Supernova 2009js… Another One Bites The Dust!

SN 2009 JS in NGC 918 by Joe Brimacombe

[/caption]

Far away in the constellation of Aries, in a 14th magnitude barred spiral galaxy designated as NGC 918… a star exploded with enough candlepower to briefly outshine its home. Discovered independently by Lick Observatory Supernova Search (LOSS) and Koichi Itagaki (Japan) on October 11, 2009, this Type II supernova might be hiding in the intergalactic dust, but it isn’t hiding from Joe Brimacombe.

So who is to blame for this poor intergalactic housekeeping condition, eh? Just exactly where did this film of dust come from that dims distant galaxies and cloaks supernova events? Try our own Milky Way. We’ve known since the first Palomar Sky Surveys that we’re looking through clouds and filaments of dust at high galactic latitudes. But it isn’t just our galaxy either… It’s our whole family! Chances are the entire local group is puffing out enough hydrogen to send up a smoke screen – possibly even with higher redshift extragalactic objects. And just who is the smoker of our group?

The Andromeda Galaxy – M31…

“Finally we come to the aspect which could most shake conventional beliefs about the Local Group and the nature of near space. Deep prints of a red sensitive Schmidt plate (Arp and Sulentic 1991) show unmistakable filamentary dust features reaching back along the minor axis direction toward M31.This filament is repeated in the blue photographs and 100 the hundred micron infra red scans. They have to be real. Although no one has cared to take a spectrum there is no hint of gaseous emission.” says Halton Arp.

“The ejection path across the whole Local Group sky from M31 to 3C120 must have carried material either dusty or capable of forming dust from the ejecting M 31. But that means dust and obscuration within the Local group of galaxies – a point which has never before been seriously advanced. But how can one escape the mult-iwavelength evidence? The most provocative object in the M31 minor axis line is NGC 918. The nebulous dust is most concentrated at the position of the galaxy but a region has been cleared on either side of the minor axis of the galaxy. Higher resolution images would give invaluable information on the process whereby ejections come out along the minor axis of galaxies. In addition the nebulosity is of such long extent across the sky and so coincident with the alignment along the M31 minor axis that it must be in the Local Group. Therefore interaction with the dust filament would represent direct evidence for a distance much smaller than NGC 918’s conventional redshift distance.”

“The filamentary features surrounding NGC 918 are well shown in this image. The outer features appear to be dust illuminated by the galaxy. Immediately around the galaxy the dust appears to cleared away. By either outflow of matter or radiation pressure from the galaxy.” explains Arp, “If the galaxy is not interacting with the nebulosity but just shining through a serendipitous hole we still have the remarkable inference that material has been ejected along the minor axis of M31 into the middle of the Local Group of galaxies. The question then arises as to how many other nearby galaxy groups contain intergalactic material and what this would do to our view of purportedly more distant galaxies.”

If dust is to blame for a clouded view here, is it possible that NGC 918 could be just as guilty of ignoring the Swiffer? Darn right it could. According to research done by E. E. Martinez-Garcia (et al), NGC 918 has its share of spiral density waves that present azimuthal color gradients that even an infrared passband won’t fully penetrate. “We believe that this effect may be due to the position of the dust lanes and stars with respect to the observer.” says Garcia, “More research needs to be done to understand the origin of this effect.”

In the meantime, we’ll thank Joe Brimacombe of Northern Galactic for being on watch and capturing this distant supernova within 24 hours of its discovery. Cuz’ another one bites the dust!

LRO Takes Closer Look at Apollo 17 Landing Site

The Apollo 17 Lunar Module Challenger descent stage comes into focus from the new lower 50-km mapping orbit, image width is 102 meters [NASA/GSFC/Arizona State University].

.”]
The Lunar Reconnaissance Orbiter maneuvered into its 50-km mapping orbit on September 15, which enables it to take a closer look at the Moon than any previous orbiter. This also allows for comparing previous images taken by LRO when it was at its higher orbit. Here’s the Apollo 17 landing site: just look at what is all visible, especially in the image below! These images have more than two times better resolution than the previously acquired images.

Region of Taurus-Littrow valley around the Apollo 17 landing site. NASA/GSFC/Arizona State University.
Region of Taurus-Littrow valley around the Apollo 17 landing site. NASA/GSFC/Arizona State University.

At the time of this recent pass, the Sun was high in the sky (28° incidence angle) helping to bring out subtle differences in surface brightness. The descent stage of the lunar module Challenger is now clearly visible, at 50-cm per pixel (angular resolution) the descent stage deck is eight pixels across (four meters), and the legs are also now distinguishable. The descent stage served as the launch pad for the ascent stage as it blasted off for a rendezvous with the command module America on December 14, 1972.

Also visible is the ALSEP, the Apollo Lunar Surface Experiments, which for Apollo 17 included 1) Lunar Seismic Profiling Experiment (geophones), 2) Lunar Atmospheric Composition Experiment (LACE) to measure the composition of the Moon’s extremely tenuous surface bound exosphere, 3) Lunar Ejecta and Meteorites (LEAM) experiment, 4) central station, 5) Heat Flow Experiment, 6) all powered by a Radioisotope Thermoelectric Generator (RTG). Below is how it looked from the surface, taken by the Apollo astronauts.

View of the ALSEP looking south-southeast.  Credit: NASA
View of the ALSEP looking south-southeast. Credit: NASA

Compare these most recent images to one taken previously.

Apollo 17 LRO. Credit: NASA
Apollo 17 LRO. Credit: NASA

See more images from LRO’s previous looks at the Apollo landing sites

See more at the LROC site.

More Observations of GRB 090423, the Most Distant Known Object in the Universe

This image shows the afterglow of GRB 090423 (red source in the centre) and was created from images taken in the z, Y and J filters at Gemini-South and VLT (credit: A. J. Levan).

[/caption]
This image shows the afterglow of GRB 090423 (red source in the centre) and was created from images taken in the z, Y and J filters at Gemini-South and VLT (credit: A. J. Levan).

On April 23, 2009 the Swift satellite detected a gamma ray burst and as we reported back in April, scientists soon realized that it was more than 13 billion light-years from Earth. GRB 090423 occurred 630 million years after the Big Bang, when the Universe was only four percent of its current age of 13.7 billion years. Now, continued observations of the GRB by astronomers around the world have yielded more information about this dramatic and ancient event: the GRB didn’t come from a monster star, but it produced a fairly sizable explosion.

Several of the world’s largest telescopes turned to the region of the sky within the next minutes and hours after Swift’s announcement of the GRB’s detection, and were able to locate the faint, fading afterglow of the GRB. Detailed analysis revealed that the afterglow was seen only in infrared light and not in the normal optical. This was the clue that the burst came from very great distance.

The Very Large Array radio telescope first looked for the object the day after the discovery, detected the first radio waves from the blast a week later, then recorded changes in the object until it faded from view more than two months later.

Images of the afterglow of GRB 090423 taken (left to right) with the Y, J, H and K filters. The absence of any flux in the Y filter is a strong indication that the GRB is very high redshift (Credit: A. J. Levan & N. R. Tanvir)
Images of the afterglow of GRB 090423 taken (left to right) with the Y, J, H and K filters. The absence of any flux in the Y filter is a strong indication that the GRB is very high redshift (Credit: A. J. Levan & N. R. Tanvir)

Astronomers have thought that the very first stars in the Universe might be very different — brighter, hotter, and more massive — from those that formed later.

“This explosion provides an unprecedented look at an era when the Universe was very young and also was undergoing drastic changes. The primal cosmic darkness was being pierced by the light of the first stars and the first galaxies were beginning to form. The star that exploded in this event was a member of one of these earliest generations of stars,” said Dale Frail of the National Radio Astronomy Observatory.

Universe Today spoke with Edo Berger with the Gemini Telescope shortly after the GRB was detected, and he said the burst itself was not all that unusual. But even that can convey a lot of information. “That might mean that even these early generations of stars are very similar to stars in the local universe, that when they die they seem to produce similar types of gamma ray bursts, but it might be a little early to speculate.”

“This happened a little more than 13 billion years ago,” said Berger. “We’ve essentially been able to find gamma ray bursts throughout the Universe. The nearest ones are only about 100 million light years away, and this most distant one is 13 billion light years away, so it seems that they populate the entire universe. This most distant one demonstrates for the first time that massive stars exist at those very high red shifts. This is something people have suspected for a long time, but there was no direct observational proof. So that is one of the cool results from this observation.”

The scientists concluded the explosion was more energetic than most GRBs, but was certainly not the most energetic ever detected. The blast was nearly spherical that expanded into a tenuous and relatively uniform gaseous medium surrounding the star.

Antennas of the Very Large Array CREDIT: NRAO/AUI/NSF
Antennas of the Very Large Array CREDIT: NRAO/AUI/NSF

“It’s important to study these explosions with many kinds of telescopes. Our research team combined data from the VLA with data from X-ray and infrared telescopes to piece together some of the physical conditions of the blast,” said Derek Fox of Pennsylvania State University. “The result is a unique look into the very early Universe that we couldn’t have gotten any other way,” he added.

Sources: NRAO, University of Leicester

Einstein Still Rules, Says Fermi Telescope Team

In this illustration, one photon (purple) carries a million times the energy of another (yellow). Some theorists predict travel delays for higher-energy photons, which interact more strongly with the proposed frothy nature of space-time. Yet Fermi data on two photons from a gamma-ray burst fail to show this effect. The animation below shows the delay scientists had expected to observe. Credit: NASA/Sonoma State University/Aurore Simonnet

[/caption]

While the Fermi Space Telescope has mapped the gamma ray sky with unprecedented resolution and sensitivity, it now has been able to take a measurement that has provided rare experimental evidence about the very structure of space and time, unified as space-time. Einstein’s theory of relativity states that all electromagnetic radiation travels through a vacuum at the same speed. Fermi detected two gamma ray photons which varied widely in energy; yet even after traveling 7 billion years, the two different photons arrived almost simultaneously.

On May 10, 2009, Fermi and other satellites detected a so-called short gamma ray burst, designated GRB 090510. Astronomers think this type of explosion happens when neutron stars collide. Ground-based studies show the event took place in a galaxy 7.3 billion light-years away. Of the many gamma ray photons Fermi’s LAT detected from the 2.1-second burst, two possessed energies differing by a million times. Yet after traveling some seven billion years, the pair arrived just nine-tenths of a second apart.

“This measurement eliminates any approach to a new theory of gravity that predicts a strong energy dependent change in the speed of light,” Michelson said. “To one part in 100 million billion, these two photons traveled at the same speed. Einstein still rules.”

“Physicists would like to replace Einstein’s vision of gravity — as expressed in his relativity theories — with something that handles all fundamental forces,” said Peter Michelson, principal investigator of Fermi’s Large Area Telescope, or LAT, at Stanford University in Palo Alto, Calif. “There are many ideas, but few ways to test them.”

Artist concept of Fermi in space. Credit: NASA
Artist concept of Fermi in space. Credit: NASA

Many approaches to new theories of gravity picture space-time as having a shifting, frothy structure at physical scales trillions of times smaller than an electron. Some models predict that the foamy aspect of space-time will cause higher-energy gamma rays to move slightly more slowly than photons at lower energy.

GRB 090510 displayed the fastest observed motions, with ejected matter moving at 99.99995 percent of light speed. The highest energy gamma ray yet seen from a burst — 33.4 billion electron volts or about 13 billion times the energy of visible light — came from September’s GRB 090902B. Last year’s GRB 080916C produced the greatest total energy, equivalent to 9,000 typical supernovae.

More images and videos about the Fermi Space Telescope.

Lead image caption: In this illustration, one photon (purple) carries a million times the energy of another (yellow). Some theorists predict travel delays for higher-energy photons, which interact more strongly with the proposed frothy nature of space-time. Yet Fermi data on two photons from a gamma-ray burst fail to show this effect. The animation below shows the delay scientists had expected to observe. Credit: NASA/Sonoma State University/Aurore Simonnet

Source: NASA

Arex I-X Launches Successfully

Ares I-X liftoff. Credit: NASA TV


After waiting out weather and triboelectrification issues, the Arex I-X rocket thundered and crackled away from the launch pad at 11:30 am EDT with a successful (and beautiful) launch. The vehicle ran through the entire 2-minute test flight with no obvious problems or issues, ending with the stages separating and parachuting down to the Atlantic Ocean. This marks the first time a new vehicle has launched from Kennedy Space Center since the first space shuttle launch in 1981. “The only thing we were waiting for was weather,” said a jubilant test flight director Ed Mango to his team after the flight, “and that means all of you did fricking fantastic!”

[/caption]

“I can’t tell you how unbelievable that was,” said former astronaut Bob Cabana, who is now the director of Kennedy Space Center. “I got tears in my eyes. That was one of the most beautiful rocket launches I’ves seen. Given that three years ago this program was a blank piece of paper, it shows what we can do with common goal and common vision, I just couldn’t be more pleased.”

Constellation program manager Jeff Hanley said, “How impressive is that? You have all accomplished a great step forward for Constellation.”

Ares I-X during the flight. Credit: NASA TV
Ares I-X during the flight. Credit: NASA TV

Despite ongoing problems with the clouds and possible rain, the launch team worked closely with weather personnel to find a break in the clouds.

At the T+2 minute point in the flight, the upper stage simulator and first stage separated approximately 130,000 feet over the Atlantic Ocean. The unpowered simulator splashed down in the ocean, and the first stage was fired for a controlled ocean landing with parachutes so that it could be recovered.

Data collected from over 700 sensors on board the Ares I-X will help with the development of future missions as well as the design and modeling of future vehicles.

More images and video will be posted as they become available.

Will Russia’s Next Rocket be Nuclear?

RD-0410 NTP Engine developed by Russia in the 1960's. Credit - Dietrich Haeseler

[/caption]
Russia’s space agency chief is proposing to build a new spaceship with a nuclear engine. Reportedly,
Anatoly Perminov told a government meeting Wednesday that the preliminary design could be ready by 2012. It would take about nine more years and 17 billion rubles (about $600 million or 400 million euros) to build the ship. This ambitious proposal is a stark contrast to the current state of the Russian space program.

Russian President Dmitry Medvedev urged the Cabinet to consider providing the necessary funding. Russia is currently using 40-year old Soyuz booster rockets and capsules to send crews to the International Space Station.

Source: Yahoo News

Volunteers Still Needed for Simulated Mars Mission

NASA concept of a mission to Mars. Credit: NASA

[/caption]
Need to get away from it all? If you have a background in medicine, computers or engineering and can speak a little Russian and English, this might be just what you are looking for. The European Space Agency and the Russian Institute of Medical and Biological Problems are still looking for volunteers to participate in a 520-day simulation of an expedition to Mars. The institute announced last week the opening of registration, but haven’t yet gotten enough applicants. The nearly two-year experiment will simulate all aspects of a journey to the Red Planet, with a 250-day outward trip, a 30-day stay on its surface, and a 240-day return flight.

Basic requirements: age 25-50, higher education, knowledge of the Russian and English languages ensuring professional and household communication, and a citizen of Russia or ESA member countries.

This full-up simulation follows an earlier 14-day experiment in November 2007, and a 105-day simulation of a mission to Mars this year that ended in July. That mission involved four Russians and two members of the European Space Agency, who spent over three months hunkered down together in a lab that simulated life on board a spaceship.

A warm-up 105-day mission took place in 2009, with participants from Germany and France and four Russians living together in cramped conditions.  Credit:  ESA
A warm-up 105-day mission took place in 2009, with participants from Germany and France and four Russians living together in cramped conditions. Credit: ESA

But now comes the real test. The mission is slated to begin mid-2010 and the participants will live and work in a sealed facility in Moscow, Russia, to investigate the psychological and medical aspects of a long-duration space mission, focusing on the effect that isolation has on the human subjects. Similar to reality TV, the six participants will be filmed throughout their stay.

Scientists will also test various life-support, communications and scientific equipment.

The crew will grow their own vegetables in a special lab, sleep in capsule-sized rooms and will only leave the facility during their 30-day trip to Mars “surface.” They will stick to a rigid daily regime of work, rest and exercise, and follow the same diet as crews aboard the International Space Station.

The participants will be paid, although the amount isn’t specified. For the 105-day mission, each participant was paid 15,500 Euros ($20,000).

For more information or to sign up go to this website from ESA.

Sources: RiaNovosti, ESA, Russian Institute of Biological and Medical Problems

Particles Injected into Large Hadron Collider

The first ion beam entering point 2 of the LHC, just before the ALICE detector (23 October 2009). Credit: CERN

[/caption]
The Large Hadron Collider reached an important milestone last weekend as a beam of ions was injected into the clockwise beam pipe. This is the first time particles have been inside the collider since September, 2008 when physicists were forced to shut down the system because of a massive failure. According to a CERN press release, lead ions were placed in the clockwise beam pipe on Friday October 23, but did not travel along the whole circumference of the LHC. CERN officials still hope for a restart in 2009, with the first circulating beam likely to be injected in mid-November, and the first high energy collisions occurring around mid-December.

CERN said that later last Friday the first beam of protons followed the same route — and then on Saturday protons were sent through the LHCb detector.

They reported all settings and parameters showed a perfect functioning of the machine. In the coming weeks, physicists hope to have the first circulating beam. Then hunt for the elusive Higgs particle will recommence.

Here is an interview with CERN director general Rolf-Dieter Heuer about the switch-on of the LHC.

Sources: CERN, Physics World

Exploring With an Armada of Autonomous Robots

Artist concept of orbiter, airblimps, rovers and robots working together. Credit: JPL

[/caption]

JPL has a fun article on their website detailing what future robotic exploration might entail: an armada of robots could one day fly above the mountain tops of Saturn’s moon Titan, cross its vast dunes and sail in its liquid lakes. This is the vision of Wolfgang Fink, from the California Institute of Technology. He says we are on the brink of a great paradigm shift in planetary exploration, and the next round of robotic explorers will be nothing like what we see today.

“The way we explore tomorrow will be unlike any cup of tea we’ve ever tasted,” said Fink. “We are departing from traditional approaches of a single robotic spacecraft with no redundancy that is Earth-commanded to one that allows for having multiple, expendable low-cost robots that can command themselves or other robots at various locations at the same time.”

Fink and his team members at Caltech, the U.S. Geological Survey and the University of Arizona are developing autonomous software and have built a robotic test bed that can mimic a field geologist or astronaut, capable of working independently and as part of a larger team. This software will allow a robot to think on its own, identify problems and possible hazards, determine areas of interest and prioritize targets for a close-up look.

The way things work now, engineers command a rover or spacecraft to carry out certain tasks and then wait for them to be executed. They have little or no flexibility in changing their game plan as events unfold; for example, to image a landslide or cryovolcanic eruption as it happens, or investigate a methane outgassing event.

“In the future, multiple robots will be in the driver’s seat,” Fink said. These robots would share information in almost real time. This type of exploration may one day be used on a mission to Titan, Mars and other planetary bodies. Current proposals for Titan would use an orbiter, an air balloon and rovers or lake landers.

In this mission scenario, an orbiter would circle Titan with a global view of the moon, with an air balloon or airship floating overhead to provide a birds-eye view of mountain ranges, lakes and canyons. On the ground, a rover or lake lander would explore the moon’s nooks and crannies. The orbiter would “speak” directly to the air balloon and command it to fly over a certain region for a closer look. This aerial balloon would be in contact with several small rovers on the ground and command them to move to areas identified from overhead.

“This type of exploration is referred to as tier-scalable reconnaissance,” said Fink. “It’s sort of like commanding a small army of robots operating in space, in the air and on the ground simultaneously.”

A rover might report that it’s seeing smooth rocks in the local vicinity, while the airship or orbiter could confirm that indeed the rover is in a dry riverbed – unlike current missions, which focus only on a global view from far above but can’t provide information on a local scale to tell the rover that indeed it is sitting in the middle of dry riverbed.

A current example of this type of exploration can best be seen at Mars with the communications relay between the rovers and orbiting spacecraft like the Mars Reconnaissance Orbiter. However, that information is just relayed and not shared amongst the spacecraft or used to directly control them.

“We are basically heading toward making robots that command other robots,” said Fink, who is director of Caltech’s Visual and Autonomous Exploration Systems Research Laboratory, where this work has taken place.

“One day an entire fleet of robots will be autonomously commanded at once. This armada of robots will be our eyes, ears, arms and legs in space, in the air, and on the ground, capable of responding to their environment without us, to explore and embrace the unknown,” he added.

Papers describing this new exploration are published in the journal “Computer Methods and Programs in Biomedicine” and in the Proceedings of the SPIE.

Source: JPL

IYA Live Telescope – M50

Did you get a chance to check out the IYA Live Telescope? Our last object was Messier 50 (also known as M 50 or NGC 2323) is an open cluster in the constellation Monoceros. It was perhaps discovered by G. D. Cassini before 1711 and independently discovered by Charles Messier in 1772. M50 is at a distance of about 3,000 light-years away from Earth. It is described as a ‘heart-shaped’ figure. You’ll find the video inside!

Open cluster Messier 50 (M50, NGC 2323) is a pretty and considerably bright object located in a rich part of stars and nebulae in constellation Monoceros, near its border to Canis Major. It is easily seen in binoculars and well resolved in even a small telescope.

This cluster was discovered on April 5, 1772 by Charles Messier, but possibly G.D. Cassini had already discovered it before 1711, according to a report by his son, Jacques Cassini, in his book of 1740, Elements of Astronomy.

Open cluster M50 is probably about 3,200 light years distant. Its angular diameter of about 15×20′ therefore corresponds to a linear extension of about 20 light-years, the central dense part being only about 10′ or 10 light-years in diameter. J.E. Gore, from photographic plates taken by Isaac Roberts in 1893, has estimated its population as about 200 stars in the main body. The cluster’s Trumpler type is given as I,2,m (Glyn Jones), II,3,m (Sky Catalog 2000) or II,3,r (Götz). The visual appearance is described as a “heart-shaped figure” by Mallas and Kreimer.

According to Kenneth Glyn Jones, the brightest star is of spectral type B8 and mag 9.0, while the Sky Catalog 2000 gives spectral type B6 and mag 7.85, and the age is estimated as 78 million years. 7′ south of the center is a red M giant, contrasting prominently against its blue-white neighbor stars. The cluster also contains some yellow giants.