The Milky Way’s Most Massive Stellar Black Hole is Only 2,000 Light Years Away

This image shows the locations of the first three black holes discovered by ESA's Gaia mission in the Milky Way. Gaia Black Hole 1 (BH1) is located just 1560 light-years away from us in the direction of the constellation Ophiuchus; Gaia BH2 is 3800 light-years away in the constellation Centaurus; Gaia BH3 is in the constellation Aquila, at a distance of 1926 light-years from Earth. In galactic terms, these black holes reside in our cosmic backyard. Image Credit: ESA/Gaia/DPAC. Licence CC BY-SA 3.0 IGO

Astronomers have found the largest stellar mass black hole in the Milky Way so far. At 33 solar masses, it dwarfs the previous record-holder, Cygnus X-1, which has only 21 solar masses. Most stellar mass black holes have about 10 solar masses, making the new one—Gaia BH3—a true giant.

Continue reading “The Milky Way’s Most Massive Stellar Black Hole is Only 2,000 Light Years Away”

A Neutron Star Merged with a Surprisingly Light Black Hole

Artwork of a neutron star–black hole merger. Credit: Carl Knox, OzGrav-Swinburne University.

Galactic collisions, meteor impacts and even stellar mergers are not uncommon events. neutron stars colliding with black holes however are a little more rare, in fact, until now, we have never observed one. The fourth LIGO-Virgo-KAGRA observing detected gravitational waves from a collision between a black hole and neutron star 650 million light years away. The black hole was tiny though with a mass between 2.5 to 4.5 times that of the Sun. 

Continue reading “A Neutron Star Merged with a Surprisingly Light Black Hole”

A Supermassive Black Hole with a Case of the Hiccups

Artist’s illustration of a small black hole orbiting a supermassive black hole, resulting in the former producing bursts of energy from the supermassive black hole’s disk of gas and dust. (Credit: Jose-Luis Olivares, MIT)

Can binary black holes, two black holes orbiting each other, influence their respective behaviors? This is what a recent study published in Science Advances hopes to address as a team of more than two dozen international researchers led by the Massachusetts Institute of Technology (MIT) investigated how a smaller black hole orbiting a supermassive black hole could alter the outbursts of the energy being emitted by the latter, essentially giving it “hiccups”. This study holds the potential to help astronomers better understand the behavior of binary black holes while producing new methods in finding more binary black holes throughout the cosmos.

Continue reading “A Supermassive Black Hole with a Case of the Hiccups”

New View Reveals Magnetic Fields Around Our Galaxy’s Giant Black Hole

Magnetic fields around Milky Way's black hole
A new image from the Event Horizon Telescope shows lines of polarization, a signature of magnetic fields, around the shadow of the Milky Way's central black hole. (Credit: EHT Collaboration)

Fresh imagery from the Event Horizon Telescope traces the lines of powerful magnetic fields spiraling out from the edge of the supermassive black hole at the center of our Milky Way galaxy, and suggests that strong magnetism may be common to all supermassive black holes.

Continue reading “New View Reveals Magnetic Fields Around Our Galaxy’s Giant Black Hole”

Black Holes are Tearing Stars Apart All Around Us

Illustration of star remnants after it is shredded by a supermassive black hole. Credit: NASA

Galaxy NGC3799 lies around 16 million light years from Earth. Any event observed today within that galaxy took place 16 million years ago. One such event was observed in February 2023 when a surge in brightness in the core was followed by a rapid dimming. The observations that followed revealed that the event was a star being torn apart by a supermassive black hole at the heart of the galaxy. This is not the first time such an event has been observed but it is the first to be within our galactic backyard suggesting it may be more common that first thought. 

Continue reading “Black Holes are Tearing Stars Apart All Around Us”

Astronomers Find the Most Massive Pair of Supermassive Black Holes Ever Seen

Artist's illustration of binary black holes

Supermassive black holes have been found at the heart of most galaxies but understanding how they have formed has eluded astronomers for some time. One of the most popular theories suggests they merge over and over again to form larger black holes. A recent discovery may support this however the pair of supermassive black holes are orbiting 24 light years apart and measure an incredible 28 billion solar masses making it the heaviest ever seen. 

Continue reading “Astronomers Find the Most Massive Pair of Supermassive Black Holes Ever Seen”

Powerful Jets From a Black Hole are Spawning Star Clusters

A composite image of cluster of galaxies called SDSS J1531+3414 in X-ray, optical, and radio light. The overall scene resembles a colorful display of lights as if viewed through a wet, glass window. Credit: X-ray: NASA/CXC/SAO/O. Omoruyi et al.; Optical: NASA/ESA/STScI/G. Tremblay et al.; Radio: ASTRON/LOFAR; Image Processing: NASA/CXC/SAO/N. Wolk.

Supermassive black holes are messy feeders, and when they’re gorging on too much material, they can hurl high-energy jets into the surrounding Universe. Astronomers have found one of the most powerful eruptions ever seen, emanating from a black hole 3.8 billion light-years away. The powerful jets are blowing out cavities in intergalactic space and triggering the formation of a huge chain of star clusters.

Continue reading “Powerful Jets From a Black Hole are Spawning Star Clusters”

The Brightest Object Ever Seen in the Universe

This artist’s impression shows the record-breaking quasar J059-4351, the bright core of a distant galaxy that is powered by a supermassive black hole. Credit: ESO/M. Kornmesser

It’s an exciting time in astronomy today, where records are being broken and reset regularly. We are barely two months into 2024, and already new records have been set for the farthest black hole yet observed, the brightest supernova, and the highest-energy gamma rays from our Sun. Most recently, an international team of astronomers using the ESO’s Very Large Telescope in Chile reportedly saw the brightest object ever observed in the Universe: a quasar (J0529-4351) located about 12 billion light years away that has the fastest-growing supermassive black hole (SMBH) at its center.

Continue reading “The Brightest Object Ever Seen in the Universe”

Gravastars are an Alternative Theory to Black Holes. Here's What They'd Look Like

Artist view of a black hole in the middle of solar system. Credit: Petr Kratochvil/PublicDomainPictures CC0

One of the central predictions of general relativity is that in the end, gravity wins. Stars will fuse hydrogen into new elements to fight gravity and can oppose it for a time. Electrons and neutrons exert pressure to counter gravity, but their stability against that constant pull limits the amount of mass a white dwarf or neutron star can have. All of this can be countered by gathering more mass together. Beyond about 3 solar masses, give or take, gravity will overpower all other forces and collapse the mass into a black hole.

Continue reading “Gravastars are an Alternative Theory to Black Holes. Here's What They'd Look Like”

Black Holes Existed at the Dawn of Time, Birthing Stars and Encouraging Galaxy Formation

An illustration of a magnetic field generated by a supermassive black hole in the early universe, showing turbulent plasma outflows that help turn nearby gas clouds into stars. New findings suggest this process might be responsible for accelerated star formation in the first 50 million years of the universe. Credit: Roberto Molar Candanosa/Johns Hopkins University
An illustration of a magnetic field generated by a supermassive black hole in the early universe, showing turbulent plasma outflows that help turn nearby gas clouds into stars. New findings suggest this process might be responsible for accelerated star formation in the first 50 million years of the universe. Credit: Roberto Molar Candanosa/Johns Hopkins University

The Universe is full of galaxies, many containing supermassive black holes. That sparked a question: which came first—the galaxies or their black holes? The answer is becoming very clear, thanks to the first year of observations made by the James Webb Space Telescope (JWST). Black holes were in the Universe from the earliest times, along with the very first galaxies. And, they helped shape the cosmos we observe today.

Continue reading “Black Holes Existed at the Dawn of Time, Birthing Stars and Encouraging Galaxy Formation”