Searching out Sagan in Ithaca

Taking a break from reading Pale Blue Dot in Carl Sagan’s hometown of Ithaca, New York. (Elizabeth Howell)

I never knew of Carl Sagan as a living human being, as I missed him by mere months. I read Pale Blue Dot sometime in 1997, if my memory serves, sometime after the movie Contact (based on his book) came out in theaters and I asked my parents what the “FOR CARL” dedication was at the end of the movie.

At a time when I was all awkward teenagerhood, Sagan’s writing showed me a Universe of beauty. Not organized beauty, to be sure, but a destination worth exploring. Worth learning more about, even from a humble perch on Earth.

Sagan had a bit of everything in him: a knowledge of philosophy and history, an influence on early NASA missions, an ability to take the Universe and make it homey enough to show on television screens and in books.

His formative research years were at Cornell University in Ithaca, New York. More than 15 years after his death, he’s actually pretty easy to find in that town.

Carl Sagan’s grave in Lakeview Cemetery in Ithaca, New York, adorned with blue marbles. It’s between the two trees in this map. (Elizabeth Howell)

The exterior of the Space Sciences building at Cornell University, where Carl Sagan spent his most influential research years. (Elizabeth Howell)

Carl Sagan’s picture at the Sciencenter in Ithaca. He was a founding member of the science museum’s advisory board. (Elizabeth Howell)

Our Sun shining upon an exhibit of Neptune in Ithaca’s Planet Walk. The 1200-meter walk has the distances of all the planets in the solar system to scale. The exhibition was created in honor of Carl Sagan’s memory, and has a podcast available that is narrated by one of his students: Bill Nye, the Science Guy. (Elizabeth Howell)

‘Ultimate Mars Challenge’ – PBS NOVA TV Curiosity Documentary Premieres Nov. 14

If you’ve been following the spectacular adventures of NASA’s Curiosity Mars rover since the nerve wracking Sky Crane touchdown just 3 months ago, then PBS NOVA TV has a sweet treat in store for you – Viewer Alert !

Be sure to tune in Wednesday night Nov.14 at 9 PM EDT/PDT for the premiere broadcast of NOVA’s thrilling new documentary titled “Ultimate Mars Challenge” on your local PBS station. The highly acclaimed NOVA science series has been decorated with numerous major television awards.

Get a preview of the show by watching this short 30 second trailer below, featuring the top scientists and engineers who created and gave birth to the Curiosity Mars Science Laboratory (MSL) mission at NASA field centers and University’s and aerospace companies spread across the US and Europe – and then guided her to an unprecedented pinpoint landing beside a layered Martian mountain in search of the ingredients of life.

‘Ultimate Mars Challenge’ also features several Curiosity mosaics specially created for the program by the image processing team of Ken Kremer & Marco Di Lorenzo

And in case you miss the show or want to watch it again, check this PBS link to replay the video of episodes of NOVA.

Read this Program Description from PBS for complete details:

“Ultimate Mars Challenge gives viewers a front-row seat for the Curiosity’s thrilling landing as well as the spectacular discoveries to come. The most ambitious robotic geologist ever, Curiosity carries 10 new instruments that will advance the quest for signs that Mars might have once been suitable for life.

But no rover does it alone: Curiosity joins a team that includes the Mars Odyssey, Express, and Reconnaissance orbiters, along with the tireless Opportunity rover. As we reveal the dynamic new picture of Mars that these explorers are painting, we will discover the deep questions raised by forty years of roving Mars: How do we define life? How does life begin and what does it need to survive? Are we alone in the universe?

Why go back to Mars? Far from dead, Mars holds untold potential. Nearly half a century of Mars exploration has yielded tantalizing clues that Mars may once have harbored life—and may harbor it still.

The extraordinary landing of a revolutionary rover named Curiosity—which successfully touched down inside the Gale Crater—means we have wheels down on the planet once again, in the form of the most sophisticated robot ever to rove the Mars surface.

Will NASA’s bold mission and this marvel of technology answer some of our biggest questions and usher in a new golden age of exploration? NOVA goes behind the scenes on NASA’s quest to solve the riddles of the red planet”

Image Caption: Curiosity Self Portrait with Mount Sharp at Rocknest ripple in Gale Crater. Curiosity used the Mars Hand Lens Imager (MAHLI) camera on the robotic arm to image herself and her target destination Mount Sharp in the background. Mountains in the background to the left are the northern wall of Gale Crater. This color panoramic mosaic was assembled from raw images snapped on Sol 85 (Nov. 1, 2012). Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

‘Ultimate Mars Challenge’ was produced by the Emmy award winning team of Jill Shinefield and Gail Willumsen at Gemini Productions in West Hollywood, California. Jill and Gail were on site at NASA’s Jet Propulsion Lab (JPL) in Pasadena, Calif., to cover the Aug. 5/6 touchdown inside Gale Crater. They say the show just wrapped production in early November, so it’s completely up-to-date through the first 90 Martian days, or Sols, of the 2 year prime mission.

On Nov. 9, Curiosity delivered her first soil sample to the Sample Analysis at Mars (SAM) instrument suite that is designed to detect organic molecules and help determine if Mars ever supported Martian microbial life – watch for my upcoming story.

Image caption: Curiosity looks back to her rover tracks and the foothills of Mount Sharp and the eroded rim of Gale Crater in the distant horizon on Sol 24 (Aug. 30, 2012). This panorama is featured on PBS NOVA Ultimate Mars Challenge’ documentary premiering on Nov. 14. The colorized mosaic was stitched together from Navcam images. Credit: NASA / JPL-Caltech / Ken Kremer / Marco Di Lorenzo

Check the PBS, NASA and JPL websites for mission details. Later this week on Nov. 16, I’ll be presenting a free public talk about the mission titled “Curiosity and the Search for Life on Mars (3-D)”, at Union County College in NJ, hosted by Amateur Astronomers Inc. (AAI) in Cranford, NJ. And the power is thankfully back on ! – in the aftermath of Hurricane Sandy.

Ken Kremer
…..

Nov. 16: Free Public Lecture titled “Curiosity and the Search for Life on Mars (in 3 D)” and more by Ken Kremer at Union County College and Amateur Astronomers Inc in Cranford, NJ.

Dec 6: Free Public lecture titled “Atlantis, The Premature End of America’s Shuttle Program and What’s Beyond for NASA” including Curiosity, Orion, SpaceX and more by Ken Kremer at Brookdale Community College/Monmouth Museum and STAR Astronomy club in Lincroft, NJ

Curiosity Celebrates 90 Sols Scooping Mars and Snapping Amazing Self-Portrait with Mount Sharp

Image Caption: Curiosity Self Portrait with Mount Sharp at Rocknest ripple in Gale Crater. Curiosity used the Mars Hand Lens Imager (MAHLI) camera on the robotic arm to image herself and her target destination Mount Sharp in the background. Mountains in the background to the left are the northern wall of Gale Crater. This color panoramic mosaic was assembled from raw images snapped on Sol 85 (Nov. 1, 2012). Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

NASA’s revolutionary Curiosity rover is celebrating 90 Sols on Mars by snapping amazing self-portraits (see our mosaics above and below) and biting into the Red Planet’s surface to accomplish unprecedented scientific analysis of an alien world.

Nov. 6 marked a major milestone in Curiosity’s daring and evolving mission in search of signs of life. This is the three month anniversary of her toiling on the breathtaking Martian surface since the hair-raising pinpoint touchdown on Aug. 6 inside Gale Crater at the foothills of a humongous and gorgeous layered mountain that likely holds the key to understanding Mars watery past and 4 billion plus year evolution.

The never before seen mosaic vista above shows a matchless self portrait of Curiosity’s Mastcam ‘head’ and body combined with a thrilling scene of her target destination – Mount Sharp – the layered mound of sediments that could unlock the mysteries of whether Mars ever possessed habitats favorable for the evolution of life, past or present.

Last week on Sols 84 & 85 (Oct 31 & Nov 1) Curiosity took hundreds of high resolution color images with the Mars Hand Lens Imager (MAHLI) camera – located at the end of the 7 foot (2.1 m) long robotic arm – thus affording us a breathtaking portrait view of our emissary from Earth to Mars.

Our Sol 85 self-portrait mosaic was stitched together by the imaging team of Ken Kremer and Marco Di Lorenzo. Last week NASA released the first self portrait mosaic of the Sol 84 MAHLI camera imagery that included the left flank of 3 mile (5 km) Mount Sharp.

Image Caption: High-Resolution Self-Portrait by Curiosity Rover Arm Camera. On Sol 84 (Oct. 31, 2012), NASA’s Curiosity rover used the Mars Hand Lens Imager (MAHLI) to capture this set of 55 high-resolution images, which were stitched together to create this full-color self-portrait. Credit: NASA/JPL-Caltech/MSSS

The Curiosity team spent considerable effort to build the imaging sequences and then remotely maneuver the robotic arm to precisely collect the raw images and transmit them to Earth.

Previously the team used the MAHLI camera to photograph Curiosity’s underbelly (see our mosaic).

Image Caption: A mosaic of photos taken by the MAHLI camera on Curiosity’s arm shows the underbelly of the rover and its six wheels, with Martian terrain stretching back to the horizon. Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

For the past month Curiosity has been hunkered down at “Rocknest” ripple which lies at the edge of “Glenelg” – her first major science destination – and that sits at the natural junction of three types of geologically diverse terrain.

Rocknest afforded the perfect type of fine grained Martian dust to carry out the first test scoops of Martian soil and then used the material to thoroughly cleanse the robots’ sample processing system of residual Earthy contamination and then ingest the first samples into the robots pair of analytical chemistry labs – CheMin and SAM.

Curiosity has eaten into Rocknest 4 times so far and delivered two samples to the CheMin (Chemistry and Mineralogy) instrument for analysis.

Scoop sample #5 should deliver the first solid material to SAM (Sample Analysis at Mars) sometime in the next week or so.

SAM is specifically engineered to search for organic molecules – the building blocks of life as we know it. CheMin uses X-ray diffraction techniques to accurately determine the mineralogical composition of pulverized and sieved red planet soil and rock samples.

Curiosity’s key science finding during the first 90 Sols is the discovery of evidence for an ancient Martian stream bed at three different locations along the short route she has traversed to date.

Curiosity found a trio of outcrops of stones cemented into a layer of conglomerate rock. Hip deep liquid water once flowed vigorously on the floor of Gale Crater billions of years ago. Liquid water is a prerequisite for the origin of life.

Since the landing, some 400 members of the Curiosity science team had been camped out at Mission Control at NASA’s Jet Propulsion Lab in Pasadena, Calif to efficiently coordinate the rovers surface planning and operations.

With the first 90 Sols now successfully behind them and with Curiosity operating in tip top shape, most of the science team has just departed JPL and returned to their home institutions scattered across the globe, mostly in North America and Europe.

The 1 ton SUV sized Curiosity rover has taken over 22,000 pictures thus far and is funded for a 2 year primary mission.

Ken Kremer

…..
Nov. 16: Free Public Lecture titled “Curiosity and the Search for Life in 3 D” and more by Ken Kremer at Union County College and Amateur Astronomers Inc in Cranford, NJ.

Dec 6: Free Public lecture titled “Atlantis, The Premature End of America’s Shuttle Program and What’s Beyond for NASA” including Curiosity and more at Brookdale Community College/Monmouth Museum and STAR Astronomy club in Lincroft, NJ

See more of our Curiosity Mars mosaics by Ken Kremer & Marco Di Lorenzo at PBS Nova TV (airing Nov 14), NBC News Cosmic log and Scientific American.

Image Caption: Panoramic mosaic shows gorgeous Glenelg snapped by Curiosity on Sol 64 (Oct. 10) with eroded crater rim and base of Mount Sharp in the distance. This is a cropped version of the full mosaic as assembled from 75 images acquired by the Mastcam 100 camera. Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

How Today’s Election Could Affect the Kansas Cosmosphere

The Kansas Cosmosphere and Space Center. (Elizabeth Howell)

Hutchinson, KS — While the nation is polarized between choosing Barack Obama or Mitt Romney as the next American president, voters going to the polls in this city of 40,000 will have another matter to weigh during elections today.

Along with their ballot, residents will consider whether the Kansas Cosmosphere and Space Center will continue to receive funding from city coffers. Since it represents 18% of revenues for the science museum, Cosmosphere president Jim Remar says his colleagues have been paying close attention.

The city sales tax sets aside 33% of a quarter-cent for the Cosmosphere, and some additional funding for a nearby underground salt museum and other city initiatives. Money to the museum goes for general operations.

“I feel good that it’s going to pass, although we do have some nervous moments,” Remar says. Supporters of the tax have been spreading the word through radio, billboards, editorials in local newspapers and any other means possible to get out the word.

Museum president Jim Remar, inside the Cosmosphere’s restoration facility. (Elizabeth Howell)

Sales tax funding for the Cosmosphere renews every five years, with the current iteration set to expire in 2014. The city tries to get the vote out for the sales tax at the same time as the general election, for convenience and financial sake.

While 18% of the museum’s funding lie in the hands of voters, Remar is trying to increase the share of the remaining 82% under the Cosmosphere’s control.

Getting visitors out to the museum is always a challenge; it’s an hour from the nearest major center (Wichita), a city that itself is many hours’ drive from any city to speak of. Still, the museum brings in 120,000 people every year, an attendance figure that includes space camps, museum visits and other events.

For the city itself, though, the museum is a jewel: “I can’t think of any other town of 40,000 that has such a facility,” says Remar, speaking proudly of how he grew up in the area, left and then chose to come back to help lead the museum’s management. His focus now is on trying to bring in business connections to enhance the Cosmosphere’s power in the community.

One of the most promising aspects is the Cosmosphere’s restoration and fabrication facility. The museum is perhaps most famous for putting the pieces of the Apollo 13 Odyssey spacecraft back together around the same time the movie came out in 1995. This was no easy task, as Odyssey was disassembled and scattered during an investigation into a near-fatal explosion aboard the spacecraft in 1970.

The restored control panel in Apollo 13’s Odyssey spacecraft, which sits in the Cosmosphere. (Elizabeth Howell)

The Cosmosphere required the Smithsonian’s help as the museum hunted through NASA centers, contract facilities and other spots for months in search of missing pieces. More than 85% of the spacecraft, which is on display at the Cosmosphere, was retrieved. The rest of the components came from spares and other odd pieces the Cosmosphere could find.

Restoration capabilities came out of necessity, Remar says. In the mid-1980s, the museum had a need to put spacecraft on display and spiffy them up for visitors. As other museums had the same requirement, the Cosmosphere gradually built out capabilities in restoration.

“It’s not something where somebody can come in a day and do it. It is a lot of trial and error,” Remar says of the employees who work in the facility. The lead mechanic has been around for 14 years, though, and there are two other workers with him who have adapted well over the years.

Cosmosphere officials realized there are only so many spacecraft to restore, and added exhibitions, replication and fabrication to their capabilities. This positioned them well for a surge of Hollywood films and other productions in the 1990s, such as Apollo 13, HBO’s From the Earth to the Moon, a short-lived TV series in the ’90s called The Cape and (in the 2000s) the IMAX film Magnificent Desolation: Walking on the Moon 3D.

An individual project will cost anywhere from $10,000 to $2.5 million to build; overall revenues from this division are 15 to 20% of the museum’s coffers every year. And that could grow bigger very soon.

A tool box inside the Cosmosphere’s restoration facility. (Elizabeth Howell)

On Saturday, a “Science of Aliens” exhibit will open in Taipei at the National Taiwan Science Education Center. One major part is a UFO spacecraft – 19 feet wide by 7 feet tall – that the Cosmosphere built for the exhibit. It includes running lights and some alien-sounding noises.

Asia happens to be a hot economy these days compared with North America and Europe, where the Comosphere’s work historically went.

The Cosmosphere is in discussions with Taipei-based Universal Impression, a broker that negotiated the science museum work, to do more work in the future. Remar says he hopes the Cosmosphere’s presence there will serve as a calling card to other Asian clients.

“International work can explode here,” he says. “There’s a lot of potential.”

Huge New ESA Tracking Station is Ready for Duty

Caption: ESA’s giant Malargüe tracking station Credits: ESA/S. Marti

To keep in contact with an ever growing armada of spacecraft ESA has developed a tracking station network called ESTRACK. This is a worldwide system of ground stations providing links between satellites in orbit and ESA’s Operations Control Centre (ESOC) located in Darmstadt, Germany. The core ESTRACK network comprises 10 stations in seven countries. Major construction has now been completed on the final piece of this cosmic jigsaw, one of the world’s most sophisticated satellite tracking stations at Malargüe, Argentina, 1000 km west of Buenos Aires.

ESA’s Core Network comprises 10 ESTRACK stations: Kourou (French Guiana), Maspalomas, Villafranca (Spain), Redu (Belgium), Santa Maria (Portugal), Kiruna (Sweden), Perth (Australia) which host 5.5-, 13-, 13.5- or 15-metre antennas. The new tracking station (DSA3) at Malargüe in Argentina, joins two other 35-metre deep-space antennas at New Norcia (DSA1) in Australia (completed in 2002) and Cebreros (DSA2) in Spain, (completed in 2005) to form the European Deep Space Network.

The essential task of ESTRACK stations is to communicate with missions, up-linking commands and down-linking scientific data and spacecraft status information. The tracking stations also gather radiometric data to tell mission controllers the location, trajectory and velocity of their spacecraft, to search for and acquire newly launched spacecraft, in addition to auto-tracking, frequency and timing control using atomic clocks and gathering atmospheric and weather data.

Deep-space missions can be over 2 million kilometres away from the Earth. Communicating at such distances requires highly accurate mechanical pointing and calibration systems. The 35m stations provide the improved range, radio technology and data rates required to send commands, receive data and perform radiometric measurements for current and next-generation exploratory missions such as Mars Express, Venus Express, Rosetta, Herschel, Planck, Gaia, BepiColombo, ExoMars, Solar Orbiter and Juice.

DSA3 is located at 1500m altitude in the clear Argentinian desert air, this and ultra-low-temperature amplifiers installed at the station, have meant that performance has exceeded expectations. The first test signals were received in June 2012 from Mars Express, over a distance of about 193 million km, proving that the station’s technology is ready for duty.

“Initial in-service testing with the Malargüe station shows excellent results.” “Our initial in-service testing with the Malargüe station shows excellent results,” says Roberto Maddè, ESA’s project manager for DSA 3 construction. “We have been able to quickly and accurately acquire signals from ESA and NASA spacecraft, and our station is performing better than specified.”

All three tracking stations are also equipped for radio science, which studies how matter, such as planetary atmospheres, affects the radio waves as they pass through. This can provide important information on the atmospheric composition of Mars, Venus or the Sun.

The tracking capability of all three ESA deep space stations also work in cooperation with partner agencies such as NASA and Japan’s JAXA, helping to boost science data return for all. The three Deep Space Antenna can be linked to the 7 stations comprising the Core Network as well as five other stations making up the larger Augmented Network and eleven additional stations that make up a global Cooperative Network with other space agencies from around the world.

Now that major construction is complete, teams are preparing DSA 3 for hand-over to operations, formal inauguration late this year and entry in routine service early in 2013.

Find out more about Malargüe and the Deep Space Antenna here and the other ESTRACK tracking stations here

From Eternity to Here: The Amazing Origin of our Species (in 90 Seconds)

From the initial expansion of the Big Bang to the birth of the Moon, from the timid scampering of the first mammals to the rise — and fall — of countless civilizations, this fascinating new video by melodysheep (aka John D. Boswell) takes us on a breathless 90-second tour through human history — starting from the literal beginnings of space and time itself. It’s as imaginative and powerful as the most gripping Hollywood trailer… and it’s even inspired by a true story: ours.

Enjoy!

(Video by melodysheep, creator of the Symphony of Science series.)

Gorgeous Glenelg – ‘Promised Land’ Panorama on Mars

Image Caption: Panoramic mosaic shows gorgeous Glenelg snapped by Curiosity on Sol 64 (Oct. 10) with eroded crater rim and base of Mount Sharp in the distance. This is a cropped version of the full mosaic as assembled from 75 images acquired by the Mastcam 100 camera. See full mosaic below. Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

NASA’s 1 ton mega rover Curiosity is simultaneously eating Martian dirt and busily snapping hundreds of critical high resolution color photos of her surroundings at the gorgeous locale of tasty terrain of outcrops the scientists call the ‘Promised Land’ – a place that will help unveil the watery mysteries of ancient Mars.

11 weeks into Curiosity’s 2 year primary mission she finds herself at a spot dubbed Glenelg – her first major science destination – and which lies at the natural junction of three types of geologically varied terrain.

See our detailed color panoramic mosaics of the road ahead inside Glenelg as the robot methodically scans around at the inviting mix of geologic features never before investigated by a robotic emissary from Earth.

Glenelg offers an unprecedented opportunity for a boon of discoveries to the rover science team long before she arrives at her ultimate destination – the 3.4 mile (5.5 km) high layered mountain named Mount Sharp.

Image Caption: Panoramic mosaic shows gorgeous Glenelg snapped by Curiosity from Rocknest windblown dune on Sol 64 (Oct. 10) with eroded crater rim and base of Mount Sharp in the distance. This mosaic as assembled from 75 images acquired by the high resolution Mastcam 100 camera on Sol 64. Click to enlarge. Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

Image Caption: Panorama shows beautiful vista of distant eroded rim of Gale Crater and breathtaking foreground terrain. This mosaic was assembled from high resolution Mastcam 100 images taken by Curiosity on Sol 50 (Sep. 26). Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

Curiosity Project Scientist John Grotzinger scientist explained to me that the team is using the Mastcam 100 imagery to come up with options for the upcoming driving and exploration plan to be carried out over at least the next few weeks.

“We are at Glenelg and consider ourselves to be in the ‘Promised Land’. We took the images in the direction we will be traveling,” said Curiosity Project Scientist John Grotzinger of the California Institute of Technology during a media teleconference on Oct. 18.

“We mostly see outcrops there and that’s the reason we took those prioritized images,” he said about the Mastcam 100 imagery from Sols 64 and 66.

“These images will help guide us and give the team options in terms of what I am calling ‘tours’. The team comes up with hypothesis based on the images about observations they would like to make and where they would like to drive.”.

“Then we will integrate the different observations to come up with a model we hope for how the Glenelg area was put together geologically. And then that will inform ultimately our selection for which rock to drill into for the first time,” explained Grotzinger.

Image Caption: Curiosity scoops up Martian soil sample on Sol 66 (Oct 12. 2012). Navcam camera image mosaic shows the robotic arm at work during scooping operations. Curiosity later delivered the first soil sample to the circular CheMin sample inlet at the center on the rover deck. Tiny trenches measure about 1.8 inches (4.5 centimeters) wide. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Image caption: Three bite marks left in the Martian ground by the scoop on the robotic arm of NASA’s Mars rover Curiosity are visible in this image taken by the rover’s right Navigation Camera during the mission’s 69th Martian day, or sol (Oct. 15, 2012). Credit: NASA/JPL-Caltech

Curiosity is currently parked at a windblown ripple named ‘Rocknest’. It afforded the perfect type of dusty martian material to first test out the scoop and clean the sample processing system twice before finally inhaling the first sample of Martian sand into the robots Chemistry and Mineralogy (CheMin) analytical instrument several sols ago to determine what minerals it contains.

Results from the Red Planet soil poured into the CheMin experiment located on the rover’s deck are expected in the coming week or so.

Tosol is Sol 75. Curiosity has taken nearly 20,000 pictures so far and driven a total distance of about 1,590 feet (484 meters).

Ken Kremer

See more of our Curiosity Mars mosaics by Ken Kremer & Marco Di Lorenzo at NBC News Cosmic log

…..
Nov. 16: Free Public Lecture by Ken Kremer about “Curiosity and the Search for Life in 3 D” and more at Union County College and Amateur Astronomers Inc in Cranford, NJ.

Curiosity Set for 1st Martian Scooping at ‘Rocknest’ Ripple

Image caption: Context view of Curiosity working at ‘Rocknest’ Ripple. Curiosity’s maneuvers robotic arm for close- up examination of ‘Rocknest’ ripple site and inspects sandy material at “bootlike” wheel scuff mark with the APXS (Alpha Particle X-Ray Spectrometer) and MAHLI (Mars Hand Lens Imager) instruments positioned on the rotatable turret at the arm’s terminus. Mosaic was stitched together from Sol 57 & 58 Navcam raw images and shows the arm extended to fine grained sand ripple in context with the surrounding terrain and eroded rim of Gale Crater rim on the horizon. Rocknest patch measures about 8 feet by 16 feet (2.5 meters by 5 meters).See NASA JPL test scooping video below. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

NASA’s Curiosity rover is set to scoop up her 1st sample of Martian soil this weekend at a soil patch nicknamed ‘Rocknest’ -see our context mosaic above – and will funtion as a sort of circulatory system cleanser for all the critical samples to follow. This marks a major milestone on the path to delivering Mars material to the sample acquisition and processing system for high powered analysis by the robots chemistry labs and looking for the ingredients of life, said the science and engineering team leading the mission at a media briefing on Thursday, Oct 4.

Since landing on the Red Planet two months ago on Aug. 5/6, Curiosity has trekked over 500 yards eastwards across Gale crater towards an intriguing area named “Glenelg” where three different types of geologic terrain intersect.

This week on Oct. 2 (Sol 56), the rover finally found a wind driven patch of dunes at ‘Rocknest’ with exactly the type of fine grained sand that the team was looking for and that’s best suited as the first soil to scoop and injest into the sample acquisition system.

See NASA JPL earthly test scooping video below to visualize how it works:

“We now have reached an important phase that will get the first solid samples into the analytical instruments in about two weeks,” said Mission Manager Michael Watkins of NASA’s Jet Propulsion Laboratory in Pasadena, Calif.

The rover used its wheels to purposely scuff the sand and expose fresh soil – and it sure looked like the first human “bootprint” left on the Moon by Apollo 11 astronauts Neil Armstrong and Buzz Aldrin.

Curiosity will remain at the “Rocknest” location for the next two to three weeks as the team fully tests and cleans the walls of most of the sample collection, handling and analysis hardware – except for the drilling equipment – specifically to remove residual contaminants from Earth.

Image caption: ‘Rocknest’ From Sol 52 Location on Sept. 28, 2012, four sols before the rover arrived at Rocknest. The Rocknest patch is about 8 feet by 16 feet (1.5 meters by 5 meters). Credit: NASA/JPL-Caltech/MSSS

The purpose of this initial scoop is to use the sandy material to thoroughly clean out, rinse and scrub all the plumbing pipes, chambers, labyrinths and interfaces housed inside the complex CHIMRA sampling system and the SAM and CheMin chemistry labs of an accumulation of a very thin and fine oily layer that could cause spurious, interfering readings when the truly important samples of Martian soil and rocks are collected for analysis starting in the near future.

The scientists especially do not want any false signals of organic compounds or other inorganic materials and minerals stemming from Earthly contamination while the rover and its instruments were assembled together and processed for launch.

“Even though we make this hardware super squeaky clean when it’s delivered and assembled at the Jet Propulsion Laboratory, by virtue of its just being on Earth you get a kind of residual oily film that is impossible to avoid,” said Daniel Limonadi of JPL, lead systems engineer for Curiosity’s surface sampling and science system. “And the Sample Analysis at Mars instrument is so sensitive we really have to scrub away this layer of oils that accumulates on Earth.”

The team plans to conduct three scoop and rinse trials – dubbed rinse and discard – of the sample acquisition systems. So it won’t be until the 3rd and 4th soil scooping at Rocknest that a Martian sample would actually be delivered for entry into the SAM and CheMin analytical chemistry instruments located on the rover deck.

“What we’re doing at the site is we take the sand sample, this fine-grained material and we effectively use it to rinse our mouth three times and then kind of spit out,” Limonadi said. “We will take a scoop, we will vibrate that sand on all the different surfaces inside CHIMRA to effectively sand-blast those surfaces, then we dump that material out and we rinse and repeat three times to finish cleaning everything out. Our Earth-based testing has found that to be super effective at cleaning.”

Limondi said the first scooping is likely to be run this Saturday (Oct 6) on Sol 61, if things proceed as planned. Scoop samples will be vibrated at 8 G’s to break them down to a very fine particle size that can be easily passed through a 150 micron sieve before entering the analytical instruments.

The team is being cautious, allowing plenty of margin time and will not proceed forward with undue haste.

“We’re being deliberately slow and incredibly careful,” said Watkins. “We’re taking a lot of extra steps here to make sure we understand exactly what’s going on, that we won’t have to do every time we do a scoop in the future.”

Curiosity’s motorized, clamshell-shaped scoop measures 1.8 inches (4.5 centimeters) wide, 2.8 inches (7 centimeters) long, and can sample to a depth of about 1.4 inches (3.5 centimeters). It is part of the CHIMRA collection and handling device located on the tool turret at the end of the rover’s arm.

“The scoop is about the size of an oversized table spoon,” said Limonadi.

Image caption: Curiosity extends 7 foot long arm to investigate ‘Bathurst Inlet’ rock outcrop with the MAHLI camera and APXS chemical element spectrometer in this mosaic of Navcam images assembled from Sols 53 & 54 (Sept. 29 & 30, 2012). Mount Sharp, the rover’s eventual destination is visible on the horizon. Thereafter the rover drove more than 77 feet (23 meters) eastwards to reach the ‘Rocknest’ sand ripple. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

During the lengthy stay at Rocknest, the rover will conduct extensive investigations of the surrounding rocks and terrain with the cameras, ChemCam laser, DAN, RAD as well as weather monitoring with the REMS instrument.

After finishing her work at Rocknest, Curiosity will resume driving eastward to Glenelg, some 100 meters (yards) away where the team will select the first targets and rock outcrops to drill, sample and analyze.

At Glenelg and elsewhere, researchers hope to find more evidence for the ancient Martian stream bed they discovered at rock outcrops at three different locations that Curiosity has already visited.

Curiosity is searching for organic molecules and evidence of potential habitable environments to determine whether Mars could have supported Martian microbial life forms, past or present.

Ken Kremer

Image caption: Curiosity’s Travels Through Sol 56 – Oct. 2, 2012

Roving Curiosity at Work on Mars Searching for Ingredients of Life

Image Caption: Curiosity at work on Mars inside Gale Crater. Panoramic mosaic showing Curiosity in action with her wheel tracks and the surrounding terrain snapped from the location the rover drove to on Sol 29 (Sept 4). The time lapse imagery highlights post drive wheel tracks at left, movement of the robotic arm from the stowed to deployed position with pointing instrument turret at right with Mt Sharp and a self portrait of Curiosity’s instrument packed deck top at center. This colorized mosaic was assembled from navigation camera (Navcam) images taken over multiple Martian days while stationary beginning on Sol 29. Click to Enlarge. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

NASA’s Mega Martian Rover Curiosity is swiftly trekking across the Red Planet’s science rich terrain inside Gale Crater as she approaches the two month anniversary since the daring atmospheric plunge and pinpoint touchdown on Aug. 5/6 beside her eventual destination of the richly layered mountainside of Mount Sharp.

In this ultra short span of time, Curiosity has already fulfilled on her stated goal of seeking the signs of life and potentially habitable environments by discovering evidence for an ancient Martian stream bed at three different locations – at the landing site and stops along her traverse route – where hip deep liquid water once vigorously flowed billions of years ago. Liquid water is a prerequisite for the origin of life.

Curiosity discovered a trio of outcrops of stones cemented into a layer of conglomerate rock – initially at “Goulburn” scour as exposed by the landing thrusters and later at the “Link” and “Hottah” outcrops during the first 40 sols of the mission.

If they find another water related outcrop, Curiosity Mars Science Laboratory (MSL) Project Manager John Grotzinger told me that the robotic arm will be deployed to examine it.

“We would do all the arm-based contact science first, and then make the decision on whether to drill. If we’re still uncertain, then we still have time to deliberate,” Grotzinger told me.

Image caption: Remnants of Ancient Streambed on Mars. NASA’s Curiosity rover found evidence for an ancient, flowing stream on Mars at a few sites, including the rock outcrop pictured here, which the science team has named “Hottah” after Hottah Lake in Canada’s Northwest Territories. It may look like a broken sidewalk, but this geological feature on Mars is actually exposed bedrock made up of smaller fragments cemented together, or what geologists call a sedimentary conglomerate. Scientists theorize that the bedrock was disrupted in the past, giving it the titled angle, most likely via impacts from meteorites. This image mosaic was taken by the 100-millimeter Mastcam telephoto lens on Sol 39 (Sept. 14, 2012). Credit: NASA/JPL-Caltech/MSSS

“This is the first time we’re actually seeing water-transported gravel on Mars. This is a transition from speculation about the size of streambed material to direct observation of it,” said Curiosity science co-investigator William Dietrich of the University of California, Berkeley.

Image Caption: Curiosity conducts 1st contact science experiment at “Jake” rock on Mars. This 360 degree panoramic mosaic of images from Sols 44 to 47 (Sept 20-23) shows Curiosity arriving near Jake rock on Sol 44. The robot then drove closer. Inset image from Sol 47 shows the robotic arm extended to place the science instruments on the rock and carry out the first detailed contact science examination of a Martian rock with the equipment positioned on the turret at the arms terminus. Jake rock is named in honor of recently deceased team member Jake Matijevic. This mosaic was created in tribute to Jake and his outstanding contributions. Click to Enlarge. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

The one-ton robot soon departed from her touchdown vicinity at “Bradbury Landing” and set off on a multi-week eastwards traverse to her first science target which the team has dubbed “Glenelg”.

See our panoramic Curiosity mosaics herein showing the rovers movements on various Sols as created by Ken Kremer and Marco Di Lorenzo from NASA raw images.

Curiosity is also now closing in on the spot from which she will reach out with the advanced 7 foot long (2.1 meter) robotic arm to scoop up her very first Martian soil material and deliver samples to the on board chemistry labs.

At a Sept. 27 briefing for reporters, Grotzinger, of Caltech in Pasadena, Calif., said the team hopes to find a suitable location to collect loose, gravelly Martian soil within the next few sols that can be easily sifted into the analytical labs. Curiosity will then spend about 2 or 3 weeks investigating the precious material and her surroundings, before continuing on to Glenelg.

The science team chose Glenelg as the first target for detailed investigation because it sits at the intersection of three distinct types of geologic terrain, affording the researchers the opportunity to comprehensively explore the diverse geology inside the Gale Crater landing site long before arriving at the base of Mount Sharp. That’s important because the rover team estimates it will take a year or more before Curiosity reaches Mount Sharp, which lies some 10 kilometers (6 miles) away as the Martian crow flies.

As of today, Sol 53, Curiosity has driven a total distance of 0.28 mile (0.45 kilometer) or more than ¾ of the way towards Glenelg. Yestersol (Sol 52), the six wheeled robot drove about 122 feet (37.3 meters) toward the Glenelg area and is using visual odometry to assess her progress and adjust for any wheel slippage that could hint at sand traps or other dangerous obstacles.

The longest drive to date just occurred on Sol 50 with the robot rolling about 160 feet (48.9 meters).

Curiosity recently conducted her first detailed rock contact science investigation with the robotic arm at a rock named “Jake”, in honor of Jake Matijevic, a recently deceased MSL team member who played a key and leading role on all 3 generations of NASA’s Mars rovers. See our 360 degree panoramic “Jake rock” mosaic created in tribute to Jake Matijevic.

Curiosity is searching for hydrated minerals, organic molecules and signs of habitats favorable for past or present microbial life on Mars.

Ken Kremer

Image Caption: “Hottah” water related outcrop. Context mosaic shows location of Hottah” outcrop (bottom right) sticking out from the floor of Gale Crater as imaged by Curiosity Navcam on Sol 38 with Mount Sharp in the background. The Glenelg science target lies in the terrain towards Mt Sharp. This is what an astronaut geologist would see on Mars. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Alluvial Fan Where Water Flowed Downslope. This image shows the topography, with shading added, around the area where NASA’s Curiosity rover landed on Aug. 5 PDT (Aug. 6 EDT). The black oval indicates the targeted landing area for the rover known as the “landing ellipse,” and the cross shows where the rover actually landed.An alluvial fan, or fan-shaped deposit where debris spreads out downslope, has been highlighted in lighter colors for better viewing. On Earth, alluvial fans often are formed by water flowing downslope. New observations from Curiosity of rounded pebbles embedded with rocky outcrops provide concrete evidence that water did flow in this region on Mars, creating the alluvial fan. Credit: NASA/JPL-Caltech/UofA

Sonic-Powered Levitation Allows for Zero-G Drug Research

It’s not special effects: researchers at the U.S. Department of Energy’s Argonne National Laboratory in Illinois have developed a way to cancel out the effects of gravity, allowing liquids to be held without containers. The effect is created using sound waves emitted by an acoustic levitator — an instrument designed by NASA for simulating microgravity.

Watch the video. It’s the coolest thing you’ll see all week.

This accomplishes more than just a neat effect; by keeping liquids in place without the need for a physical container, pharmaceutical research can be performed while the drugs are still in their purest, “amorphous” state.

“Most drugs on the market are crystalline – they don’t get fully absorbed by the body and thus we aren’t getting the most efficient use out of them,” said Yash Vaishnav, Argonne Senior Manager for Intellectual Property Development and Commercialization.

When solutions come in contact with the interior surfaces of their containers, evaporation takes place, which can lead to crystallization. In order to find a way to hold liquids without anything coming in contact with them (a tricky task while under the effect of Earth’s pesky gravity) ANL X-ray physicist Chris Benmore looked to NASA’s acoustic levitator.

Using two sets of sound waves emitted at 22khz and precisely aimed at each other, a “standing wave” is established at their center. The resulting acoustic force is strong enough to counter the downward tug of gravity at certain points (at least as far as droplets of liquid are concerned.)

The liquid drugs can then be studied without the problem of crystallization, making this technological parlor trick a powerful analytical tool for pharmaceutical researchers. The ultimate goal is to learn how to reduce the amount of a particular drug but still retain the desired effects — with less of the undesired ones.

Read more here on the Argonne National Lab site.

The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’sOffice of Science.