Ancient Stars Could Make Elements With More Than 260 Nucleons

Artist’s impression of strontium emerging from a neutron star merger. Credit: ESO/L. Calçada/M. Kornmesser
Artist’s impression of strontium emerging from a neutron star merger. Credit: ESO/L. Calçada/M. Kornmesser

The first stars of the Universe were monstrous beasts. Comprised only of hydrogen and helium, they could be 300 times more massive than the Sun. Within them, the first of the heavier elements were formed, then cast off into the cosmos at the end of their short lives. They were the seeds of all the stars and planets we see today. A new study suggests these ancient progenitors created more than just the natural elements.

Continue reading “Ancient Stars Could Make Elements With More Than 260 Nucleons”

How Do Superflares Get So Powerful?

Solar flare. Image credit: NASA
Solar flare. Image credit: NASA

We live with a star that sends out flares powerful enough to disrupt things here on Earth. Telecommunications, power grids, even life itself, are affected by strong solar activity. But, the Sun’s testy outbursts are almost nothing compared to the superflares emitted by other stars. Why do flares happen? And what’s going on at distant stars to ramp up the power of their flares?

Continue reading “How Do Superflares Get So Powerful?”

Three Baby Stars Found at the Heart of the Milky Way

The image, taken with ESO's Very Large Telescope in Chile, shows a high-resolution view of the innermost parts of the Milky Way. In the new study, the researchers examined the dense nuclear star cluster shown in detail here. Credit: ESO.
The image, taken with ESO's Very Large Telescope in Chile, shows a high-resolution view of the innermost parts of the Milky Way. In the new study, the researchers examined the dense nuclear star cluster shown in detail here. Credit: ESO. Milky Way in the background. Image credit: NASA

The core of our Milky Way is buzzing with stars. Recently astronomers reported that it contains at least one ancient star that formed outside our galaxy. Now, an international research team reports finding a grouping of very young ones there, as well. Their presence upends ideas about star birth in that densely packed region of space.

Continue reading “Three Baby Stars Found at the Heart of the Milky Way”

A Star Near the Center of the Milky Way is a Visitor from Beyond

The alien star S0-6 is spiraling toward Sagittarius A*, the Milky Way's central supermassive black hole. S0-6 likely came from another galaxy. Courtesy: Miyagi University of Education/NAOJ. Image credit: NASA/JPL
The alien star S0-6 is spiraling toward Sagittarius A*, the Milky Way's central supermassive black hole. S0-6 likely came from another galaxy. Courtesy: Miyagi University of Education/NAOJ. Image credit: NASA/JPL

There’s an alien red giant star orbiting in the center of our galaxy. It’s called S0-6 and has chemical fingerprints from its birthplace far outside the Milky Way. This ancient star is spiraling slowly in toward the supermassive black hole Sagittarius A* (Sgr A*) at the heart of the Milky Way. Eventually, it could get drawn into the black hole and destroyed after traveling for tens of thousands of years to get there.

Continue reading “A Star Near the Center of the Milky Way is a Visitor from Beyond”

This Planet is Way Too Big for its Star

This artist's illustration shows what the star LHS 3145 might look like from the surface of its planet, LHS 314b. Image Credit: Penn State / Penn State. Creative Commons

Scientists love outliers. Outliers are nature’s way of telling us what its boundaries are and where its limits lie. Rather than being upset when an outlier disrupts their understanding, scientists feed on the curiosity that outliers inspire.

It’s true in the case of a new discovery of a massive planet orbiting a small star. That goes against our understanding of how planets form, meaning our planet-formation model needs an update.

Continue reading “This Planet is Way Too Big for its Star”

JWST Reveals a Newly-Forming Double Protostar

This new Picture of the Month from the NASA/ESA/CSA James Webb Space Telescope reveals intricate details of the Herbig Haro object 797 (HH 797). HH 797 dominates the lower half of this image. The bright infrared objects in the upper portion of the image are thought to host two further protostars. This image was captured with Webb’s Near-InfraRed Camera (NIRCam). Image Credit: JWST/CSA/ESA/NASA

As our newest, most perceptive eye on the ongoing unfolding of the cosmos, the James Webb Space Telescope is revealing many things that were previously unseeable. One of the space telescope’s science goals is to expand our understanding of how stars form. The JWST has the power to see into the cocoons of gas and dust that hide young protostars.

It peered inside one of these cocoons and showed us that what we thought was a single star is actually a binary star.

Continue reading “JWST Reveals a Newly-Forming Double Protostar”

Vampire Stars Get Help from a Third Star to Feed

Artist’s impression composed of a star with a disc around it (a Be “vampire” star; foreground) and its companion star that has been stripped of its outer parts (background). Credit: ESO/L. Calçada

Some stars are stuck in bad binary relationships. A massive primary star feeds on its smaller companion, sucking gas from the companion and adding it to its own mass while diminishing its unfortunate partner. These vampire stars are called Be stars, and up until now, astronomers thought they existed in binary relationships.

But new research shows that these stars are only able to feed on their diminutive neighbour because of a third star present in the system.

Continue reading “Vampire Stars Get Help from a Third Star to Feed”

What Would Happen to Earth if a Rogue Star Came Too Close?

The speeding rogue star Kappa Cassiopeiae sets up a glowing bow shock in this Spitzer image (NASA/JPL-Caltech)

Stars are gravitationally fastened to their galaxies and move in concert with their surroundings. But sometimes, something breaks the bond. If a star gets too close to a supermassive black hole, for example, the black hole can expel it out into space as a rogue star.

What would happen to Earth if one of these stellar interlopers got too close?

Continue reading “What Would Happen to Earth if a Rogue Star Came Too Close?”

JWST Follows Neon Signs Toward New Thinking on Planet Formation

This artist's illustration shows the young star SZ Chamaeleontis (SZ Cha). SZ Cha is surrounded by a protoplanetary disk of gas and dust. Planets may form in the disk, but they're running out of time. Image Credit: NASA, ESA, CSA, Ralf Crawford (STScI)

Everyone knows that the James Webb Space Telescope is a ground-breaking infrared space telescope that’s helping us better understand the cosmos. The JWST’s discerning infrared eyes are deepening our understanding of everything from exoplanets to primitive galaxies to the birth of stars.

But it’s not the first ground-breaking infrared space telescope we’ve launched. There was IRAS, then ISO, then the Spitzer Space Telescope. The Spitzer is the JWST’s most recent infrared predecessor, and the JWST is observing one of the same targets that the Spitzer did, taking note of some puzzling changes.

Continue reading “JWST Follows Neon Signs Toward New Thinking on Planet Formation”

Astronomers Find Dozens of Massive Stars Fleeing the Milky Way

This is Zeta Ophiuchi, a runaway star observed by Spitzer. The star is creating a bow shock as it travels through an interstellar dust cloud. A new study found dozens of new runaway stars in the Milky Way. Image Credit: NASA/JPL-Caltech

The Milky Way can’t hold onto all of its stars. Some of them get ejected into intergalactic space and spend their lives on an uncertain journey. A team of astronomers took a closer look at the most massive of these runaway stars to see what they could find out how they get ejected.

Continue reading “Astronomers Find Dozens of Massive Stars Fleeing the Milky Way”