescope? Our last object was Messier 50 (also known as M 50 or NGC 2323) is an open cluster in the constellation Monoceros. It was perhaps discovered by G. D. Cassini before 1711 and independently discovered by Charles Messier in 1772. M50 is at a distance of about 3,000 light-years away from Earth. It is described as a ‘heart-shaped’ figure. You’ll find the video inside!

Open cluster Messier 50 (M50, NGC 2323) is a pretty and considerably bright object located in a rich part of stars and nebulae in constellation Monoceros, near its border to Canis Major. It is easily seen in binoculars and well resolved in even a small telescope.

This cluster was discovered on April 5, 1772 by Charles Messier, but possibly G.D. Cassini had already discovered it before 1711, according to a report by his son, Jacques Cassini, in his book of 1740, Elements of Astronomy.

Open cluster M50 is probably about 3,200 light years distant. Its angular diameter of about 15×20′ therefore corresponds to a linear extension of about 20 light-years, the central dense part being only about 10′ or 10 light-years in diameter. J.E. Gore, from photographic plates taken by Isaac Roberts in 1893, has estimated its population as about 200 stars in the main body. The cluster’s Trumpler type is given as I,2,m (Glyn Jones), II,3,m (Sky Catalog 2000) or II,3,r (Götz). The visual appearance is described as a “heart-shaped figure” by Mallas and Kreimer.

According to Kenneth Glyn Jones, the brightest star is of spectral type B8 and mag 9.0, while the Sky Catalog 2000 gives spectral type B6 and mag 7.85, and the age is estimated as 78 million years. 7′ south of the center is a red M giant, contrasting prominently against its blue-white neighbor stars. The cluster also contains some yellow giants.

Free NASA iPhone App

NASA announced last week they had developed the first iPhone application geared specifically for keeping track of all things NASA. I don’t have an iPhone, so I didn’t look into it, but the iPhone users I know seem to be very excited about it. So here’s all the info you should need to hook up with NASA via your iPhone:

The NASA App is available free of charge on the App Store from Apple directly to the iPhone and iPod Touch or within iTunes.

What does it do?

The NASA App collects, customizes and delivers an extensive selection of dynamically updated information, images and videos from various online NASA sources. Users can access NASA countdown clocks, the NASA Image of the Day, Astronomy Image of the Day, online videos, NASA’s many Twitter feeds and other information in a convenient mobile package. It delivers NASA content in a clear and intuitive way by making full use of the iPhone and iPod touch features, including the Multi-Touch user interface.

The NASA App also allows users to track the current positions of the International Space Station and other spacecraft currently orbiting Earth in three views: a map with borders and labels, visible satellite imagery, or satellite overlaid with country borders and labels.

For more info, here’s NASA’s iPhone app page.

And if you want to watch NASA TV on your iPhone, check out this link from Akamai

Ares I-X Launch Scrub: Can You Say Triboelectrification?

NASA's Ares I-X rocket is seen on Launch Pad 39B at NASA's Kennedy Space Center. Photo Credit: NASA/Bill Ingalls

[/caption]
The test flight for the Ares I-X rocket was scrubbed on Tuesday after a roller coaster of repeated delays which included weather, a stuck cover on a probe, a cargo ship straying into the launch hazard zone, weather, and weather. “We had some opportunities, but just couldn’t get there,” launch test director Ed Mango said to the team. “Weather didn’t cooperate.” The biggest issue with weather was the launch commit criteria of avoiding possible static discharge called “triboelectrification” created by the outer coating of the rocket rubbing against cloud vapor or precipitation that is colder than -10 degrees C (14 deg. F). This static electricity could disrupt the transmission of flight test data from the rocket, and getting data is one of the main desired outcomes for the test flight.

Another 4-hour launch window opens at 8 am EDT (1200 GMT) on Wednesday.

The 5-hole probe on the top of the Ares I-X rocket. Credit: NASA
The 5-hole probe on the top of the Ares I-X rocket. Credit: NASA

On Tuesday, when the weather improved enough to remove the 5-hole probe cover, then came a problem with removing it. This difficulty was not anticipated.

“After hundreds of tests with the probe, that’s the first time we’ve seen that failure mode,” said NASA engineer Jon Cowart on NASA TV. On Twitter, a NASA engineer shared that they gave the pad crew the recommendation to pull the lanyard attached to the cover “as hard as you can.” It worked.

Then came a cargo ship that entered the hazard area in offshore waters. The ship was notified and it turned around quickly.

But by that time the weather had deteriorated. Good on their word that they could quickly restart the countdown clock, the launch team tried several times to coordinate a hole in the clouds with acceptable (less than 20 knots) ground and upper level winds. It was a roller coaster of “go” and “no-go,” but ultimately the weather cards never fell into the fight configuration to allow the launch to take place.

Tomorrow the weather is better but not great. The chance of unacceptable conditions drops to 40% no go for Wednesday, as opposed to 60% no go today. Forecasters predict somewhat quieter winds at ground level, upper level winds are expected to be lighter and clouds will be decreasing, with more breaks in the clouds.

The test flight will last six minutes from liftoff to splashdown, with the Ares I-X reaching a maximum altitude of 46,000 m (153,000 feet) and a top velocity more than 4.7 times the speed of sound.

And if you are still wondering about triboelectrification, it basically is static electricity such as what you might encounter when you rub a balloon on your shirt, or rub your feet on a dry carpet or brush up against a cat and then touch a metal surface. Zap!

In the case of Ares I-X, flying through high-level clouds can generate “P-static” (P for precipitation), which can create a corona of static around the rocket that interferes with radio signals sent by or to the rocket. This would create problems when the rocket tries to transmit data down to the ground or if the Range Safety Officer at Cape Canaveral Air Force Station needed to send a signal to the flight termination system (a.k.a. blow up the rocket because of a big problem.)

The Stats Are In: No Global Cooling

Global Temperature graph. Credit: National Climatic Data Center, via the Associated Press.

[/caption]
The idea that the world is now cooling has been repeated in opinion columns, talk radio, pundit television and more. After a poll was released last week indicating that only 57 percent of Americans now believe there is strong scientific evidence for global warming, which is down from 77 percent in 2006, Seth Borenstein from the Associated Press decided to check out what the statistics are really saying about global warming or cooling. In a blind test, Borenstein sent accumulated ground temperature data from the past 130 years to four independent statisticians. He disguised the sources (NASA, NOAA and British meteorological data) and didn’t tell the statisticians what the numbers represented; he asked them to just look for trends in the data. The experts found no true temperature declines over time; additionally, the last ten years comprise not only the highest data set in the record, but they also have a continued, positive trend.

It seems recent weather trends have been cool — 2008 was cooler than previous years, especially the really hot years of 1998 and 2005.

Global land and ocean temperature indexes.  Credit:  Goddard Institute for Space Studies.
Global land and ocean temperature indexes. Credit: Goddard Institute for Space Studies.

Borenstein wanted to know if this was a longer climate trend or just weather’s normal ups and downs. All four of the statisticians agreed independently the statistics overall clearly show an upward trend of warming. Also included was a data set of satellite temperature data that is often favored by skeptics of global warming. Same story there: global temps are on the rise.

The ups and downs during the last decade, which some skeptics say show a cooling rather than warming, are variations that are repeated randomly in data as far back as 1880.

One statistician said that “cherry-picking” a micro-trend within a bigger trend is not the way to look at data.

This “blind” review of the data isn’t the only review that has shown obvious warming. Borenstein said that NOAA recently re-examined its data because of the recent “chatter” about cooling, and no cooling trend was found, and earlier this year, climate scientists in two peer-reviewed publications statistically analyzed recent years’ temperatures against claims of cooling and found them not valid.

For the full story, read Borenstein’s article here.

Source: Associated Press

MESSENGER Solves Solar Flare Mystery

Antenna Array
MESSENGER on the sunside of Mercury. Credit: NASA

[/caption]

In a case of being in the right place at the right time, the MESSENGER spacecraft was able to capture a average-sized solar flare, allowing astronomers to study high-energy solar neutrons at less than 1 astronomical unit (AU) from the sun for the first time. When the flare erupted on Dec. 31, 2007, MESSENGER – on course for entering orbit around Mercury — was flying at about half an AU, said William C. Feldman, a scientist at the Planetary Science Institute. Previously, only the neutron bursts from the most powerful solar flares have been recorded on neutron spectrometers on Earth or in near-Earth orbit. The MESSENGER results help solve a mystery of why some coronal mass ejections produce almost no energetic protons that reach the Earth, while others produce huge amounts.

Solar flares spew high-energy neutrons into interplanetary space. Typically, these bursts last about 50 to 60 seconds at the sun. But MESSENGER’s Neutron Spectrometer was able to record neutrons from this flare over a period of six to ten hours. “What that’s telling us is that at least some moderate-sized flares continuously produce high-energy neutrons in the solar corona.” Said Feldman. “From this fact, we inferred the continuous production of protons in the 30-to-100-MeV (million electron volt) range due to the flare.”
About 90 percent of all ions produced by a solar flare remain locked to the sun on closed magnetic lines, but another population results from the decay of the neutrons near the sun. This second population of decayed neutrons forms an extended seed population in interplanetary space that can be further accelerated by the massive shock waves produced by the flares, Feldman said.

“So the important results are that perhaps after many flare events two things may occur: continuous production of neutrons over an extended period of time and creation of seed populations of neutrons near the sun that have decayed into protons,” Feldman said. “When coronal mass ejections (nuclear explosions in the corona) send shock waves into space, these feedstock protons are accelerated into interplanetary space.”

“There has always been the question of why some coronal mass ejections produce almost no energetic protons that reach the Earth, while others produce huge amounts,” he added. “It appears that these seed populations of energetic protons near the sun could provide the answer, because it’s easier to accelerate a proton that already has an energy of 1 MeV than a proton that is at 1 keV (the solar wind).”

The seed populations are not evenly distributed, Feldman said. Sometimes they’re in the right place for the shock waves to send them toward Earth, while at other times they’re in locations where the protons are accelerated in directions that don’t take them near Earth.

The radiation produced by solar flares is of more than academic interest to NASA, Feldman added. Energetic protons from solar flares can damage Earth-orbiting satellites and endanger astronauts on the International Space Station or on missions to the Moon and Mars.

“People in the manned spaceflight program are very interested in being able to predict when a coronal mass ejection is going to be effective in generating dangerous levels of high-energy protons that produce a radiation hazard for astronauts,” he said.

To do this, scientists need to know a lot more about the mechanisms that produce flares and which flare events are likely to be dangerous. At some point they hope to be able to predict space weather — where precipitation is in the form of radiation — with the same accuracy that forecasters predict rain or snow on Earth.

MESSENGER could provide significant data toward this goal, Feldman observed. “What we saw and published is what we hope will be the first of many flares we’ll be able to follow through 2012,” he said. “The beauty of MESSENGER is that it’s going to be active from the minimum to the maximum solar activity during Solar Cycle 24, allowing us to observe the rise of a solar cycle much closer to the sun than ever before.”

MESSENGER is currently orbiting the sun between 0.3 and 0.6 AU — (an AU is the average distance between the Earth and the sun, or about 150,000 km) — on its way to orbit insertion around Mercury in March 2011. At Mercury, it will be within 0.45 AU of the sun for one Earth year.

Read the team’s paper: Evidence for Extended Acceleration of Solar Flare Ions from 1-8-MeV Solar Neutrons Detected with the MESSENGER Neutron Spectrometer.

Source: PSI

Can I Have One More #Moonwatch With You?


Gazing at the Moon seems to be universal among humans. So why not share the experience with the rest of the world using the hottest social media tool? From Oct. 26-28 you can join in on Moonwatch on Twitter. Various Twitterers will be live-tweeting conversation and images of the Moon, planets and other astronomical objects. Moonwatch was headed up by astronomers from the Newbury Astronomical Society in the UK. Additionally, the Faulkes Telescope Network of professional telescopes will also be taking part and taking images with their 2-metre telescope situated in New South Wales, Australia.
Continue reading “Can I Have One More #Moonwatch With You?”

Carnival of Space #126

This week’s Carnival of Space is hosted by Jason Perry over at The Gish Bar Times.

Click here to read the Carnival of Space #126.

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, let Fraser know if you can be a host, and he’ll schedule you into the calendar.

Finally, if you run a space-related blog, please post a link to the Carnival of Space. Help us get the word out.