Amazing Time-lapse Shows Recovered SpaceX Falcon 9 Moving To Land After Port Canaveral Arrival

First stage booster from the SpaceX JCSAT-14 launch was moved by crane on May 10, 2016 from the drone ship OCISLY to a work pedestal on land 12 hours after arriving back in Port Canaveral, Florida. See Time-lapse below. Credit: Jeff Seibert/AmericaSpace
First stage booster from the SpaceX JCSAT-14 launch was moved by crane on May 11, 2016 from the drone ship OCISLY to a work pedestal on land 12 hours after arriving back in Port Canaveral, Florida.  Credit: Jeff Seibert/AmericaSpace
First stage booster from the SpaceX JCSAT-14 launch was moved by crane on May 10, 2016 from the drone ship OCISLY to a work pedestal on land 12 hours after arriving back in Port Canaveral, Florida. Credit: Jeff Seibert/AmericaSpace

The recovered SpaceX first stage booster that nailed a spectacular middle-of-the-night touchdown at sea last week sailed back to Port Canaveral, Florida, late Monday and was transferred by crane on Tuesday from the drone ship to land – as seen in an amazing time-lapse video and photos, shown above and below and obtained by Universe Today.

The exquisite up close time-lapse sequence shows technicians carefully hoisting the 15-story-tall spent booster from the drone ship barge onto a work pedestal on land some 12 hours after arriving back in port.

The time-lapse imagery (below) of the booster’s removal from the drone ship was captured by my space photographer friend Jeff Seibert on Tuesday, May 10.

Video Caption: 20X time-lapse of the first stage booster from the SpaceX JCSAT-14 launch being transferred on May 10, 2016 from the autonomous drone ship “Of Course I Still Love You” (OCISLY) to a work pedestal on land 12 hours after arriving at the dock. Credit: Jeff Seibert

Towards the end of the video there is a rather humorous view of the technicians climbing in unison to the bottom of the hoisted Falcon.

“I particularly like the choreographed ascent by the crew to the base of the Falcon 9 near the end of the move video,” Seibert told Universe Today.

The move took place from 11:55 AM until 12:05 PM, Seibert said.

First stage booster from the SpaceX JCSAT-14 launch hoisted by crane on May 10, 2016 from drone ship to work pedestal on land 12 hours after arriving back in Port Canaveral, Florida.  Credit: Jeff Seibert/AmericaSpace
First stage booster from the SpaceX JCSAT-14 launch hoisted by crane on May 11, 2016 from drone ship to work pedestal on land 12 hours after arriving back in Port Canaveral, Florida. Credit: Jeff Seibert/AmericaSpace

The booster was towed into the space coast port around 11 p.m. Monday night, as seen in further up close images captured by my space photographer friend Julian Leek.

Leek also managed to capture a stunningly unique view of the rocket floating atop the barge when it was still out at sea and some 5 miles off shore waiting to enter the port at a safe time after most of the cruise ships had departed – as I reported earlier here.

SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket returns late at night to Port Canaveral, Florida on May 9, 2016.  Credit:  Julian Leek
SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket returns late at night to Port Canaveral, Florida on May 9, 2016. Credit: Julian Leek

The 156 foot tall booster safely soft landed on the drone ship named “Of Course I Still Love You” or “OCISLY” barely nine minutes after liftoff of the SpaceX Falcon 9 last week on a mission to deliver the Japanese JCSAT-14 telecom satellite to a Geostationary Transfer Orbit (GTO).

The upgraded SpaceX Falcon 9 soared to orbit on May 6, roaring to life with 1.5 million pounds of thrust on a mission carrying the JCSAT-14 commercial communications satellite, following an on time liftoff at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.

The first stage then carried out a propulsive soft landing on the ocean going platform located some 400 miles off the east coast of Florida.

To date SpaceX has recovered 3 Falcon 9 first stages. But this was the first one to be recovered from the much more demanding, high velocity trajectory delivering a satellite to GTO.

The first rocket was flying faster and at a higher altitude at the time of seperatoin from the second stage and thus was much more difficult to slow down and maneuver back to the ocean based platform.

Thus SpaceX officials and CEO Elon Musk had been openly doubtful of a successful outcome for this landing attempt.

“First landed booster from a GTO-class mission (final spacecraft altitude will be about 36,000 km),” tweeted SpaceX CEO and founder Elon Musk.

The commercial SpaceX launch lofted the JCSAT-14 Japanese communications satellite to a Geostationary Transfer Orbit (GTO) for SKY Perfect JSAT – a leading satellite operator in the Asia – Pacific region.

Up closse view of SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket returns late at night to Port Canaveral, Florida on May 9, 2016.  Credit:  Julian Leek
Up close view of SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket returns late at night to Port Canaveral, Florida on May 9, 2016. Credit: Julian Leek

The landing counts as another stunning success for Elon Musk’s vision of radically slashing the cost of sending rocket to space by recovering the boosters and eventually reusing them.

The next step is to defuel the booster and remove the landing legs. Thereafter it will be tilted and lowered horizontally and then be placed onto a multi-wheeled transport for shipment back to SpaceX launch facilities at Cape Canaveral for refurbishment, exhaustive engine and structural testing.

The newly recovered first stage will join a fleet of two others recovered last December and in April.

“May need to increase size of rocket storage hangar,” tweeted Musk.

If all goes well the recovered booster will eventually be reflown.

The next SpaceX commercial launch is tentatively slated for the late May/early June timeframe.

Up close look at grid fins from recovered first stage booster from the SpaceX JCSAT-14 launch after arriving back in Port Canaveral, Florida.  Credit: Jeff Seibert/AmericaSpace
Up close look at grid fins from recovered first stage booster from the SpaceX JCSAT-14 launch after arriving back in Port Canaveral, Florida. Credit: Jeff Seibert/AmericaSpace

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket lurking off Port Canaveral waiting to enter the port.  Copyright:  Julian Leek
SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket lurking off Port Canaveral waiting to enter the port. Copyright: Julian Leek
Recovered Falcon 9 first stage stands upright after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Recovered Falcon 9 first stage stands upright after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX

Video caption: SpaceX Falcon 9 launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

SpaceX Dragon Returns to Earth After Splashdown with Critical NASA Science

A SpaceX Dragon cargo spacecraft splashed down in the Pacific Ocean at 2:51 p.m. EDT today, May 11, with more than 3,700 pounds of NASA cargo, science and technology demonstration samples from the International Space Station. Credit: SpaceX
A SpaceX Dragon cargo spacecraft splashed down in the Pacific Ocean at 2:51 p.m. EDT today, May 11, with more than 3,700 pounds of NASA cargo, science and technology demonstration samples from the International Space Station.  Credit: NASA
A SpaceX Dragon cargo spacecraft splashed down in the Pacific Ocean at 2:51 p.m. EDT today, May 11, with more than 3,700 pounds of NASA cargo, science and technology demonstration samples from the International Space Station. Credit: SpaceX

A SpaceX cargo Dragon spacecraft loaded with nearly two tons of critical NASA science and technology experiments and equipment returned to Earth this afternoon, Wednesday, May 11, safely splashing down in the Pacific Ocean – and bringing about a successful conclusion to its mission to the International Space Station (ISS) that also brought aloft a new room for the resident crew.

Following a month long stay at the orbiting outpost, the unmanned Dragon was released from the grip of the stations Canadian-built robotic arm at 9:19 a.m. EDT by European Space Agency (ESA) astronaut Tim Peake.

After being detached from its berthing port at the Earth-facing port on the stations Harmony module by ground controllers, Peake commanded the snares at the terminus of the 57 foot long (19 meter long) Canadarm2 to open – as the station was soaring some 260 miles (418 kilometers) over the coast of Australia southwest of Adelaide.

Dragon backed away and soon departed after executing a series of three departure burns and maneuvers to move beyond the 656-foot (200-meter) “keep out sphere” around the station.

European Space Agency astronaut Tim Peake captured this photograph of the SpaceX Dragon cargo spacecraft as it undocked from the International Space Station on May 11, 2016. The spacecraft was released from the station’s robotic arm at 9:19 a.m. EDT. Following a series of departure burns and maneuvers Dragon returned to Earth for a splashdown in the Pacific Ocean at 2:51 p.m., about 261 miles southwest of Long Beach, California.  Credit: NASA
European Space Agency astronaut Tim Peake captured this photograph of the SpaceX Dragon cargo spacecraft as it undocked from the International Space Station on May 11, 2016. Following a series of departure burns Dragon returned to Earth for a splashdown in the Pacific Ocean at 2:51 p.m., about 261 miles southwest of Long Beach, California. Credit: NASA

“The Dragon spacecraft has served us well, and it’s good to see it departing full of science, and we wish it a safe recovery back to planet Earth,” Peake said.

Dragon fired its braking thrusters to initiate reentry back into the Earth’s atmosphere, and survived the scorching 3000+ degree F temperatures for the plummet back home.

A few hours after departing the ISS, Dragon splashed down in the Pacific Ocean at 2:51 p.m. EDT today, descending under a trio of huge orange and white main parachutes about 261 miles southwest of Long Beach, California.

“Good splashdown of Dragon confirmed, carrying thousands of pounds of @NASA science and research cargo back from the @Space_Station,” SpaceX notified via Twitter.

It was loaded with more than 3,700 pounds of NASA cargo, science and technology demonstration samples including a final batch of human research samples from former NASA astronaut Scott Kelly’s historic one-year mission that concluded in March.

“Thanks @SpaceX for getting our science safely back to Earth! Very important research,” tweeted Kelly soon after the ocean splashdown.

Among the study samples returned are those involving Biochemical Profile, Cardio Ox, Fluid Shifts, Microbiome, Salivary Markers and the Twins Study.

The goal of Kelly’s one-year mission was to support NASA’s plans for a human ‘Journey to mars’ in the 2030s. Now back on the ground Kelly continues to support the studies as a human guinea pig providing additional samples to learn how the human body adjusts to weightlessness, isolation, radiation and the stress of long-duration spaceflight.

Among the other items returned was a faulty spacesuit worn by NASA astronaut Tim Kopra. It will be analyzed by engineers to try and determine why a small water bubble formed inside Kopra’s helmet during his spacewalk in January that forced it to end prematurely as a safety precaution.

Dragon was plucked from the ocean by SpaceX contracted recovery ships and is now on its way to port in Long Beach, California.

“Dragon recovery team on site after nominal splashdown in Pacific,” said SpaceX.

“Some cargo will be removed and returned to NASA, and then be prepared for shipment to SpaceX’s test facility in McGregor, Texas, for processing,” says NASA.

Currently Dragon is the only station resupply craft capable of returning significant quantities of cargo and science samples to Earth.

The Dragon CRS-8 cargo delivery mission began with a spectacular blastoff atop an upgraded version of the two stage SpaceX Falcon 9 rocket, boasting over 1.5 million pounds of thrust on Friday, April 8 at 4:43 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

The primary goal of the Falcon 9 launch was carrying the SpaceX Dragon CRS-8 cargo freighter to low Earth orbit on a commercial resupply delivery mission for NASA to the International Space Station (ISS).

Relive the launch via this video of the SpaceX Falcon 9/Dragon CRS-8 liftoff from my video camera placed at the pad:

Video Caption: Spectacular blastoff of SpaceX Falcon 9 rocket carrying Dragon CRS-8 cargo freighter bound for the International Space Station (ISS) from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL at 4:43 p.m. EST on April 8, 2016. Up close movie captured by Mobius remote video camera placed at launch pad. Credit: Ken Kremer/kenkremer.com

The SpaceX commercial cargo freighter was jam packed with more than three and a half tons of research experiments, essential crew supplies and a new experimental inflatable habitat for it deliver run.

After a two day orbital chase it reached the ISS and the gleeful multinational crew of six astronauts and cosmonauts on Sunday, April 10.

Expedition 47 crew members Jeff Williams and Tim Kopra of NASA, Tim Peake of ESA (European Space Agency) and cosmonauts Yuri Malenchenko, Alexey Ovchinin and Oleg Skripochka of Roscosmos are currently living aboard the orbiting laboratory.

CRS-8 counts as the company’s eighth flight to deliver supplies, science experiments and technology demonstrations to the ISS for the crews of Expeditions 47 and 48 to support dozens of the approximately 250 science and research investigations in progress.

In a historic first, the arrival of the SpaceX Dragon cargo spacecraft marked the first time that two American cargo ships are simultaneously docked to the ISS. The Orbital ATK Cygnus CRS-6 cargo freighter arrived two weeks earlier on March 26 and is now installed at a neighboring docking port on the Unity module.

The Dragon spacecraft delivered almost 7,000 pounds of cargo, including the Bigelow Expandable Activity Module (BEAM), to the orbital laboratory which was carried to orbit inside the Dragon’s unpressurized truck section.

BEAM is a prototype inflatable habitat that the crew plucked from the Dragon’s truck with the robotic arm for installation on a side port of the Tranquility module on April 16.

Robotic arm attaches BEAM inflatable habitat module to International Space Station on April 16, 2016. Credit: NASA/Tim Kopra
Robotic arm attaches BEAM inflatable habitat module to International Space Station on April 16, 2016. Credit: NASA/Tim Kopra

Minutes after the successful April 8 launch, SpaceX accomplished their secondary goal – history’s first upright touchdown of a just flown rocket onto a droneship at sea.

The recovered booster arrived back at Port Canaveral a few days later and was transported back to the firms processing hanger at the Kennedy Space Center (KSC) for testing and eventual reflight.

Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch and landing on April 8 from Cape Canaveral Air Force Station.  Credit: Julian Leek
Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch and landing on April 8 from Cape Canaveral Air Force Station. Credit: Julian Leek

The next NASA contracted cargo launch to the ISS by SpaceX is currently slated for late June from Cape Canaveral.

The next Orbital ATK Cygnus cargo launch is slated for July from NASA Wallops.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

This artist’s concept depicts the Bigelow Expandable Activity Module attached to the International Space Station’s Tranquility module. Credits: Bigelow Aerospace
This artist’s concept depicts the Bigelow Expandable Activity Module attached to the International Space Station’s Tranquility module.
Credits: Bigelow Aerospace

Recovered SpaceX Falcon 9 Booster Headed Back to Port: Launch/Landing – Photos/Videos

SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket lurking off Port Canaveral waiting to enter the port. Copyright: Julian Leek
Recovered Falcon 9 first stage after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Recovered Falcon 9 first stage after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX

The SpaceX Falcon 9 first stage booster that successfully launched a Japanese satellite to a Geostationary Transfer Orbit (GTO) just 3 days ago and then nailed a safe middle of the night touchdown on a drone ship at sea minutes minutes later, is headed back to port and may arrive overnight or soon thereafter.

The 156 foot tall booster was spotted offshore earlier today while being towed back to her home port at Port Canaveral, Florida.

The SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket is lurking off Port Canaveral waiting to enter the port until after the cruise ships depart for safety reasons. Pictured above at 7:40 a.m.

The upgraded SpaceX Falcon 9 soared to orbit on May 6, roaring to life with 1.5 million pounds of thrust on a mission carrying the JCSAT-14 commercial communications satellite, following an on time liftoff at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.

To date SpaceX has recovered 3 Falcon 9 first stages. But this was the first one to be recovered from the much more demanding, high velocity trajectory delivering a satellite to GTO.

“First landed booster from a GTO-class mission (final spacecraft altitude will be about 36,000 km),” tweeted SpaceX CEO and founder Elon Musk.

Musk was clearly ecstatic with the result, since SpaceX officials had been openly doubtful of a successful outcome with the landing.

Barely nine minutes after liftoff the Falcon 9 first stage carried out a propulsive soft landing on an ocean going platform located some 400 miles off the east coast of Florida.

The drone ship was named “Of Course I Still Love You.”

The Falcon 9 landed dead center in the bullseye.

Check out the incredible views herein from SpaceX of the Falcon 9 sailing serenely atop the “Of Course I Still Love You.”

Base of Recovered Falcon 9 first stage with landing legs after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Base of Recovered Falcon 9 first stage with landing legs after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX

Relive the launch through these pair of videos from remote video cameras set at the SpaceX launch pad 40 facility.

Video caption: SpaceX Falcon 9 launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

Video caption: SpaceX Falcon 9 launch of JCSAT-14 on 5/6/2016 Pad 40 CCAFS. Credit: Jeff Seibert/AmericaSpace

The commercial SpaceX launch lofted the JCSAT-14 Japanese communications satellite to a Geostationary Transfer Orbit (GTO) for SKY Perfect JSAT – a leading satellite operator in the Asia – Pacific region.

The landing counts as nother stunning success for Elon Musk’s vision of radically slashing the cost of sending rocket to space by recovering the boosters and eventually reusing them.

Recovered Falcon 9 first stage stands upright after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Recovered Falcon 9 first stage stands upright after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

SpaceX Maiden Falcon Heavy Launch May Carry Satellite In November

An artist's illustration of the Falcon Heavy rocket. The Falcon Heavy has 3 engine cores, each one containing 9 Merlin engines. Image: SpaceX
An artist's illustration of the Falcon Heavy rocket. The Falcon Heavy has 3 engine cores, each one containing 9 Merlin engines. Image: SpaceX

Move over Arianespace and United Launch Alliance. SpaceX’s Falcon Heavy rocket is set for its maiden launch this November. The long-awaited Falcon Heavy should be able to outperform both the Ariane 5 and the ULA Delta-4 Heavy, at least in some respects.

The payload for the maiden voyage is uncertain so far. According to Gwynne Shotwell, SpaceX’s President and CEO, a number of companies have expressed interest in being on the first flight. Shotwell has also said that it might make more sense for SpaceX to completely own their first flight, without the pressure to keep a client happy. But a satellite payload for the first launch hasn’t been ruled out.

Delivering a payload into orbit is what the Falcon Heavy, and its competitors the Ariane5 and the ULA Delta-4 Heavy, are all about. Since one of the main competitive points of the Falcon Heavy is its ability to put larger payloads into geo-stationary orbits, accomplishing that feat on its first flight would be a great coming out party for the Falcon Heavy.

This artist's illustration of the Falcon Heavy shows the rocket in flight prior to releasing its two side boosters. Image: SpaceX
This artist’s illustration of the Falcon Heavy shows the rocket in flight prior to releasing its two side boosters. Image: SpaceX

SpaceX has promised that it will make its first Falcon Heavy launch useful. They say that they will use the flight either to demonstrate to its commercial customers the rocket’s capability to deliver a payload to GTO, or to demonstrate to national security interests its ability to meet their needs.

National security satellites require different capabilities from launch vehicles than do commercial communication satellites. Since these spacecraft are top secret, and are used to spy on communications, they need to be placed directly into their GTO, avoiding the lower-altitude transfer orbit of commercial satellites.

The payload for the first launch of the Falcon Heavy is not the only thing in question. There’s some question whether the November launch date can be achieved, since the Falcon Heavy has faced some delays in the past.

The inaugural flight for the big brother to the Falcon 9 was originally set for 2013, but several delays have kept bumping the date. One of the main reasons for this was the state of the Falcon 9. SpaceX was focussed on Falcon 9’s landing capabilities, and put increased manpower into that project, at the expense of the Falcon Heavy. But now that SpaceX has successfully landed the Falcon 9, the company seems poised to meet the November launch date for the Heavy.

One of the main attractions to the Falcon Heavy is its ability to deliver larger payloads to geostationary orbit (GEO). This is the orbit occupied by communications and weather satellites. These types of satellites, and the companies that build and operate them, are an important customer base for SpaceX. SpaceX claims that the Falcon Heavy will be able to place payloads of 22,200 kg (48,940 lbs) to GEO. This trumps the Delta-4 Heavy (14,200 kg/31,350 lbs) and the Ariane5 (max. 10,500 kg/23,100 lbs.)

There’s a catch to these numbers, though. The Falcon Heavy will be able to deliver larger payloads to GEO, but it’ll do it at the expense of reusability. In order to recover the two side-boosters and central core stage for reuse, some fuel has to be held in reserve. Carrying that fuel and using it for recovery, rather than burning it to boost larger payloads, will reduce the payload for GEO to about 8,000 kg (17,637 lbs.) That’s significantly less than the Ariane 5, and the upcoming Ariane 6, which will both compete for customers with the Falcon Heavy.

The Falcon Heavy is essentially four Falcon 9 rockets configured together to create a larger rocket. Three Falcon 9 first stage boosters are combined to generate three times as much thrust at lift-off as a single Falcon 9. Since each Falcon 9 is actually made of 9 separate engines, the Falcon Heavy will actually have 27 separate engines powering its first stage. The second stage is another single Falcon 9 second-stage rocket, consisting of a single Merlin engine, which can be fired multiple times to place payloads in orbit.

The three main boosters for the Falcon Heavy will all be built this summer, with construction of one already underway. Once complete, they will be transported from their construction facility in California to the testing facility in Texas. After that, they will be transported to Cape Canaveral.

Once at Cape Canaveral, the launch preparations will have all of the 27 engines in the first stage fired together in a hold-down firing, which will give SpaceX its first look at how all three main boosters operate together.

Eventually, if everything goes well, the Falcon Heavy will launch from Pad 39A at Cape Canaveral. Pad 39A is the site of the last Shuttle launches, and is now leased from NASA by SpaceX.

The Falcon Heavy will be the most powerful rocket around, once it’s operational. The versatility to deliver huge payloads to orbit, or to keep its costs down by recovering boosters, will make its first flight a huge achievement, whether or not it does deliver a satellite into orbit on its first launch.

SpaceX Taps Superhero Designer For Its Spacesuits

Designer Jose Fernandez has been hired by SpaceX to design spacesuits. Fernandez has designed many superhero costumes, including the Bat Armor, pictured here in a collectible from Hot Toys. Image: Sideshow Collectibles
Designer Jose Fernandez has been hired by SpaceX to design spacesuits. Fernandez has designed many superhero costumes, including the Bat Armor, pictured here in a collectible from Hot Toys. Image: Sideshow Collectibles

Everything about SpaceX seems exciting right now. In April, SpaceX successfully landed their reusable rocket, the Falcon 9, on a droneship at sea. Also in April, SpaceX announced that they intend to send a Dragon capsule to Mars by 2018. Now, Elon Musk’s private space company has hired Jose Fernandez, superhero movie costume designer, to design spacesuits for his astronauts.

Fernandez, with his company Ironhead Studio, has quite a resume when it comes to costume design. He’s designed superhero costumes for movies like Batman vs Superman: Dawn of Justice and Captain America: Civil War. He’s also designed costumes for X-Men movies, for Wonder Woman, Tron, and for The Penguin in Batman Returns.

Spacesuits have been slaves to function for a long time. The extreme environments in space have constrained their design to utilitarian forms, out of necessity. But now that Elon Musk has hired Fernandez, things could change. Considerably.

Jose Fernanzed heads Ironhead Studios, where he and his team create stunning super-hero costumes. Image: Jose Fernandez/Ironhead Studios
Jose Fernanzed heads Ironhead Studios, where he and his team create stunning super-hero costumes. Image: Jose Fernandez/Ironhead Studios

Whatever designs Fernandez comes up with, they will still have to have functionality as their primary concern. There’s no escaping that. But having someone with excellent visual design skills will certainly spice things up.

SpaceX had four other companies working on bids for this design work, but in the end it was Fernandez that won. This is no surprise given Fernandez’ long track record of making great costumes for superheroes. Over a twenty year span, he has also created costumes for Wolverine, Spiderman, The Fantastic Four, and Thor. That is an enviable collection of designs.

It will be super interesting to see what Fernandez comes up with, and how design will meld with engineering requirements to create a safe, effective spacesuit. After all, the people wearing them won’t be actors, and they will require the absolute best performance possible.

Purists may scoff at having someone from Hollywood involved in spacesuit design. After all, this is serious business. The surface of Mars is not a movie set, it’s a dangerous, alien world. But there’s no telling what Fernandez will come up with. If his success in movie costumes is any indication, he might convert any nay-sayers into supporters.

The ESA and NASA are also working on new spacesuit designs. The video below is a good discussion of spacesuit design. Compare the blocky, clunky look of the first spacesuits to what astronauts now use.

SpaceX Scores Double Whammy with Nighttime Delivery of Japanese Comsat to Orbit and 2nd Successful Ocean Landing

Streak shot of SpaceX Falcon 9 delivering JCSAT-14 Japanese communications satellite to orbit after blastoff on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX
Streak shot of SpaceX Falcon 9 delivering JCSAT-14 Japanese communications satellite to orbit after blastoff on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Streak shot of SpaceX Falcon 9 delivering JCSAT-14 Japanese communications satellite to orbit after blastoff on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX

SpaceX scored a double whammy of successes this morning, May 6, following the stunning nighttime launch of a Japanese comsat streaking to orbit on the firm’s Falcon 9 rocket and nailing the breathtaking touchdown of the spent first stage just minutes later – furthering the goal of rocket reusability

Under clear Florida starlight, the upgraded SpaceX Falcon 9 soared to orbit on 1.5 million pounds of thrust on a mission carrying the JCSAT-14 commercial communications satellite, following an on time liftoff at 1:21 a.m. EDT this morning from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.

The spectacular launch and dramatic landing were both broadcast in real time on a live launch webcast from SpaceX.

Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Dawn Leek Taylor
Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Dawn Leek Taylor

Today’s Falcon launch was the 4th this year for SpaceX and took place less than 4 weeks after the last launch (on an ISS cargo mission for NASA) and sea based barge landing.

Barely nine minutes after liftoff the 156 foot tall Falcon 9 first stage carried out a propulsive soft landing on an ocean going platform located some 400 miles off the east coast of Florida.

“First stage landing on drone ship in Atlantic confirmed,” said a SpaceX official during the webcast, which showed a glowing body approaching the horizon.

“Woohoo!!” tweeted SpaceX CEO and billionaire founder Elon Musk.

This marked the second successful landing at sea for SpaceX following the prior history making touchdown success last month.

“May need to increase size of rocket storage hangar,” tweeted Musk.

“Yeah, this was a three engine landing burn, so triple deceleration of last flight. That’s important to minimize gravity losses.”

Falcon 9 first stage touchdown on ocean platform after successful JCSAT-14 launch on May 6, 2016 from Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Falcon 9 first stage touchdown on ocean platform after successful JCSAT-14 launch on May 6, 2016 from Cape Canaveral Air Force Station, Fl. Credit: SpaceX

The commercial SpaceX launch lofted the JCSAT-14 Japanese communications satellite to a Geostationary Transfer Orbit (GTO) for SKY Perfect JSAT – a leading satellite operator in the Asia – Pacific region.

After a brief reignition of the second stage, the spacecraft successfully separated from the upper stage and was deployed some 32 minutes after liftoff – as seen via the live SpaceX webcast.

“The Falcon 9 second stage delivered JCSAT-14 to a Geosynchronous Transfer Orbit,” said SpaceX.

Via a fleet of 15 satellites, Tokyo, Japan based SKY Perfect JSAT provides high quality satellite communications to its customers.

The JCSAT-14 communications satellite was designed and manufactured by Space Systems/Loral for SKY Perfect JSAT Corporation.

It will succeed and replace the JCSAT-2A satellite currently providing coverage to Asia, Russia, Oceania and the Pacific Islands.

JCSAT-14 is equipped with C-band and Ku-Band transponders that will extend JCSAT-2A’s geographical footprint across the Asia-Pacific region.

The JCSAT-14 communications satellite from SKY Perfect JSAT Corporation stands ready for encapsulation in the Falcon 9 payload fairing. Credit: SpaceX
The JCSAT-14 communications satellite from SKY Perfect JSAT Corporation stands ready for encapsulation in the Falcon 9 payload fairing. Credit: SpaceX

The Falcon 9 soft landed on the “Of Course I Still Love You” drone ship positioned some 400 miles (650 kilometers) off shore in the Atlantic Ocean.

Prior to the launch, SpaceX officials had rated the chances of a successful landing as “unlikely” due to “this launch mission’s GTO destination, the first stage will be subject to extreme velocities and re-entry heating.”

“Rocket reentry is a lot faster and hotter than last time, so odds of making it are maybe even, but we should learn a lot either way,” said Musk.

Nevertheless, despite those difficulties, the landing turned out to be another stunning success for SpaceX CEO Elon Musk’s vision of radically slashing the cost of sending rocket to space by recovering the boosters and eventually reusing them.

Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX
Prelaunch view of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Lane Hermann
Prelaunch view of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Lane Hermann
SpaceX JCSAT-14 mission patch. Credit: SpaceX
SpaceX JCSAT-14 mission patch. Credit: SpaceX

SpaceX Set for Night Launch of Japanese Satellite and Drone Ship Landing Friday, May 6 – Watch Live

SpaceX Falcon 9 rocket stands poised for launch on May 26 at Cape Canaveral Air Force Station, FL, similar to this file photo. Credit: Ken Kremer/kenkremer
SpaceX Falcon 9 rocket stands poised for launch on May 6 at Cape Canaveral Air Force Station, FL, similar to this file photo.  Credit: Ken Kremer/kenkremer
A SpaceX Falcon 9 rocket stands poised for launch on May 6, 2016 at Cape Canaveral Air Force Station, FL, similar to this file photo. Credit: Ken Kremer/kenkremer

Less than 4 weeks after launching a Dragon cargo ship for NASA to the International Space Station (ISS), SpaceX is poised for their next nearly simultaneous Falcon 9 rocket launch and first stage landing attempt for what promises to be a spectacular skyshow shortly after midnight on Friday, May 6.

The commercial mission involves lofting the JCSAT-14 Japanese communications satellite to a Geostationary Transfer Orbit (GTO) for SKY Perfect JSAT – a leading satellite operator in the Asia – Pacific region.

Following a day’s delay due to inclement weather, SpaceX is now targeting an overnight launch of JCSAT-14 atop the upgraded version of the Falcon 9 for Friday, May 6 at 1:21:00 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.

The Falcon 9 launch is the 4th this year for SpaceX.

You can watch the launch live via a special live webcast from SpaceX.

The SpaceX webcast will be available starting at about 20 minutes before liftoff, at approximately 1:00 a.m. EDT – at SpaceX.com/webcast

The 229 foot tall Falcon 9 rocket has a 2 hour launch window that extends until Friday, May 6 at 3:21 a.m. EDT.

The JCSAT-14 communications satellite from SKY Perfect JSAT Corporation stands ready for encapsulation in the Falcon 9 payload fairing. Credit: SpaceX
The JCSAT-14 communications satellite from SKY Perfect JSAT Corporation stands ready for encapsulation in the Falcon 9 payload fairing. Credit: SpaceX

The weather currently looks very good. Air Force meteorologists are predicting a 90 percent chance of favorable weather conditions at launch time Friday morning.

In cases of any delays for technical or weather issues, a backup launch opportunity exits 24 later on Saturday at the same time.

The rocket has been rolled out to the launch pad on the transporter and raised to its vertical position.

The path to launch was cleared following this past weekend’s successful hold down static fire test of the Falcon 9 first stage Merlin 1-D engines. SpaceX routinely performs the hotfire test to ensure the ready is ready.

Via a fleet of 15 satellites, Tokyo, Japan based SKY Perfect JSAT provides high quality satellite communications to its customers.

The JCSAT-14 communications satellite was designed and manufactured by Space Systems/Loral for SKY Perfect JSAT Corporation.

It will succeed and replace the JCSAT-2A satellite currently providing coverage to Asia, Russia, Oceania and the Pacific Islands.

JCSAT-14 satellite will separate from the second stage and will be deployed about 32 minutes after liftoff from Cape Canaveral. The staging events are usually broadcast live by SpaceX via stunning imagery from onboard video cameras.

A secondary objective is to try and recover the first stage booster via a propulsive landing on an ocean-going platform.

During the last SpaceX launch on April 8, the first stage did successfully soft land on the ship at sea for the first time. But the rocket was moving somewhat slower and aiming for low Earth orbit.

This booster is again equipped with 4 landing legs and 4 grid fins.

Following stage separation, SpaceX will try to soft land the first stage on the “Of Course I Still Love You” drone ship positioned a few hundred miles off shore in the Atlantic Ocean.

But SpaceX officials say “a successful landing is unlikely” because with “this mission’s GTO destination, the first stage will be subject to extreme velocities and re-entry heating.”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX JCSAT-14 mission patch. Credit: SpaceX
SpaceX JCSAT-14 mission patch. Credit: SpaceX

SpaceX Announces Plan to Launch Private Dragon Mission to Mars in 2018

Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2020. Credit: SpaceX
Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2018.  Credit: SpaceX
Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2018. Credit: SpaceX

SpaceX announced plans today, April 27, for the first ever private mission to Mars which involves sending an uncrewed version of the firms Dragon spacecraft to accomplish a propulsive soft landing – and to launch it as soon as 2018 including certain technical assistance from NASA.

Under a newly signed space act agreement with NASA, the agency will provide technical support to SpaceX with respect to Mars landing technologies for the new spacecraft known as a ‘Red Dragon’ and possibly also for science activities.

“SpaceX is planning to send Dragons to Mars as early as 2018,” the company posted in a brief announcement today on Facebook and other social media about the history making endeavor.

The 2018 commercial Mars mission involves launching the ‘Red Dragon’ – also known as Dragon 2 – on the SpaceX Falcon Heavy rocket from Launch Pad 39A at NASA’s Kennedy Space Center in Florida. It’s a prelude to eventual human missions.

The Red Dragon initiative is a commercial endeavor that’s privately funded by SpaceX and does not include any funding from NASA. The agreement with NASA specifically states there is “no-exchange-of-funds.”

As of today, the identity and scope of any potential science payload is undefined and yet to be determined.

Hopefully it will include a diverse suite of exciting research instruments from NASA, or other entities, such as high powered cameras and spectrometers characterizing the Martian surface, atmosphere and environment.

SpaceX CEO and billionaire founder Elon Musk has previously stated his space exploration goals involve helping to create a Mars colony which would ultimately lead to establishing a human ‘City on Mars.’

Musk is also moving full speed ahead with his goal of radically slashing the cost of access to space by recovering a pair of SpaceX Falcon 9 first stage boosters via successful upright propulsive landings on land and at sea – earlier this month and in Dec. 2015.

Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2018.  Credit: SpaceX
Artists concept for sending uncrewed SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2018. Credit: SpaceX

The 2018 liftoff campaign marks a significant step towards fulfilling Musk’s Red Planet vision. But we’ll have to wait another 5 months for concrete details.

“Red Dragon missions to Mars will also help inform the overall Mars colonization architecture that SpaceX will reveal later this year,” SpaceX noted.

Musk plans to reveal the details of the Mars colonization architecture later this year at the International Astronautical Congress (IAC) being held in Guadalajara, Mexico from September 26 to 30, 2016.

Landing on Mars is not easy. To date only NASA has successfully soft landed probes on Mars that returned significant volumes of useful science data.

In the meantime a few details about the SpaceX Red Dragon have emerged.

The main goal is to propulsively land something 5-10 times the size of anything previously landed before.

“These missions will help demonstrate the technologies needed to land large payloads propulsively on Mars,” SpaceX further posted.

NASA’s 1 ton Curiosity rover is the heaviest spaceship to touchdown on the Red Planet to date.

Artists concept for sending SpaceX Red Dragon spacecraft to Mars as early as 2018.  Credit: SpaceX
Artists concept for sending SpaceX Red Dragon spacecraft to Mars as early as 2018. Credit: SpaceX

As part of NASA’s agency wide goal to send American astronauts on a human ‘Journey to Mars’ in the 2030s, NASA will work with SpaceX on some aspects of the Red Dragon initiative to further the agency’s efforts.

According to an amended space act agreement signed yesterday jointly by NASA and SpaceX officials – that originally dates back to November 2014 – this mainly involves technical support from NASA and exchanging entry, descent and landing (EDL) technology, deep space communications, telemetry and navigation support, hardware advice, and interplanetary mission and planetary protection advice and consultation.

“We’re particularly excited about an upcoming SpaceX project that would build upon a current “no-exchange-of-funds” agreement we have with the company,” NASA Deputy Administrator Dava Newman wrote in a NASA blog post today.

“In exchange for Martian entry, descent, and landing data from SpaceX, NASA will offer technical support for the firm’s plan to attempt to land an uncrewed Dragon 2 spacecraft on Mars.”

“This collaboration could provide valuable entry, descent and landing data to NASA for our journey to Mars, while providing support to American industry,” NASA noted in a statement.

The amended agreement with NASA also makes mention of sharing “Mars Science Data.”

As of today, the identity, scope and weight of any potential science payload is undefined and yet to be determined.

Perhaps it could involve a suite of science instruments from NASA, or other entities, such as cameras and spectrometers characterizing various aspects of the Martian environment.

In the case of NASA, the joint agreement states that data collected with NASA assets is to be released within a period not to exceed 6 months and published where practical in scientific journals.

The Red Dragon envisioned for blastoff to the Red Planet as soon as 2018 would launch with no crew on board on a critical path finding test flight that would eventually pave the way for sending humans to Mars – and elsewhere in the solar system.

“Red Dragon Mars mission is the first test flight,” said Musk.

“Dragon 2 is designed to be able to land anywhere in the solar system.”

However, the Dragon 2 alone is far too small for a round trip mission to Mars – lasting some three years or more.

“But wouldn’t recommend transporting astronauts beyond Earth-moon region,” tweeted Musk.

“Wouldn’t be fun for longer journeys. Internal volume ~size of SUV.”

Furthermore, for crewed missions it would also have to be supplemented with additional modules for habitation, propulsion, cargo, science, communications and more. Think ‘The Martian’ movie to get a realistic idea of the complexity and time involved.

Red Dragon’s blastoff from KSC pad 39A is slated to take place during the Mars launch window opening during April and May 2018.

The inaugural liftoff of the Falcon Heavy is currently scheduled for late 2016 after several years postponement.

If all goes well, Red Dragon could travel to Mars at roughly the same time as NASA’s next Mission to Mars – namely the InSight science lander, which will study the planets deep interior with a package of seismometer and heat flow instruments.

InSight’s launch on a United Launch Alliance Atlas V is targeting a launch window that begins May 5, 2018, with a Mars landing scheduled for Nov. 26, 2018. Liftoff was delayed from this year due to a flaw in the French-built seismometer.

SpaceX Red Dragon spacecraft launches to Mars on SpaceX Falcon Heavy as soon as 2018 in this artists comcept.  Credit: SpaceX
SpaceX Red Dragon spacecraft launches to Mars on SpaceX Falcon Heavy as soon as 2018 in this artists comcept. Credit: SpaceX

Whoever wants to land on Mars also has to factor in the relevant International treaties regarding ‘Planetary Protection’ requirements.

Wherever the possibility for life exists, the worlds space agency’s who are treaty signatories, including NASA, are bound to adhere to protocols limiting contamination by life forms from Earth.

SpaceX intends to take planetary protection seriously. Under the joint agreement, SpaceX is working with relevant NASA officials to ensure proper planetary protection procedures are followed. One of the areas of collaboration with NASA is for them to advise SpaceX in the development a Planetary Protection Plan (PPP) and assist with the implementation of a PPP including identifying existing software/tools.

Red Dragon is derived from the SpaceX crew Dragon vehicle currently being developed under contract for NASA’s Commercial Crew Program (CCP) to transport American astronauts back and forth to low Earth orbit and the International Space Station (ISS).

SpaceX and Boeing were awarded commercial crew contracts from NASA back in September 2014.

Both firms hope to launch unmanned and manned test flights of their SpaceX Crew Dragon and Boeing CST-100 Starliner spacecraft to the ISS starting sometime in 2017.

The crew Dragon is also an advanced descendent of the original unmanned cargo Dragon that has ferried tons of science experiments and essential supplies to the ISS since 2012.

A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo.  Credit: Ken Kremer – kenkremer.com
A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo. Credit: Ken Kremer – kenkremer.com

To enable propulsive landings, SpaceX recently conducted hover tests using a Dragon 2 equipped with eight side-mounted SuperDraco engines at their development testing facility in McGregor, TX.

These are “Key for Mars landing,” SpaceX wrote.

“We are closer than ever before to sending American astronauts to Mars than anyone, anywhere, at any time has ever been,” Newman states.

SpaceX Dragon 2 crew vehicle, powered by eight SuperDraco engines, conducts propulsive hover test at the company’s rocket development facility in McGregor, Texas.  Credit: SpaceX
SpaceX Dragon 2 crew vehicle, powered by eight SuperDraco engines, conducts propulsive hover test at the company’s rocket development facility in McGregor, Texas. Credit: SpaceX

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Three Words: SpaceX… Mars… 2018

Artistic concepts of the Falcon Heavy rocket (left) and the Dragon capsule deployed on the surface of Mars (right). Credit: SpaceX

Fans of Elon Musk and commercial space exploration are buzzing over the news! Back in 2002, when Musk first established the private aerospace company SpaceX, he did so with the intent of creating the technologies needed to reduce the cost of space transportation and enable crewed missions to Mars. And for the past few years, industry and the general public alike have been waiting on him to say when missions to Mars might truly begin.

Earlier this morning, Elon Musk did just that, when he tweeted from his company account that SpaceX plans to send a Dragon capsule to Mars by 2018. Despite talking about his eventual plans to mount crewed missions to Mars in the coming decades, and to even build a colony there, this is the first time that a specific date has been attached to any plans.

What was also indicated in the announcement was that the missions would be built around the “Red Dragon” mission architecture. As a modified, unmanned version of the Dragon capsule, this craft was conceived back in 2013 and 2015 as part of the NASA Discovery Program – specifically for Mission 13, a series of concepts which are scheduled to launch sometime in 2022.

Concept art showing a Dragon capsule landing on Mars. Credit: SpaceX
Concept art showing a Dragon capsule landing on Mars. Credit: SpaceX

Though the idea was never submitted to NASA, SpaceX has kept them on hand as part of a proposed low-cost Mars lander mission that would deploy a sample-return rover to the Martian surface. The mission will be deployed using a Falcon Heavy rocket, based on the mission profile and the illustrations that accompanied the announcement.

This mission would not only demonstrate SpaceX’s ability to procure samples from the Martian environment and bring them back to Earth – something that only federal space agencies like NASA have been able to do so far – but also test techniques and equipment that human crews will be using to enter the Martian atmosphere.

And if all goes well, we can expect that Musk will push forward with his plans for both crewed missions, and the development of all the necessary architecture to being work on his Mars Colonial Transporter, which he hopes to use to begin ferrying people to Mars to build his planned colony.

Stay tuned for more in-depth analysis of this announcement from our resident expert, Ken Kremer!

Recovered SpaceX Falcon 9 Booster Moves Back to KSC for Eventual Reflight

Up close view of base of recovered SpaceX Falcon 9 first stage rocket powered by 9 Merlin 1 D engines being transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Credit: Julian Leek
Up close view of base of recovered SpaceX Falcon 9 first stage rocket powered by 9 Merlin 1 D engines being transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Credit: Julian Leek
Up close view of base of recovered SpaceX Falcon 9 first stage rocket powered by 9 Merlin 1 D engines being transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Note: landing legs were removed. Credit: Julian Leek

The recovered SpaceX Falcon 9 first stage booster that successfully carried out history’s first upright touchdown from a just flown rocket onto a droneship at sea, has just been moved back to the firms processing hanger at the Kennedy Space Center (KSC) for testing and eventual reflight.

Space photographers and some lucky tourists coincidentally touring through Cape Canaveral Air Force Station in the right place at the right time on a tour bus, managed to capture exquisite up close images and videos (shown above and below) of the rockets ground transport on Tuesday, April 19, along the route from its initial staging point at Port Canaveral to a secure area on KSC.

It was quite a sight to the delight of all who experienced this remarkable moment in space history – that could one day revolutionize space flight by radically slashing launch costs via recycled rockets.

The boosters nine first stage Merlin 1 D engines were wrapped in a protective sheath during the move as seen in the up close imagery.

Recovered SpaceX Falcon 9 first stage rocket was transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Credit: Julian Leek
Recovered SpaceX Falcon 9 first stage rocket was transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Credit: Julian Leek

The SpaceX Falcon 9 had successfully conducted a dramatic propulsive descent and soft landing on a barge some 200 miles offshore in the Atlantic Ocean on April 8, about 9 minutes after blasting off from Cape Canaveral Air Force Station at 4:43 p.m. EDT on the Dragon CRS-8 cargo mission for NASA to the International Space Station (ISS).

The used Falcon 9 booster then arrived back into Port Canaveral, Florida four days later, overnight April 12, after being towed atop the ocean going platform that SpaceX dubs an ‘Autonomous Spaceport Drone Ship’ or ASDS.

The spent 15 story tall Falcon 9 booster was transported to KSC by Beyel Bros. Crane and Rigging, starting around 9:30 a.m.

Recovered SpaceX Falcon 9 first stage rocket was transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Credit: Julian Leek
Recovered SpaceX Falcon 9 first stage rocket was transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Credit: Julian Leek

After initial cleaning and clearing of hazards and processing to remove its four landing legs at the Port facility, the booster was carefully lowered by crane horizontally into a retention cradle on a multiwheel combination Goldhofer/KMAG vehicle and hauled by Beyel to KSC with a Peterbilt Prime Mover truck.

The Falcon 9 was moved to historic Launch Complex 39A at KSC for processing inside SpaceX’s newly built humongous hanger located at the pad perimeter.

Indeed this Falcon 9 first stage is now residing inside the pad 39A hanger side by side with the only other flown rocket to be recovered; the Falcon 9 first stage that accomplished a land landing back at the Cape in December 2015 – as shown in this image from SpaceX CEO Elon Musk titled “By land and sea”.

Side by side SpaceX Falcon 9 first stages recovered ‘by land and sea’ in Dec 2015 and Apr 2016. Credit: SpaceX/Elon Musk
Side by side SpaceX Falcon 9 first stages recovered ‘by land and sea’ in Dec 2015 and Apr 2016. Credit: SpaceX/Elon Musk

Watch this video of the move taken from a tour bus:

SpaceX engineers plan to conduct a series of some 12 test firings of the first stage Merlin 1 D engines to ensure all is well operationally in order to validate that the booster can be re-launched.

It may be moved back to Space Launch Complex-40 for the series of painstakingly inspections, tests and refurbishment.

The nine Merlin 1 D engines that power SpaceX Falcon 9 are positioned in an octoweb arrangement, as shown in this up close view of the base of recovered first stage during transport to Kennedy Space Center pad 39 A from Port Canaveral, Florida on April 19, 2016. Credit: Julian Leek
The nine Merlin 1 D engines that power SpaceX Falcon 9 are positioned in an octoweb arrangement, as shown in this up close view of the base of recovered first stage during transport to Kennedy Space Center pad 39 A from Port Canaveral, Florida on April 19, 2016. Credit: Julian Leek

SpaceX hopes to refly the recovered booster in a few months, perhaps as early as this summer.

The vision of SpaceX’s billionaire founder and CEO Elon Musk is to dramatically slash the cost of access to space by recovering the firms rockets and recycling them for reuse – so that launching rockets will one day be nearly as routine and cost effective as flying on an airplane.

The essential next step after recovery is recycling. Musk said he hopes to re-launch the booster this year.

Whenever it happens, it will count as the first relaunch of a used rocket in history.

SpaceX has leased Pad 39A from NASA and is renovating the facilities for future launches of the existing upgraded Falcon 9 as well as the Falcon Heavy currently under development.

SpaceX Crew Dragon will blast off atop a Falcon 9 rocket from Launch Pad 39A at NASA's Kennedy Space Center in Florida  for missions to the International Space Station. Pad 39A is  undergoing modifications by SpaceX to adapt it to the needs of the company's Falcon 9 and Falcon Heavy rockets, which are slated to lift off from the historic pad in the near future. A horizontal integration facility (right) has been constructed near the perimeter of the pad where rockets will be processed for launch prior of rolling out to the top of the pad structure for liftoff. Credit: Ken Kremer/Kenkremer.com
SpaceX Crew Dragon will blast off atop a Falcon 9 rocket from Launch Pad 39A at NASA’s Kennedy Space Center in Florida for missions to the International Space Station. Pad 39A is undergoing modifications by SpaceX to adapt it to the needs of the company’s Falcon 9 and Falcon Heavy rockets, which are slated to lift off from the historic pad in the near future. A horizontal integration facility (right) has been constructed near the perimeter of the pad where rockets will be processed for launch prior of rolling out to the top of the pad structure for liftoff. Credit: Ken Kremer/Kenkremer.com

Landing on the barge was a secondary goal of SpaceX and not part of the primary mission sending science experiments and cargo to the ISS crew under a resupply contract with for NASA.

Watch this SpaceX Falcon 9/Dragon CRS-8 launch video from my video camera placed at the pad:

Video Caption: Spectacular blastoff of SpaceX Falcon 9 rocket carrying Dragon CRS-8 cargo freighter bound for the International Space Station (ISS) from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL at 4:43 p.m. EST on April 8, 2016. Up close movie captured by Mobius remote video camera placed at launch pad. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer